首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
WEHI-3B myelomonocytic leukaemia cells secrete a haemopoietic cell growth factor (HCGF) which facilitates the proliferation and development of multipotential stem cells and committed progenitor cells. Several cloned, nonleukaemic cell lines (FDC-P cells) are absolutely dependent on HCGF and die in the absence of it. In these cell lines, factor dependence is associated with the ability of HCGF to increase glucose uptake, thereby controlling glycolytic flux and intracellular ATP levels. We have now investigated the effects of HCGF on glucose uptake in WEHI-3B cells. At 20 degrees C 2-deoxyglucose uptake could be stimulated by the addition of HCGF to the extracellular medium. L-glucose uptake was markedly lower than 2-deoxyglucose uptake and did not respond to the addition of HCGF. At 37 degrees C no HCGF stimulation of 2-deoxyglucose uptake was found. However, at this temperature HCGF release from WEHI-3B cells was markedly higher than at 20 degrees C. Our experiments indicate that HCGF stimulates the glucose transport system in both WEHI-3 cells and FDC-P cells. The similarities between the WEHI-3B cell and FDC-P2 cell polypeptide phenotype were investigated using two-dimensional isoelectric focussing/poly-acrylamide gel electrophoresis. This revealed a high degree of correlation between the two cell types in their protein constituents, indicating a close relationship between the normal and leukaemic cells. These similarities between WEHI-3B cells and FDC-P2 cells are considered and their relevance to haemopoiesis and leukaemogenesis is discussed.  相似文献   

2.
3.
4.
On day 33 of gestation, foetal beagles were irradiated in utero (0.9 Gy of 60Co gamma-irradiation, 0.4 Gy/min). Foetal haematocytopoiesis was studied during the third trimester of gestation (days 42-55). Peripheral blood nucleated cell counts were 33 per cent lower than normal on day 44 and continued to be lower until day 49, when values became higher than normal. Splenic cellularities of irradiated pups on day 44 were more than 3 times those of the nonirradiated, but thereafter they were similar to normal. Differences in haemopoietic progenitor cell activity between irradiated and normal foetuses were observed. In comparison with the other foetal tissues, the foetal liver appeared to experience greater radiation injury. For example, on day 44, the irradiated liver BFU-E, CFU-E, and GM-CFC per 10(5) cells were almost fivefold lower than normal values. Spleens of irradiated foetal beagles contained a marked increase in all haemopoietic progenitor cells (BFU-E, CFU-E, and GM-CFC) and recognizable proliferative granulocytic cells and nucleated erythroid cells. The haemopoietic activity of the irradiated bone marrow during days 42-44 was similar to that of the irradiated spleen, and compensated for the damaged liver. However, unlike the irradiated spleen, the irradiated bone marrow had decreased BFU-E activity compared with the values for the nonirradiated bone marrow during days 48-55. Until day 50, the irradiated marrow contained fewer recognizable proliferative granulocytic cells but more nucleated erythroid cells.  相似文献   

5.
CM-S is an autonomous cell line of human hemopoietic precursor cells inducible to monocyte-macrophage differentiation in response to appropriate inducing agents. CM-S cells produce factors that stimulate their own growth and proliferation, and are also capable of stimulating clonal proliferation of human, but not mouse, monocytic and granulocytic bone marrow progenitor cells in viscous medium. Preliminary purification steps have demonstrated at least two species, one of which (MW 30,000–50,000) retains both these activities, while the other (MW ≤ 10,000) apparently retains only the autostimulatory activity. CM-S cells could thus be a useful source for the purification of human colony stimulating factors (CSFs). CM-S cells also respond to factors present in human placenta conditioned medium, known to contain human CSF. This suggests that CM-S cells could provide a homogeneous target cell population for testing CSFs from other human sources.  相似文献   

