共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of the cilia and ciliary membrane proteins of wild- type Paramecium tetraurelia and a pawn mutant 总被引:3,自引:2,他引:3
下载免费PDF全文

《The Journal of cell biology》1981,89(2):206-215
Cilia and ciliary membranes were isolated from axenically grown, wild- type Paramecium tetraurelia strain 51s and from the extreme pawn mutant strain, d495, derived from this parental strain. Over 60 protein bands having molecular weights of 15 to greater than 300 kdaltons were detected by Coomassie Blue staining of whole cilia proteins separated by one-dimensional SDS polyacrylamide gel electrophoresis. About 30 of these protein bands were visible in Coomassie Blue-stained membrane separations. About 60 bands were detected by silver staining of one- dimensional gels of membrane proteins. Differences between Coomassie Blue-stained separations of wild-type and pawn mutant strain d495 membrane proteins were seen in the quantity of a band present at 43 kdaltons. Radioiodination of cell surface proteins labeled approximately 15 protein bands in both wild-type and mutant cilia. The major axonemal proteins were unlabeled. Six membrane glycoproteins were identified by staining one-dimensional separations with iodinated concanavalin A and lentil lectin, two lectins that specifically bind both glucose and mannose residues. Two major neutral sugar species present in an acid hydrolysate of the cilia preparation were tentatively identified as glucose and mannose by gas chromatography of the alditol acetate derivatives. 相似文献
2.
3.
K Mikami 《Developmental biology》1992,149(2):317-326
In conjugating pairs of Paramecium caudatum, the micronuclear events occur synchronously in both members of the pair. To find out whether micronuclear behavior is controlled by the somatic macronucleus or by the germinal micronucleus, and whether or not synchronization of micronuclear behavior is due to intercellular communication between conjugating cells, the behavior of the micronucleus was examined after removal of the macronuclei from either or both cells of a mating pair at various stages of conjugation. When macronuclei were removed from both cells of a pair, micronuclear development was arrested 1 to 1.5 hr after macronuclear removal. When the macronucleus of a micronucleate cell mating with an amicronucleate cell was removed later than 3 to 3.5 hr of conjugation, that is, an early stage of meiotic prophase of the micronucleus, micronuclear events occurred normally in the operated cell. These results suggest that most micronuclear events are under the control of the macronucleus and that the gene products provided by the macronucleus are transferable between mating cells. One such product is required for induction of micronuclear division and is provided just before metaphase of the first meiotic division of the micronucleus. This factor is effective at a lower concentration in the cytoplasm and/or is more transferable between mating cells than the factors required for other stages. This factor, which seems to be present at least until the stage of micronuclear disintegration, is able to induce repeated micronuclear division as long as it remains active. The factor can act on a micronucleus which has not passed through a meiotic prophase. Moreover, the results suggest the existence of a second factor which is provided by the macronucleus after the first meiotic division that inhibits further micronuclear division. 相似文献
4.
Retrieval of lysosomal membrane and acid phosphatase from phagolysosomes of Paramecium caudatum
下载免费PDF全文

Little is known about the fate of lysosomal membrane in phagocytic cells. Because the age of the digestive vacuoles in Paramecium caudatum can be easily determined, we have been able to study the dynamic membrane events in the older vacuoles. Late in the phagolysosomal stage (DV-III) the vacuole membrane undergoes a burst of tubule formation. The tubules expand into vesicles which have characteristics resembling lysosomes in both thin sections and freeze-fracture replicas. The tubules also contain acid phosphatase activity when they arise from acid phosphatase-reactive vacuoles. We conclude that after active digestion lysosomal membrane is retrieved in whole or in part along with some membrane-associated hydrolases. A logical extension of these results is that the lysosome-like vesicles, after being recharged with hydrolases by fusing with primary lysosomes, are recycled back to DV-II for reuse. 相似文献
5.
