首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Benthic macroinvertebrate assemblages were compared among a diverse array of first‐order alpine tundra streams of the Swiss Alps. 2. A principal components analysis separated sites into three main groups: rhithral streams, rhithral lake outlets, and kryal sites including outlets and streams. Rhithral streams contained the most diverse and taxon rich assemblages, being colonised by both non‐insect taxa and Ephemeroptera, Plecoptera, Trichoptera and Diptera. 3. Rhithral lake outlets supported high densities of non‐insect taxa such as Oligochaeta, Nemathelminthes and crustaceans. Despite low taxon richness, kryal sites had high Ephemeroptera and Plecoptera abundances. Chironomidae were most common at all sites. 4. Collector‐gatherers were dominant at all sites, whereas filter‐feeders were rare. Scrapers and shredders were more common in streams than lake outlets. 5. Water temperature and algal standing crops were higher at rhithral lake outlets than rhithral streams, perhaps providing more favourable habitat for non‐insect taxa. Glacial runoff was the dominant factor influencing macroinvertebrate assemblages of kryal streams and kryal lake outlets. Alpine lakes influenced the environmental conditions of their outlets and, consequently, their macroinvertebrate assemblages unless being constrained by a glacial influence.  相似文献   

2.
Macroinvertebrate communities in streams in the Himalaya, Nepal   总被引:1,自引:0,他引:1  
  • 1 Macroinvertebrates were sampled in the riffles of fifty-eight streams from three regions of the Himalaya (Anapurna, Langtang and Everest) in Nepal. A semi-quantitative method with identification to family level was used to describe communities on-site.
  • 2 Stream physicochemistry was assessed and the community structure of macroinvertebrates was related to chemistry, physiography (substratum composition, altitude and size), geographical location and the dominant land use in each catchment (terraced agriculture, forest or scrub). Community data were analysed by ordination (DECORANA) and classification (TWINSPAN).
  • 3 The concentration of cations in stream water decreased significantly with altitude. Chemistry also differed between regions; sites from Anapurna had a higher pH and conductivity than those in the other two areas.
  • 4 Communities were dominated by aquatic insect larvae, with Ephemeroptera, in particular the Baetidae, most numerous across sites.
  • 5 There were, nevertheless, differences in community structure between sites, which were related closely to stream physicochemistry. Ordination scores were strongly correlated with altitude, magnesium concentration and substratum composition. Classification was also linked to altitude and chemistry, differentiating high-altitude sites with low silica concentrations from others. Sites from the Anapurna and Everest regions, with their contrasting chemistry, were also separated.
  • 6 Community structure was also related to land use: streams draining catchments dominated by terraced agriculture had different communities from those in scrub or forest. This result was confounded, however, by the strong relationship between land use, altitude and chemistry; sites in terracing were at lower altitude, had higher concentrations of silica and a higher proportion of fine sediments than those in the other land-use types.
  • 7 Overall, our data indicate that natural features of the relief and geology in the Himalaya create strong gradients in their invertebrate faunas, but that activities of man may have an effect on stream structure and ecology through catchment management.
  相似文献   

3.
Friberg  Nikolai  Lindstrøm  Majbrit  Kronvang  Brian  Larsen  Søren E. 《Hydrobiologia》2003,494(1-3):103-110
Twenty-nine Danish streams were investigated in September 1998. The streams drained catchments of varying hydrology, topography, soil type and land use. In each stream, the newly accumulated streambed sediment was sampled and subsequently analysed for pesticides. In each stream, five replicate macroinvertebrate samples were taken in the same sediments as the pesticide samples. In addition, five samples were taken in riffles to provide a complete picture of macroinvertebrate community composition. The number of detected pesticides reflected soil type and land use: in agricultural catchments on clay soils the average number of pesticides were 4.3±2.2; on sandy soils 2.6±1.0, while only 1.5±0.6 pesticides were found in streams without agricultural activities. The macroinvertebrate composition showed clear changes along this gradient of sediment pesticide concentrations. The number of the amphipod Gammarus pulex was negatively correlated with sediment pesticide concentration, while the number of Oligochaeta and Hirudinae was positively correlated. The findings indicate that pesticides have a potential to structure macroinvertebrate communities in Danish streams. However, agricultural impact is more than pesticides, and several other factors, such as channelisation, affect the macroinvertebrate community and these are not easily separated.  相似文献   