6.
7.
8.
The proliferation and differentiation of hemopoietic committed progenitor cells depend on colony stimulating factors (CSF). However, isolated mouse granulocyte-macrophage progenitor cells can still undergo limited proliferation in serum-free cultures after CSF deprivation. To test whether this is due to an accumulated pool of internalized factor, we examined the binding, internalization and degradation of radiolabelled interleukin 3 (IL-3) and granulocyte-macrophage colony stimulating factor (GM-CSF) in various hemopoietic cells. We found 20,000 high affinity IL-3 receptors on cells of two IL-3-dependent hemopoietic cell lines, FDC-P1 and FDC-P2 (Kd = 85 and 129 pM). FDC-P1 cells, which also respond to GM-CSF, possess 600 high-affinity GM-CSF receptors (Kd = 64 pM). Cells of both lines internalize IL-3, but only FDC-P1 cells release degraded IL-3 at a rapid rate. Both cell lines have similar dose-response curves for IL-3 and survival kinetics after factor removal. All other cells tested behave like FDC-P1, suggesting that the metabolism of IL-3 by FDC-P2 is exceptional. Our study indicates that transient proliferation of committed progenitor cells in the absence of added factors is apparently not due to a stable pool of internalized CSF but merely represents an intrinsic capability of these cells.  相似文献   

9.
10.
11.
The growth in vitro of the murine myeloid cell line FDC-P1 depends on the presence of serum and a murine hemopoietic growth factor (either granulocyte/macrophage colony-stimulating factor (GM-CSF) or multipotential colony-stimulating factor (multi-CSF, IL3]. To determine the differential roles of serum and colony-stimulating factor (CSF) during the growth of FDC-P1 cultures, we investigated the kinetics of proliferation and death after withdrawal of serum or CSF, using flow cytometry to quantitate the numbers of vital and dead cells. After withdrawal of CSF, the cells died without entering a quiescent state. The life span of cultures lacking CSF increased with increasing concentrations of serum (greater than 50 h at 30% serum), and the cells kept dividing until they died. During the period of population death caused by the absence of CSF, the re-addition of CSF immediately prevented further cells from dying. After the withdrawal of serum in the presence of CSF, the cells continued to live and proliferate for weeks, but required high cell densities (much greater than 10(5)/ml), which suggests that the cells produced an active substance that can substitute for serum. Serum as well as serum-free conditioned medium from dense cultures made the survival and growth of FDC-P1 cultures independent of cell density. Without sufficient quantities of this activity, all cells of the population died within an interval that was much shorter than one cell cycle, which indicates that the factor acts throughout most of the cell cycle. The results suggest that both the CSF and the serum factor act together to permit cell survival, rather than to drive proliferation.  相似文献   

12.
Erythroid differentiation of normal human hematopoietic progenitor cells was drastically inhibited by phorbol ester, 12-myristate 13-acetate (PMA), an agent known to activate the class of serine-threonine kinases, protein kinase C (PKC). This inhibition was accompanied by augmented megakaryocytic differentiation as demonstrated by expression of megakaryocyte-specific mRNAs and proteins. These effects of PMA were reversed by two specific antagonists of PKC. Analysis of single colonies transferred from cultures not containing PMA to PMA-containing cultures indicated that, in this system, PMA exerts megakaryocytic differentiating activity directly on cells which may have already initiated a progression toward the erythroid pathway of differentiation. These results suggest that modulation of PKC activity plays a role in erythroid and megakaryocytic differentiation, and may constitute an important selective signal between these pathways during normal blood cell development.  相似文献   

