首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A choline (CHO) biosensor based on the determination of H(2)O(2) generated at the electrode surface by the enzyme choline oxidase (CHOx) was developed. The biosensor consisted of CHOx retained onto a horseradish peroxidase (HRP) immobilized solid carbon paste electrode (sCPE). The HRPsCPE contained the molecule phenothiazine as redox mediator and CHOx was physically retained on the electrode surface using a dialysis membrane. Several parameters have been studied such as, mediator amount, influence of applied potential, etc. The CHO measurements were performed in 0.1 M phosphate buffer, pH 7.4. Amperometric detection of CHO was realized at an applied potential of 0.0 mV vs Ag/AgCl. The response is linear over the concentration range 5.0x10(-7)-7.0x10(-5) M, with a detection limit of 1.0x10(-7) M. This biosensor was used to detect choline released from phosphatidylcholine (PC) by phospholipase D (PLD) in isolated rat salivary gland cells stimulated by a purinergic agonist (ATP).  相似文献   

2.
A flow injection chemiluminescent method is described for the determination of choline. The method is based on the production of hydrogen peroxide from choline using on-line covalently bound immobilized choline oxidase column. The product is mixed downstream and detected via the cobalt catalyzed chemiluminescent oxidation of luminol. The detection limit is 1×10−7 mol/L, with rsd 1.8 to 2.8% in the range 2–10×10−5 mol/L. The sample throughput is 30 per hour. The method was applied to the determination of choline produced off-line from phosphatidylcholine using phospholipase-D isolated from cabbage. © 1997 John Wiley & Sons, Ltd.  相似文献   

3.
A Flow Injection Analysis (FIA) for sucrose using invertase (E.C. 3.2.1.26), mutarotase (E.C.5.1.3.3) and glucose oxidase (E.C.1.1.3.4) was developed. The enzymes were immobilised on glass beads using glutaraldehyde. The sucrose concentration was related to oxygen saturation. Fall in O2 concentration, as a result of sucrose oxidation, was detected by a low cost, home-made O2 electrode. The system was able to measure sucrose from 0.025 to 100mM with a response time of 6min using 200 l of sample, with an apparent Km of 42mM of sucrose. The system has been operated satisfactorily for 50 days without loss any initial activity.  相似文献   

4.
Glucose oxidase (GOD) from Aspergillus niger and horseradish peroxidase (POD) were co-immobilized onto arylamine glass beads affixed on a plastic strip with a conjugation yield of 28.2 mg/g and 43% retention of their initial specific activity. The coimmobilized enzymes showed maximum activity at pH 7.5 when incubated at 37 degrees C for 15 min. A simple, specific and sensitive method for discrete analysis of the serum glucose was developed employing this strip. The minimum detection limit of the method was 5 mg/dl. Within and between assay coefficient of variations for the serum were <5.6% and <10.6% (n = 6) respondely. A good correlation (r = 0.943) was found between the glucose values obtained by the enzyme colorimetric method employing free GOD and POD and the present method. The strip lost 50% of its initial activity after its 150 regular uses for a period of one month, when stored in reaction buffer at 4 degrees C. The method is cost-effective than the enzymic colorimetric method, as the enzyme strip is reusable.  相似文献   

5.
A bienzymatic glucose biosensor was proposed for selective and sensitive detection of glucose. This mediatorless biosensor was made by simultaneous immobilization of glucose oxidase (GOD) and horseradish peroxidase (HRP) in an electropolymerized pyrrole (PPy) film on a single-wall carbon nanotubes (SWNT) coated electrode. The amperometric detection of glucose was assayed by potentiostating the bienzymatic electrode at -0.1 versus Ag/AgCl to reduce the enzymatically produced H(2)O(2) with minimal interference from the coexisting electroactive compounds. The single-wall carbon nanotubes, sandwiched between the enzyme loading polypyrrole (PPy) layer and the conducting substrate (gold electrode), could efficiently promote the direct electron transfer of HRP. Operational characteristics of the bienzymatic sensor, in terms of linear range, detection limit, sensitivity, selectivity and stability, were presented in detail.  相似文献   