4.
1. Structure and diversity of the macroinvertebrate fauna were studied in relation to altitude and latitude among three groups of streams from Ecuador (lowland: 100–600 m, Central Valley: 2600–3100 m, páramo: 3500–4000 m), and one group from the temperate lowland region of Denmark. The streams in the four regions were comparable with regard to physical characteristics such as size, current and substratum.
2. In terms of faunal composition the Ecuadorian highland streams bore more resemblance to the Danish lowland streams than the Ecuadorian lowland streams. The greater similarity between the Ecuadorian highland and the Danish streams, however, was due to the large number of insect families in the Ecuadorian lowlands, many of which were not found in the other regions. Of ten physico-chemical parameters measured, maximum stream temperature explained by far the most variability in faunal composition.
3. The number of insect orders and families increased linearly with maximum stream temperature and therefore decreased with altitude and latitude. A compilation of literature data on insect richness and maximum water temperature from streams around the world confirmed this pattern, yielding a common linear relation for both temperate and tropical streams. This pattern may arise due to a direct temperature effect on speciation but is probably also related to geological history and the influence of climatic changes on stream ecosystems. We estimate that small, tropical, lowland streams have, on average, a two- to fourfold higher species richness than temperate lowland streams.  相似文献   

5.
1. Macroinvertebrate assemblages of five non‐glacial intermittent high altitude headwater streams (above 1400 m – Serra da Estrela, Portugal), with dry periods of different lengths (0–3 months), were investigated in nearly undisturbed conditions to (i) examine spatial differences and identify environmental variables responsible for the observed invertebrate patterns, (ii) assess the association of dry period length with invertebrate community structure and (iii) determine the influence of using different taxonomic identification levels (order, family and genus) to assess invertebrate community patterns. 2. More than 100 macroinvertebrate genera were identified. Insects clearly dominated these communities with more than 95% of total captures and around 95% of the total richness. Diptera were the most rich and abundant group with chironomid occurrences comprising over 70% of macroinvertebrate captures. 3. The highest taxon richness, diversity, EPT (Ephemeroptera + Plecoptera + Trichoptera) and OCH (Odonata + Coleoptera + Heteroptera) genus richness, the greatest number of exclusive and characteristic taxa identified by the Indicator Value (IndVal), and a distinct community structure shown by Canonical Correspondence Analyses (CCA), were found in the only stream that was never totally dry, with pools lasting over summer. Environmental gradients that spatially structured the macroinvertebrate communities were always related to flow variations. 4. Over time, the highest abundances found in these systems were also related to flow variations and maximum genus richness occurred in the connected pools or in isolated pools. Streams with longer dry periods presented a distinct recolonization phase, with higher abundance of the stonefly larvae Nemoura sp. and the presence of the chironomid larvae Krenosmittia sp., possibly arriving from the hyporheos. 5. Taxonomic level of invertebrate identification was vital for recognizing the characteristic taxa (IndVal) of streams yet was not critical for identifying streams with the highest macroinvertebrate richness/diversity or structuring environmental gradients. 6. Overall, this study emphasizes the variability of high altitude intermittent streams macroinvertebrate communities, despite spatial proximity. This variability was probably related to flow intermittency and hydrologic permanence, different vegetation covers and riverbed substrata. Consequently, the establishment of reference conditions should involve long‐term data collections and more detailed physical characterization. Also, these findings have significant implications for accurately predicting the ecological consequences of future climate change in high altitude scenarios.  相似文献   