During conjugation of Paramecium caudatum, there are two well-known stages when nuclear migration occurs. What happens to the nuclei is closely related to their localisations in cells. The first of these stages is the entrance of one meiotic product into the paroral region. This nucleus survives, while the remaining three outside this area degenerate. The second stage is the antero-posterior localisation of eight synkaryon division products. Four posterior nuclei are differentiated into macronuclear anlagen, whereas four anterior nuclei remain as the presumptive micronuclei. In this experiment, the process of the third prezygotic division of P. caudatum was studied with the help of protargol staining. Here, a third nuclear migration was discovered. By two spindle turnings and two spindle elongations, stationary pronuclei were positioned near migratory pronuclei. This positioning of stationary pronuclei could shorten the distance for transferred migratory pronuclei to recognise and reach the stationary pronuclei. This fosters the synkaryon formation of P. caudatum. 相似文献
6.
7.
The work is the first attempt to study nuclear dualism of ciliates with ultraviolet microbeam (UV-beam), which was not applied earlier for these purposes. The special advantage of the UV-beam is that it allow to inactivate selectively of the particular elements of nuclear apparatus of living ciliates is to observe consequences of operation on distant descendants of irradiated cell. On Paramecium caudatum the ways of UV-beam have been devised specifically. The original rotocompression chamber was employed for immobilization of cell in space of irradiation. The effective UV-doses were selected, the relative resistance of cytoplasm, macro-, micronucleus (Mi), and symbiotic bacteria of Mi -- omega particles -- was detected. The "pure" and infected cells were irradiated, in some different variants. The effect of UV-beam depends on dose and consists in a reduction the effectiveness of cell cloning, the loss of omega-particles from Mi, the appearance of the cells with 2--3 Mi, and, possibly, of amicronucleate cells. The injuries due to UV-beam are restored by photoreactivation of visible light. 相似文献
8.
Local Degeneration of Cilia and Nuclear Activation during Sexual Reproduction in Paramecium caudatum
TSUYOSHI WATANABE 《Development, growth & differentiation》1983,25(1):113-120
The correlation between local degeneration of cilia and nuclear activation during chemically induced autogamy in Paramecium caudatum was studied by experimental interruption of autogamy. When the induction of autogamy was interrupted 60 min after the onset of chemical induction, nuclear activation did not occur and ciliary regeneration took place at the deciliated surface. On the contrary, when it was interrupted 3 hr after the onset of induction, nuclear activation was not stopped and no reciliation was observed. At this critical stage, the deciliated zone was seen to extend to the right wall of the gullet. These findings suggest that there is a transition point in activation processes. It is conceivable that in autogamous cells that have gone beyond this transition point all processes of nuclear activation proceed, and that the ability to regenerate cilia is lost by the end of autogamy, even if the stimulus for autogamy is removed. 相似文献
9.