6.
In this work, a novel chemiluminescence (CL) flow biosensor for glucose was proposed. Glucose oxidase (GOD), horseradish peroxidase (HRP) and gold nanoparticles were immobilized with sol-gel method on the inside surface of the CL flow cell. The CL detection involved enzymatic oxidation of glucose to d-gluconic acid and H(2)O(2), and then the generated H(2)O(2) oxidizing luminol to produce CL emission in the presence of HRP. It was found that gold nanoparticles could remarkably enhance the CL respond of the glucose biosensor. The enhanced effect was closely related to the sizes of gold colloids, and the smaller the size of gold colloids had the higher CL respond. The immobilization condition and the CL condition were studied in detail. The CL emission intensity was linear with glucose concentration in the range of 1.0 x 10(-5)molL(-1) to 1.0 x 10(-3)molL(-1), and the detection limit was 5 x 10(-6)molL(-1) (3sigma). The apparent Michaelis-Menten constant of GOD in gold nanoparticles/sol-gel matrix was evaluated to be 0.3mmolL(-1), which was smaller than that of GOD immobilized in sol-gel matrix without gold nanoparticles. The proposed biosensor exhibited short response time, easy operation, low cost and simple assembly, and the proposed biosensor was successfully applied to the determination of glucose in human serum.  相似文献   

7.
In this study, amperometric biosensors based on rigid conducting composites are developed for the determination of lysine. These lysine biosensors consist of chemically immobilized lysine oxidase membranes attached to either graphite-methacrylate or peroxidase-modified graphite-methacrylate electrodes. The enzymatic degradation of lysine releases hydrogen peroxide, which is the basis of the amperometric detection. The direct oxidation of hydrogen peroxide is monitored at +1000 mV with a graphite-methacrylate electrode, while with the peroxidase-modified electrode reductive detection is performed. In addition, for the peroxidase-modified biocomposite electrode, both direct electron transfer and hydroquinone-mediated detection are studied. For the lysine biosensor based on the hydroquinone-mediated peroxidase biocomposite, the linear range is up to 1.6 x 10(-4) M, the sensitivity 11300 microA/M, the repeatability 1.8%, the detection limit 8.2 x 10(-7) M and the response time t95% is 42 s. The proposed biosensors are used to determine lysine in pharmaceutical samples. Results are consistent with those obtained with the standard method.  相似文献   

8.
Manganese peroxidase (MnP) from Phlebia radiata and glucose oxidase from Aspergillus niger were co-immobilized on porous silica beads. Immobilization of both enzymes on the same carrier provided an integrated system in which H2O2 required by MnP was produced by glucose oxidase. The immobilization process resulted in a decrease of both enzymatic activities and substrate affinities. However, immobilization improved the stability of MnP against H2O2 or high pH, as well as the storage stability of this enzyme.  相似文献   

9.
A conductimetric biosensor for the detection of acrylonitrile in solution was designed and characterised using whole cells of Rhodococcus ruber NCIMB 40757, which were immobilised into a disc of dimethyl silicone sponge (ImmobaSil). The biosensor described was capable of the detection and quantification of acrylonitrile in aqueous solution, having a linear response to concentrations between 2 and 50 mM (106-2650 ppm) acrylonitrile. The biosensor has been shown to be reproducible with respect to the data obtained over a number of days, and retains stability for a minimum period of at least 5 days before recalibration of the biosensor is required.  相似文献   

10.
A method for determination of serum triglycerides (Tgs) using lipase, glycerol kinase, glycerol-3-phosphate oxidase and peroxidase co-immobilized onto alkylamine glass beads (pore diameter 55 nm) through glutaraldehyde coupling was developed and evaluated. The minimum detection limit of the method was 0.54 mM. The analytical recovery of added triolein in the serum was 97.55 +/- 1.5% (mean +/- S.D.). The mean value of serum Tgs, determined by the present method showed a good correlation (r = 0.984) with the Bayer's kit method, employing free enzymes. The within and between batch coefficients of variation (CV) were < 2.25% and < 1.35% respectively. No significant loss of activity was observed, when co-immobilized enzymes were reused for about 200 times and stored at 4 degrees C in distilled water. The cost of Tg determination for 200 serum samples was less, as compared with Bayer's kit method.  相似文献   