6.
The successful use of macroinvertebrates as indicators of stream condition in bioassessments has led to heightened interest throughout the scientific community in the prediction of stream condition. For example, predictive models are increasingly being developed that use measures of watershed disturbance, including urban and agricultural land-use, as explanatory variables to predict various metrics of biological condition such as richness, tolerance, percent predators, index of biotic integrity, functional species traits, or even ordination axes scores. Our primary intent was to determine if effective models could be developed using watershed characteristics of disturbance to predict macroinvertebrate metrics among disparate and widely separated ecoregions. We aggregated macroinvertebrate data from universities and state and federal agencies in order to assemble stream data sets of high enough density appropriate for modeling in three distinct ecoregions in Oregon and California. Extensive review and quality assurance of macroinvertebrate sampling protocols, laboratory subsample counts and taxonomic resolution was completed to assure data comparability. We used widely available digital coverages of land-use and land-cover data summarized at the watershed and riparian scale as explanatory variables to predict macroinvertebrate metrics commonly used by state resource managers to assess stream condition. The “best” multiple linear regression models from each region required only two or three explanatory variables to model macroinvertebrate metrics and explained 41–74% of the variation. In each region the best model contained some measure of urban and/or agricultural land-use, yet often the model was improved by including a natural explanatory variable such as mean annual precipitation or mean watershed slope. Two macroinvertebrate metrics were common among all three regions, the metric that summarizes the richness of tolerant macroinvertebrates (RICHTOL) and some form of EPT (Ephemeroptera, Plecoptera, and Trichoptera) richness. Best models were developed for the same two invertebrate metrics even though the geographic regions reflect distinct differences in precipitation, geology, elevation, slope, population density, and land-use. With further development, models like these can be used to elicit better causal linkages to stream biological attributes or condition and can be used by researchers or managers to predict biological indicators of stream condition at unsampled sites.  相似文献   

7.
We compared land cover, riparian vegetation, and instream habitat characteristics with stream macroinvertebrate assemblages in 25 catchments in the Carpathian Mountains in Central Europe. This study area was particularly selected because of its diverse history of forest and agricultural ecosystems linked to geopolitical dynamic, which provide a suite of unique landscape scale, land cover settings in one ecoregion. Canonical Correspondence Analysis (CCA) showed that variation in composition and structure of macroinvertebrate assemblages was primarily related to four land cover types, and not to riparian or instream habitat. These were the portions in the catchment areas of (1) broadleaved forest, (2) fine-grained agricultural landscape mosaic with scattered trees (e.g., pre-industrial cultural landscape), (3) mixed forest, and (4) natural grassland without trees. Principal Component Analysis (PCA) suggested that land cover types and stream channel substrates co-varied. The PCA also showed that chemical variables, including organic carbon, had higher values in the agricultural landscape compared to natural forests. The major source of variation among taxa in streams was higher abundance of Diptera in agricultural landscapes and of Plecoptera, Coleoptera, Trichoptera, and Amphipoda in forests. Gastropoda and Oligochaeta were more abundant in open, fine-grained agricultural landscape mosaics with scattered trees. Ephemeroptera taxa were quite indifferent to these gradients in catchment land cover, but showed a tendency of being more abundant in the pre-industrial cultural landscape. Our findings suggest that land cover can be used as a proxy of the composition and structure of macroinvertebrate assemblages. This means that land use management at the catchment scale is needed for efficient conservation and recovery of stream invertebrate communities.  相似文献   