13.
Stem cell factor (SCF) known as the c-kit ligand, plays important roles in spermatogenesis, melanogenesis and early stages of hematopoiesis. As for the latter, SCF is essential for growth and expansion of hematopoietic stem and progenitor cells. We herein describe the production of recombinant murine SCF from Escherichia coli as soluble thioredoxin-fusion protein. The formation of insoluble and inactive inclusion bodies, usually observed when SCF is expressed in E. coli, was almost entirely prevented. After purification based on membrane adsorber technology, the fusion protein was subsequently cleaved by TEV protease in order to release mature mSCF. Following dialysis and a final purification step, the target protein was isolated in high purity. Bioactivity of mSCF was proven by different tests (MTT analogous assay, long-term proliferation assay) applying a human megakaryocytic cell line. Furthermore, the biological activity of the uncleaved fusion protein was tested as well. We observed a significant activity, even though it was less than the activity displayed by the purified mSCF. In summary, avoiding inclusion body formation we present an efficient production procedure for mSCF, one of the most important stem cell cytokines.  相似文献   

14.
15.
Mature blood cells are derived from haemopoietic stem cells which grow and proliferate to give rise to progenitor cells more restricted in their proliferation and differentiation capacity. These in turn give rise to cells belonging to any of the haemopoietic lineages. The haemopoietic growth factors interleukin 3, granulocyte-macrophage colony-stimulating factor, granulocyte colony stimulating factor, macrophage colony-stimulating factor and erythropoietin act on haemopoietic cells to promote cell survival, proliferation, differentiation and maturation, as well as many functions of the mature cells. These factors, now purified to homogeneity and molecularly cloned have recently become available. This has facilitated studies of their roles in cell production, and the range of target cells sensitive to them in vitro and in vivo in several species. The latter experimental data led to the first clinical trials where these factors have been used successfully in several clinical settings: erythropoietin to correct the anaemia of renal disease; granulocyte and granulocyte-macrophage colony-stimulating factors to accelerate haemopoietic regeneration after chemotherapy and bone marrow transplantation, and in other situations where increase in the numbers of white cells and stimulation of their function were required. The results to date allow optimism; the clinical use of growth factors not only in haematology and oncology, but in wider fields of medicine may well constitute a major breakthrough in the near future.  相似文献   

16.
The biology of stem cell factor and its receptor C-kit   总被引:16,自引:0,他引:16  
The receptor tyrosine kinase c-Kit and its ligand Stem Cell Factor (SCF) are essential for haemopoiesis, melanogenesis and fertility. SCF acts at multiple levels of the haemopoietic hierarchy to promote cell survival, proliferation, differentiation, adhesion and functional activation. It is of particular importance in the mast cell and erythroid lineages, but also acts on multipotential stem and progenitor cells, megakaryocytes, and a subset of lymphoid progenitors. SCF exists in soluble or transmembrane forms which appear to differ in function. Multiple isoforms of c-Kit also exist as a result of alternate mRNA splicing, proteolytic cleavage and the use of cryptic internal promoters in certain cell types. This review focuses on what is known about the regulation of c-Kit expression, the functions of SCF and c-Kit isoforms, and the nature of the biological responses elicited by this receptor-ligand pair with emphasis on the haemopoietic system.  相似文献   

17.
In studies designed to determine the role of feline leukemia virus (FeLV) in the pathogenesis of marrow failure in the cat, we tested medium conditioned by uninfected and FeLV-infected feline embryonic fibroblasts (FEA) for its effect on hematopoietic colony growth in culture. As opposed to an inhibitory effect, we found that the conditioned medium (CM) from FEA or FEA/FeLV increased the in vitro growth of multiple hematopoietic progenitor cell types including erythroid burst-forming cells (BFU-E), granulocyte/macrophage colony-forming cells, megakaryocytic colony-forming cells, and mixed-cell colony-forming cells. Furthermore, CM enhanced the growth of progenitors in cultures of mouse or human marrow cells, as well as cat marrow cells. Stimulation of feline BFU-E was most marked with an increment in growth of 400% over control. The human burst promoting activity (BPA) of the CM was equivalent or better than other CM available in our laboratory. The evidence suggest that the growth-promoting activity is a constitutive product(s) released by FEA which was enhanced eightfold with virus infection. Studies with non-adherent and T-lymphocyte-depleted human marrow cells and human peripheral blood cells suggest that the growth factor(s) acts directly on progenitor cells and not through readily identified accessory cells. These findings are consistent with the concept that mesenchymal cells such as fibroblasts have the capacity to release hematopoietic growth factor(s) capable of acting on primitive hematopoietic progenitors. The results provide an example of how injury of such cells, through virus infection, may enhance growth factor(s) release and influence the hematopoietic microenvironment.  相似文献   