11.
Detailed operating conditions are reported for the determination of choline in human erythrocytes using proton nuclear magnetic resonance spectroscopy in conjunction with the inversion-recovery spin-echo pulse sequence. The results of the NMR method were in excellent agreement with those obtained using an enzymatic (choline oxidase) assay; however, they were approximately three times higher than those reported using gas chromatography/mass spectrometry techniques. The differences may be partly due to the method of preparing or sampling cells since there is a distribution of choline in cells of different ages. However, choline levels were not affected by the methods used in the present study for storing or preparing cells.  相似文献   

12.
An amperometric and a colorimetric biosensor to detect and quantify D-amino acids selectively has been devised using D-amino acid oxidase from Rhodotorula gracilis. The sensor is characterised by a proportional response between 0.2-3 mM and 0.1-1 mM D-alanine for the amperometric (at a working potential of 1400 mV vs Ag/AgCl) and colorimetric system, respectively.  相似文献   

13.
A biosensor to detect hydrogen peroxide, by coulometry, down to submicromolar concentration using a monomolecular layer of horseradish peroxidase was developed. In this device 0.3 pmol of the enzyme were covalently immobilized on the glass surface of the biosensor and the enzyme layer was characterized by atomic force microscopy and activity measurements. The glass surface bearing the peroxidase was faced to a carbon electrode in a cell of 1 microl of active volume. The polarization of the working electrode at -100 mV versus Ag/AgCl, in the presence of 1,4-hydroquinone as mediator, allowed the fast reduction of the injected hydrogen peroxide via the hydroquinone-peroxidase system. This device permitted to measure the total number of H(2)O(2) molecules present in the cell in the concentration range of 0.3-100 microM H(2)O(2), with a sensitivity of 196 nC/microM H(2)O(2), which is close to the theoretical value (193 nC/microM).  相似文献   

14.
A bienzymatic sensor for the determination of acetylcholine was prepared by physical coimmobilization of acetylcholinesterase and poly(ethylene glycol)-modified choline oxidase in a poly(vinyl alcohol) cryogel membrane obtained by a cyclic freezing-thawing process. The enzyme-modified polymer was applied on a platinum electrode to form an amperometric sensor, based on the electrochemical detection of enzymatically developed hydrogen peroxide. The analytical characteristics of this sensor, including calibration curves for choline and acetylcholine, pH, and temperature effects, and stability are described.  相似文献   

15.
Choline oxidase catalyzes the oxidation of choline to glycine betaine via two sequential flavin-linked transfers of hydride equivalents to molecular oxygen and formation of a betaine aldehyde intermediate. In the present study, choline and glycine betaine analogs were used as substrates and inhibitors for the enzyme to investigate the structural determinants that are relevant for substrate recognition and specificity. Competitive inhibition patterns with respect to choline were determined for a number of substituted amines at pH 6.5 and 25 degrees C. The Kis values for the carboxylate-containing ligands glycine betaine, N,N-dimethylglycine, and N-methylglycine increased monotonically with decreasing number of methyl groups, consistent with the trimethylammonium portion of the ligand being important for binding. In contrast, the acetate portion of glycine betaine did not contribute to binding, as suggested by lack of changes in the Kis values upon substituting glycine betaine with inhibitors containing methyl, ethyl, allyl, and 2-amino-ethyl side chains. In agreement with the inhibition data, the specificity of the enzyme for the organic substrate (kcat/Km value) decreased when N,N-dimethylethanolamine, N-methylethanolamine, and the isosteric substrate 3,3-dimethyl-1-butanol were used as substrate instead of choline; a contribution of approximately 7 kcal mol(-1) toward substrate discrimination was estimated for the interaction of the trimethylammonium portion of the substrate with the active site of choline oxidase.  相似文献   