8.
1. In sub‐Saharan Africa, tropical forests are increasingly threatened by accelerating rates of forest conversion and degradation. In East Africa, the larger tracts of intact rainforest lie largely in protected areas surrounded by converted landscape. Thus, there is critical need to understand the functional links between large‐scale land use and changes in river conditions, and the implications of park boundaries on catchment integrity. 2. The objective of this study was to use the mosaic of heavily converted land and pristine forest created by the protection of the high‐altitude rainforest in Bwindi Impenetrable National Park, Uganda to explore effects of deforestation on aquatic systems and the value of forest in buffering effects of adjacent land conversion. A set of 16 sites was selected over four drainages to include four categories of deforestation: agricultural land, deforested upstream (of the park boundary), forest edge (park boundary) and forest. We predicted that forest buffer (downstream or on the edge) would moderate effects of deforestation. To address this prediction, we quantified relationships between disturbance level and both physicochemical characters and traits of the macroinvertebrate assemblages during six sampling periods (February 2003 and June 2004). 3. Results of both principal components analysis and cluster analyses indicated differences in limnological variables among deforestation categories. PC1 described a gradient from deforested sites with poor water quality to pristine forested sites with relatively good water quality. Agricultural sites and deforested upstream sites generally had the highest turbidity, total dissolved solids (TDS), and conductivity values and low transparency values. Forest sites and boundary site groups generally exhibited low turbidity, TDS, and conductivity values and high water transparency values. Sites also clustered according to deforestation categories; forest and forested edge sites formed a cluster independent of both agricultural land and deforested‐upstream. 4. Water transparency, water temperature, and pH were the most important factors predicting benthic macroinvertebrate assemblages. Sensitive invertebrate families of Trichoptera, Ephemeroptera, Plecoptera, and Odonata dominated forested sites with high water transparency, low water temperature, and low pH while the tolerant families of Ephemeroptera, Diptera, Hemiptera, and Coleoptera were abundant in agriculturally impacted sites with low water transparency, high water temperature, and high pH. 5. This study provides support for the importance of riparian buffers in moderating effects of deforestation. Forest and forested edge sites were more similar in both limnological and macroinvertebrate assemblage structure than sites within or downstream from agricultural lands. If the protected area cannot encompass the catchment, the use of rivers as park boundaries may help to maintain the biological integrity of the rivers by buffering one side of the watercourse.  相似文献   

9.
1. Ecosystems are strongly influenced by land use practices. However, identifying the mechanisms behind these influences is complicated by the many potential pathways (often indirect) between land use and ecosystems and by the long‐lasting effects of past land use. To support ecosystem restoration and conservation efforts, we need to better understand these indirect and lasting effects. 2. We constructed structural equation models (SEM) to evaluate the direct and indirect effects of contemporary (2002) land use (agriculture and development) and change in land use from 1952 to 2002 on present‐day streams (n = 190) in Maryland, U.S.A. Additional variables examined included site location, system size, altitude, per cent sand in soils, riparian condition, habitat quality, stream water NO3‐N and benthic macroinvertebrate and fish measures of stream condition. Our first SEM (2002 Land Use) included the proportions of contemporary agriculture and development in catchments in the model. The second SEM (Land Use Change) included five measures of land use change (proportion agricultural in both times, developed in both times, agricultural in 1952 and developed in 2002, forested in 1952 and developed in 2002 and agricultural in 1952 and forested in 2002). 3. The data set fit both SEMs well. The 2002 Land Use model explained 71% of variation in NO3‐N and 55%, 42% and 38% of variation in riffle quality, macroinvertebrate condition and fish condition, respectively. The Land Use Change model explained similar amounts of variation in NO3‐N (R2 = 0.72), riffle quality (R2 = 0.57) and macroinvertebrate condition (R2 = 0.44) but slightly more variation in fish condition (R2 = 0.43). 4. Both models identified pathways through which landscape variables affect stream responses, including negative direct effects of latitude on macroinvertebrate and fish conditions and positive direct and indirect effects of altitude on NO3‐N, riffle quality and macroinvertebrate and fish conditions. The 2002 Land Use model showed contemporary development and agriculture had positive total effects on NO3‐N (both through direct pathways); contemporary development had negative effects on macroinvertebrate condition. The Land Use Change model showed that contemporary developed land that was forested in 1952 had no effects on NO3‐N; current developed land that was developed or agricultural in 1952 showed positive effects on NO3‐N. Forests that were agricultural in 1952 had negative effects on NO3‐N, suggesting reduced NO3‐N export with reforestation. The Land Use Change model also showed negative total effects of all types of contemporary developed land (developed, agricultural or forested in 1952) on benthic condition. Developed land that was forested in 1952 had negative effects on fish condition. Forest sites that were agricultural in 1952 had negative effects on fish and macroinvertebrate conditions, suggesting a long‐term imprint of abandoned agriculture in stream communities. 5. Our analyses (i) identified multiple indirect effects of contemporary land use on streams, (ii) showed that current land uses with different land use histories can exhibit different effects on streams and (iii) demonstrated an imprint of land use lasting >50 years. Knowledge of these indirect and long‐term effects of land use will help to conserve and restore streams.  相似文献   