Transformation by microinjection of macronucleoplasm in Paramecium caudatum was investigated. Macronucleoplasm with three genetic markers (behavior, trichocyst, and mating type) was injected into the macronucleus. To facilitate microinjection, in most cases, paramecia were immobilized in a gelatin (7.5%) solution. The injected cells began to express a dominant gene (cnrA+ or cnrB+) of the donor 9–24 hr after injection. Expression did not require cell division suggesting injected macronucleoplasm was capable of expressing a phenotype. The amount of injected macronucleoplasm appears to correlate with the frequency of successful expression but not to correlate with the time required for expression. After a number of fissions, the injected cells produced clones which had cells expressing the phenotype of the donor. This suggests that injected macronucleoplasm was replicated and expressed in the recipient cell lines. The transformed clones were classified into two groups. In one group, transformation was stable. All cell lines derived from the injected cells expressed a phenotype similar to the heterozygote of donor and recipient cells. In the other group, transformation was unstable. During the first five to seven fissions after injection, at each division, cells produced one daughter cell which later reverted to the recipient phenotype. After this unstable period, cells no longer produced the recipient phenotype but produced the donor phenotype exclusively. Donor and recipient phenotypes were, thus, segregated in different cell lines. Observation of genetic markers and analysis by computer simulation shed light on the mode of transmission of injected macronucleoplasm. In stable transformation, injected macronucleoplasm appears to be distributed equally to daughter cells. In unstable transformation, injected macronucleoplasm is distributed only to one of the daughter cells at every division until about the fifth to seventh fission after injection and then begins to assort equally to daughter cells. The cell cycle stage at injection may influence the mode of transformation. Interspecific microinjection of macronucleoplasm from P. multimicronucleatum and P. tetraurelia to P. caudatum. resulted in the expression of foreign genes in P. caudatum. In one case, injection of macronucleoplasm of P. tetraurelia produced a stable transformant indicating replication of foreign macronucleoplasm in P. caudatum. This work reveals the mode of transformation by injected macronucleoplasm and shows the possibility of transformation among Paramecium species, which is significant in the study of the conservation of gene products and the mechanism of gene expression in different species. © 1992 Wiley-Liss, Inc. 相似文献
10.
Induction of conjugation by chemical agents in Paramecium 总被引:2,自引:0,他引:2
A Miyake 《The Journal of experimental zoology》1968,167(3):359-379
11.
12.
通过石炭酸品红、Hoechst 33342、蛋白银及免疫荧光标记等染色方法对草履虫接合生殖过程进行了重新观察,结果发现:1)新月核是第一次减数分裂前期小核的主要形态学特征,在核内有一未被石炭酸品红、Hoechst 33342着色区域,蛋白银染色则清楚显示该结构;2)4个单倍体减数分裂产物中的1个核进入口旁锥完成配前第三次核分裂,其余3核退化.蛋白银染色和抗α微管蛋白单克隆抗体进行免疫荧光标记显示,核进入口旁锥的时期在第二次减数分裂末期而非减数分裂结束后;3)配前第三次分裂末期,核间连丝的中间段有一被蛋白银识别的结构,但免疫荧光标记却无显示,只表现为纤维状结构与两侧核间连丝相连.观察结果为草履虫接合生殖过程中相关分子生物学机制研究奠定了必要的形态学基础. 相似文献
13.
During conjugation of Paramecium caudatum, nuclear events occur in a scheduled program. Morphological studies on nuclear behavior during conjugation of P. caudatum have been performed since the end of the 19th century. Here we report on new details concerning the conjugation of P. caudatum through the staining of conjugating cells with protargol, carbol fuchsin solution, Hoechst 33342 and immunofluorescence labeling with monoclonal antibody of anti-α tubulin. 1) The crescent nucleus is a characteristic of the meiotic prophase of P. caudatum, has an unstained area. We stained this area with protargol, which was separated from the chromatin area and was not detected by the other stainings. 2) In regards to the four meiotic products, it has long been considered that only one product enters the paroral cone region (PC) and survives after meiosis. However, our protargol and immunofluorescence labeling results indicated that PC entrance of the meiotic product happened before the completion of meiosis instead of after. 3) In our previous study, protargol staining indicated the presence of a swollen structure around the central part of the "U" and "V" shaped spindles connecting the two types of prospective pronuclei. However, immunofluorescence labeling with anti-α tubulin antibodies gave a different image from protargol. All these observations form the basis for further studies of their molecular mechanisms. 相似文献
14.
15.
16.