16.
The enzyme horseradish peroxidase (HRP) has been entrapped in situ by electropolymerization of pyrrole onto a platinum electrode. The latter was previously coated by a polypyrrole layer for better adhesion of the biocatalyst film and in order to avoid the enzyme folding onto the Pt electrode. The biosensor allowed the determination of hydrogen peroxide in the concentration range comprised between 4.9 x 10(-7) and 6.3 x 10(-4) M. The biosensor retained more than 90% of its original activity after 35 days of use.  相似文献   

17.
In this work, a highly sensitive fluorescent biosensor for quantitative superoxide radical detection, based on the coupled reaction superoxide dismutase-peroxidase enzymes and the use of the probe Amplex red, is described. Superoxide anion radical was produced via oxidation of xanthine by xanthine oxidase. Dismutation of superoxide was catalyzed by superoxide dismutase, generating hydrogen peroxide, which reacted stoichiometrically with the nonfluorescent Amplex red, in the presence of peroxidase, yielding the red-fluorescent oxidation product resorufin. The coupled superoxide dismutase-peroxidase system was immobilized in a single sol-gel matrix. The enzymatic activity of the encapsulated superoxide dismutase-peroxidase system was nearly identical to that of one of the soluble enzymes, indicating that sol-gel encapsulation preserved the hierarchy of the enzyme's activity. Specificity and reusability of the encapsulated system for up to four cycles were also demonstrated. The fluorescent biosensor was able to detect concentrations of superoxide as low as 20 nM in phospholipid model membranes composed of saturated or unsaturated phospholipids. These facts make this biosensor a simple, reliable, and highly sensitive method with a potential use in biological systems, food, and drinks.  相似文献   

18.
An amperometric biosensor for rapid determination of the concentration of l-amino acids has been developed using l-amino acid oxidase (l-AAO) immobilized by gel entrapment with poly(carbamoyl) sulfonate hydrogel. The broad substrate range of l-AAO allows this biosensor to be flexible in application. The artificial sweetener, aspartame, was determined by coupling l-AAO with pronase.  相似文献   

19.
In this study, glucose oxidase and polyphenol oxidase were immobilized in conducting polymer matrices; polypyrrole and poly(N-(4-(3-thienyl methylene)-oxycarbonyl phenyl) maleimide-co-pyrrole) via electrochemical method. Fourier transform infrared and scanning electron microscope were employed to characterize the copolymer of (N-(4-(3-thienyl methylene)-oxycarbonyl phenyl) maleimide) with pyrrole. Kinetic parameters, maximum reaction rate and Michealis-Menten constant, were determined. Effects of temperature and pH were examined for immobilized enzymes. Also, storage and operational stabilities of enzyme electrodes were investigated. Glucose and polyphenol oxidase enzyme electrodes were used for determination of the glucose amount in orange juices and human serum and phenolic amount in red wines, respectively.  相似文献   

20.
In the present work, an amperometric inhibition biosensor for the determination of sulfide has been fabricated by immobilizing Coprinus cinereus peroxidase (CIP) on the surface of screen printed electrode (SPE). Chitosan/acrylamide was applied for immobilization of peroxidase on the working electrode. The amperometric measurement was performed at an applied potential of -150 mV versus Ag/AgCl with a scan rate of 100 mV in the presence of hydroquinone as electron mediator and 0.1M phosphate buffer solution of pH 6.5. The variables influencing the performance of sensor including the amount of substrate, mediator concentration and electrolyte pH were optimized. The determination of sulfide can be achieved in a linear range of 1.09-16.3 μM with a detection limit of 0.3 μM. Developed sensor showed quicker response to sulfide compared to the previous developed sulfide biosensors. Common anions and cations in environmental water did not interfere with sulfide detection by the developed biosensor. Cyanide interference on the enzyme inhibition caused 43.25% error in the calibration assay which is less than the amounts reported by previous studies. Because of high sensitivity and the low-cost of SPE, this inhibition biosensor can be successfully used for analysis of environmental water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号