10.
1. Hydrobiological changes were assessed along an altirudinal transect of eighteen to twenty-three tributaries from 600 to 3750m in two adjacent river systems in east-central Nepal. The transect incorporated catchments under terraced agriculture at the lowest altitudes in the Likhu Khola, through streams in forest, alpine scrub and tundra at higher altitudes in Langtang. 2. Diatoms, bryophytes, macroinvertebrates and fish all showed pronounced altitudinal changes in assemblage composition as shown by TWINSPAN and DECORANA. A few taxa were restricted to streams at high altitude, but many more occurred only at lower altitudes where taxon richness increased substantially despite catchment disturbance by terraced agriculture. 3. Diatoms characteristic of lower altitude streams were mostly motile, epipelic or episammic Navicula and Nitzschia spp., which occur typically at greater electrolyte and nutrient concentrations. Those characteristic of higher and steeper sites included attached Fragilaria spp. and prostrate Achnanthes spp., tolerant of turbulent flow. 4. Cover by bryophytes varied within catchment type; high altitude springs supported dense mats, unlike streams fed by ice and glaciers. Taxa confined to low altitudes included those characteristic of humid subtropical conditions. 5. Invertebrate families occurring only at lower altitudes included a range of burrowers and pool dwellers. Numerically, filter feeding Hydropsychidae and Simuliidae dominated streams in terraced and forested catchments, whereas grazing baetid mayflies dominated higher altitude streams in scrub and tundra. 6. The combined density and biomass of at least six fish species in the Likhu Khola were 23–250 (per 100m?2), and 86–1282 g wet mass (per 100 m?2), respectively. No fish were found in Langtang streams, probably because torrential headwaters prevented colonization. 7. Our data confirm that altitudinal transitions in stream biota are pronounced in the Himalaya of Nepal, but are likely to reflect a wide array of potential influences.  相似文献   

11.
1. According to the guidelines of the European Water Framework Directive, assessment of the ecological quality of streams and rivers should be based on ecotype-specific reference conditions. Here, we assess two approaches for establishing a typology for Mediterranean streams: a top-down approach using environmental variables and bottom-up approach using macroinvertebrate assemblages.
2. Classification of 162 sites using environmental variables resulted in five ecotypes: (i) temporary streams; (ii) evaporite calcareous streams at medium altitude; (iii) siliceous headwater streams at high altitude; (iv) calcareous headwater streams at medium to high altitude and (v) large watercourses.
3. Macroinvertebrate communities of minimally disturbed sites ( n  = 105), grouped using UPGMA (unweighted pair-group method using arithmetic averages) on Bray–Curtis similarities, were used to validate four of the five ecotypes obtained using environmental variables; ecotype 5, large watercourses, was not included as this group had no reference sites.
4. Analysis of similarities ( anosim ) showed that macroinvertebrate assemblage composition differed among three of the four ecotypes, resulting in differences between the bottom-up and top-down classification approaches. Siliceous streams were clearly different from the other three ecotypes, evaporite and calcareous ecotypes did not show large differences in macroinvertebrate assemblages and temporary streams formed a very heterogeneous group because of large variability in salinity and hydrology.
5. This study showed that stream classification schemes based on environmental variables need to be validated using biological variables. Furthermore, our findings indicate that special attention should be given to the classification of temporary streams.  相似文献   