Transformation by microinjection of macronucleoplasm in Paramecium caudatum was investigated. Macronucleoplasm with three genetic markers (behavior, trichocyst, and mating type) was injected into the macronucleus. To facilitate microinjection, in most cases, paramecia were immobilized in a gelatin (7.5%) solution. The injected cells began to express a dominant gene (cnrA+ or cnrB+) of the donor 9-24 hr after injection. Expression did not require cell division suggesting injected macronucleoplasm was capable of expressing a phenotype. The amount of injected macronucleoplasm appears to correlate with the frequency of successful expression but not to correlate with the time required for expression. After a number of fissions, the injected cells produced clones which had cells expressing the phenotype of the donor. This suggests that injected macronucleoplasm was replicated and expressed in the recipient cell lines. The transformed clones were classified into two groups. In one group, transformation was stable. All cell lines derived from the injected cells expressed a phenotype similar to the heterozygote of donor and recipient cells. In the other group, transformation was unstable. During the first five to seven fissions after injection, at each division, cells produced one daughter cell which later reverted to the recipient phenotype. After this unstable period, cells no longer produced the recipient phenotype but produced the donor phenotype exclusively. Donor and recipient phenotypes were, thus, segregated in different cell lines. Observation of genetic markers and analysis by computer simulation shed light on the mode of transmission of injected macronucleoplasm. In stable transformation, injected macronucleoplasm appears to be distributed equally to daughter cells.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
17.
SYNOPSIS. The behavior of Paramecium caudatum in small capillary glass tubes was investigated under various ionic conditions and at the various tube diameters. Along the inner walls of the tubes ciliates undergo regular spiral motion, which is completely different from natural spirallings or random walk-like movements observed usually in large vessels. The curvature calculated from the tracks of spiral motions was independent of the inner diameters of capillary tubes, but depend specifically on ionic conditions.
A plausible law governing such regular spiral motions of Paramecium caudatum is proposed. A definite part of the anterior end of a ciliate seems to contact the curved surface of the inner wall of a capillary tube during the motion so that the organism receives a constant tactile stimulus, and the direction of motive force keeps a certain angle against the surface. 相似文献
A plausible law governing such regular spiral motions of Paramecium caudatum is proposed. A definite part of the anterior end of a ciliate seems to contact the curved surface of the inner wall of a capillary tube during the motion so that the organism receives a constant tactile stimulus, and the direction of motive force keeps a certain angle against the surface. 相似文献
18.
在尾草履虫的接合生殖过程中,共有三次配前核分裂。在配前第三次分裂结束后,两个接合的细胞内均形成一个迁移原核和一个静止原核。迁移原核位于口旁锥内,而且紧贴于接合面,静止原核则位于迁移原核的外侧,两者呈左右排列,距离接近。但是,目前对导致两种原核近距离的原因尚不清楚。该文通过α-微管蛋白的单克隆抗体对受精核形成前的接合对进行了免疫荧光染色,结果发现,配前第三次分裂不同于前两次分裂,连接迁移原核和静止原核的核间连丝伸向细胞的后方,呈"U"或"V"型,结果导致两个原核左右排列,而不是前后排列,两者间的距离缩短。这个结果也阐明了造成两种原核近距离的原因。 相似文献
19.
In the sexual reproduction of Paramecium tetraurelia, the somatic nucleus (macronucleus) undergoes massive genomic rearrangement, including gene amplification and excision of internal eliminated sequences (IESs), in its normal developmental process. Strain d4-662, one of the pawn mutants, is a behavioral mutant of P. tetraurelia that carries a recessive allele of pwB662. ThepwB gene in the macronucleus of the strain has an insertion of the IES because a base substitution within the IES prevents its excision during gene rearrangement. Cultures of this strain frequently contain cells reverting to the wild type in the behavioral phenotype. The mutant and revertant cells maintained stable clonal phenotypes under the various environmental conditions examined unless they underwent sexual reproduction. After sexual reproduction, both mutant and revertant produced 2.7-7.1% reverted progeny. A molecular analysis performed on the macronuclear DNA of the mutant and revertant of d4-662 showed that much less than 1% of the mutant IES was precisely excised at every sexual reproduction of the strain. Therefore, the alternative phenotype of strain d4-662 seems to be caused by an alternative excision of the mutant IES. 相似文献