18.
In this study, we demonstrated that tissue inhibitor of metalloproteinases (TIMP) produced by human bone marrow stromal cell line KM-102 had erythroid-potentiating activity (EPA) which stimulates the proliferation of erythroid progenitor cells. We, then, propose a scheme for the bifunctional role of TIMP/EPA in hematopoietic microenvironment, that is, the maintenance of the integrity of bone marrow matrix and the proliferation of erythroid progenitor cells proceeding on the matrix.  相似文献   

19.
N Cook  T M Dexter  B I Lord  E J Cragoe  Jr    A D Whetton 《The EMBO journal》1989,8(10):2967-2974
We have prepared a population of bone marrow cells that is highly enriched in neutrophil/macrophage progenitor cells (GM-CFC). Four distinct haemopoietic growth factors can stimulate the formation of mature cells from this population, although the proportions of neutrophils and/or macrophages produced varied depending on the growth factor employed: interleukin 3 (IL-3) and granulocyte/macrophage colony-stimulating factor (GM-CSF) stimulated the formation of colonies containing both neutrophils and macrophages; macrophage colony-stimulating factor (M-CSF) produced predominantly macrophage colonies; and granulocyte colony-stimulating factor (G-CSF) promoted neutrophil colony formation. Combinations of these four growth factors did not lead to any additive or synergistic effect on the number of colonies produced in clonal soft agar assays, indicating the presence of a common set of cells responsive to all four haemopoietic growth factors. These enriched progenitor cells therefore represent an ideal population to study myeloid growth-factor-stimulated survival, proliferation and development. Using this population we have examined the molecular signalling mechanisms associated with progenitor cell proliferation. We have shown that modulation of cyclic AMP levels has no apparent role in GM-CFC proliferation, whereas phorbol esters and/or Ca2+ ionophore can stimulate DNA synthesis, indicating a possible role for protein kinase C activation and increased cytosolic Ca2+ levels in the proliferation of these cells. The lack of ability of all four myeloid growth factors to mobilize intracellular Ca2+ infers that these effects are not achieved via inositol lipid hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
During vertebrate neurogenesis, multiple extracellular signals influence progenitor cell fate choices. The process by which uncommitted progenitor cells interpret and integrate signals is not well understood. We demonstrate here that in the avascular chicken retina, vascular endothelial growth factor (VEGF) secreted by postmitotic neurons acts through the FLK1 receptor present on progenitor cells to influence cell proliferation and commitment. Augmenting VEGF signals increases progenitor cell proliferation and decreases retinal ganglion cell genesis. Conversely, absorbing endogenous VEGF ligand or disrupting FLK1 activity attenuates cell proliferation and enhances retinal ganglion cell production. In addition, we provide evidence that VEGF signals transmitted by the FLK1 receptor activate divergent intracellular signaling components, which regulate different responses of progenitor cells. VEGF-induced proliferation is influenced by the MEK-ERK pathway, as well as by the basic helix-loop-helix factor HES1. By contrast, VEGF-dependent ganglion cell suppression does not require MEK-ERK activation, but instead relies on VEGF-stimulated HES1 activity, which is independent of NOTCH signaling. Moreover, elevated HES1 expression promotes progenitor cell proliferation and prevents overproduction of retinal ganglion cells owing to the loss of VEGF or sonic hedgehog (SHH), another signal that suppresses ganglion cell development. Based on previous and current findings, we propose that HES1 serves as a convergent signaling node within early retinal progenitor cells to integrate various cell-extrinsic cues, including VEGF and SHH, in order to control cell proliferation and neuronal specification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号