12.
13.
Half-logs are a common restoration tool used to provide cover for fish in degraded streams. These structures may also provide a stable substrate for biofilm production and aquatic macroinvertebrate colonization. Half-logs (N = 108) were installed into nine streams of the upper Wabash River basin, Indiana, in July 2003 to examine changes in aquatic macroinvertebrate community composition and functional guilds under varying land-use types. Following installation, half-logs were colonized and showed statistically significant increases in both relative abundance and taxa richness of macroinvertebrates over time. The number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa collected from half-logs, as a percentage of total community composition, was positively related to the percentage of canopy coverage across streams and the relative abundance of shredder taxa utilizing half-logs decreased significantly with increasing canopy coverage. Forest streams exhibited significantly lower relative abundances of individuals colonizing half-logs (mean = 14.9 taxa/0.25 m2) than fallow field and agricultural streams (mean = 29.5 and 33.1, respectively). The percentage of pollution-tolerant taxa using half-logs was highest in fallow field streams (mean = 18.4%), followed by forest and agriculture systems (mean = 15.9% and 13. 9%, respectively). These results indicate that half-logs were colonized by aquatic macroinvertebrates and exhibited changes in community composition and functional feeding guilds over time and across land-use types. The extent of colonization and use of half-logs was largely dependent upon the pre-existing in-stream habitat quality and the predominant land-use type. Handling editor: R. Bailey  相似文献   

14.
The objective of this study was to compare the responses of diatoms, macroinvertebrates and fish to agriculture, urbanization and mining in the Manyame River Basin. Water quality sampling and benthic diatom, macroinvertebrate and fish community data were collected in April (end of the rain season) and September (dry season) 2013 at 44 sampling stations spread out across three land-use categories: commercial agricultural, communal agricultural and urban-mining areas. Commercial agricultural areas were relatively pristine as they were characterized by mature deciduous riparian forest strips which acted as riparian buffers thus protecting water resources from nonpoint source pollution. In communal agricultural areas a combination of poor agricultural practices (stream bank cultivation, overgrazing, soil erosions) and high human population densities had negative effects on water quality of streams draining these areas. Streams in urban-mining areas were highly stressed, being impacted primarily by physical habitat degradation and both point and nonpoint sources of pollution. A suite of environmental variables that varied with land-use pattern was assessed to find the combination of variables that best explained patterns of biota community composition. Community metrics i.e. the Trophic Diatom Index (TDI) based on diatoms, the South African Scoring system version 5 (SASS 5) based on macroinvertebrates and the Fish Assemblage Integrity Index (FAII) were used to determine the ecological status of study streams in relation to human-induced stressors. Data were also subjected to multivariate statistical techniques; canonical correspondence analysis (CCA), mantel test and cluster analysis to determine environmental gradients along which the diatom, macroinvertebrate and fish assemblages were distributed as well as to elucidate hypothesized differences in response to stressors among communities per land-use type. Using CCA, we assessed the individual importance of a set of environmental variables on each biotic community structure. ANOVA, showed a significant difference (p < 0.05) in physical and chemical variables among commercial agricultural, communal agricultural and urban-mining sampling stations with no significant differences (p > 0.05) between the 2 sampling periods. Based on CCAs carried out using individual variables, the strengths of relationships between diatoms and macroinvertebrates was generally high for nutrient levels, organic and metal pollution and other variables. However, fish assemblages showed a relatively low association with all water quality variables in the study; this might be explained by the high abundance of omnivores and air breathers which are able to tolerate a variety of environmental conditions. These patterns were also confirmed by the mantel test as well as the other CCAs carried out to investigate the simultaneous effects of environmental variables. These findings indicate that diatoms are more powerful indicators in accessing ecological stream/river quality and have potential for application in routine monitoring programs in tropical streams.  相似文献   

15.
1. To examine the effects of forest harvest practices on headwater stream macroinvertebrates, we compiled a 167 site database with macroinvertebrate, fish, physical habitat and catchment land cover data from the three forested ecoregions in western Oregon. For our analysis, headwater streams were defined by catchment areas <10 km2 and perennial water during summer low flows. Almost all sites in the database were selected using a randomised survey design, constituting a representative sample of headwater streams in these ecoregions. 2. Macroinvertebrate taxonomic and functional feeding group composition were very similar among the three ecoregions in the study area (Coast Range, Cascades and Klamath Mountains). On average, 55% of the individuals at each site were in the orders Ephemeroptera, Plecoptera or Trichoptera. Dipteran taxa (mostly chironomids) accounted for another 34%. At almost all sites, non‐insects made up <10% of the macroinvertebrate assemblage. Almost half (49%) of the assemblages were collectors; remaining individuals were about evenly divided among scrapers, shredders and predators. 3. There were 189 different macroinvertebrate taxa at the 167 sites with richness at individual sites ranging from 7 to 71 taxa. Ordination by non‐metric multidimensional scaling revealed a strong association between % Ephemeroptera, especially Baetis, and site scores along the first axis. This axis was also strongly related to % coarse substratum and fast water habitat. The second axis was strongly related to % intolerant individuals, site slope and altitude. No strong relationships were evident between any ordination axis and either logging activity, presence/absence of fish, catchment size or ecoregion. 4. Based on macroinvertebrate index of biotic integrity (IBI) scores, 62% of the sites had no impairment, 31% of the sites had slight impairment and only 6% of the sites had moderate or severe impairment. IBI scores were not strongly related to forest harvest history. All four severely impaired sites and five of the seven sites with moderate impairment were lower altitude, shallower slope stream reaches located in the Coast Range with evidence of agricultural activity in their catchment or riparian zone. % sand + fine substratum was the environmental variable most strongly related to macroinvertebrate IBI.  相似文献   

16.
1. We examined the seasonal and diel patterns of invertebrate drift in relation to seston and various habitat characteristics in two each of four different kinds of alpine streams [rhithral (snow‐fed) lake outlets, rhithral streams, kryal (glacial‐fed) lake outlets and kryal streams]. Samples were collected at four times of the day (dawn, midday, dusk and midnight) during three seasons (spring, summer and autumn). 2. Habitat characteristics differed mainly between rhithral and kryal sites, with the latter having higher discharge and turbidity, lower water temperature, and higher concentrations of ammonium, and particulate and soluble reactive phosphorus. Seasonality in habitat characteristics was most pronounced for kryal streams with autumn samples being more similar to rhithral sites. 3. The concentration of seston was lowest in the glacial‐influenced lake outlets and slightly higher in the stream sites; no seasonal or diel patterns were evident. 4. The density of drifting invertebrates averaged less than 100 m?3 and was lowest (<10 m?3) at three of the four kryal sites. Taxon richness and diversity were lowest at rhithral lake outlets. Chironomidae dominated the drift as well as benthic communities and <30% of benthic taxa identified were found in the drift. 5. Drifting invertebrates showed no consistent seasonal pattern. However, density tended to be highest in spring at rhithral sites and in autumn at kryal sites. No diel periodicity in drift density was found at any site and the lack of diel pattern may be a general feature of high altitude streams. 6. Glacially influenced habitat parameters were a major factor affecting drift in these alpine streams, whereas no clear differences were observed between streams and lake outlets. Our findings indicate that invertebrate drift in alpine streams is primarily influenced by abiotic factors, and therefore, substantially differs from patterns observed at lower altitude.  相似文献   

17.
Macroinvertebrate drift in streams of the Nepalese Himalaya   总被引:3,自引:0,他引:3  
1. Macroinvertebrate drift was investigated in seven small headwater streams along an altitudinal gradient (600–3350 m) in two adjacent river systems in east-central Nepal. Study streams in the Likhu Khola were at the lowest altitude and flowed through terraced agriculture. At higher altitudes, Langtang streams flowed through catchments of forest and alpine scrub. Samples were collected every 3h over a 24 h period in each stream. 2. Terrestrial macroinvertebrate drift was greatest in streams with semi-natural catchments, but was scarce in streams where trees were absent. 3. At lower altitudes drift was dominated by Hydropsychidae and Baetidae, which were most abundant in night samples, and Hydracarina, which tended to be day active. Baetidae also dominated drift at high altitudes, but here drift was increasingly aperiodic or diurnal. The composition of the drift reflected a significant correlation between the percentage abundance of taxa in the drift and benthos. 4. As in other mountain regions of the world, drift was aperiodic in fishless streams (high altitude), but strongly nocturnal in streams where insectivorous fish were present (lower altitude). However, a wide array of potentially important variables along the altitudinal gradient, such as temperature, climate and community structure, might be important influences on these patterns.  相似文献   

18.
Pinto  Paulo  Rosado  Joana  Morais  Manuela  Antunes  Isabel 《Hydrobiologia》2004,516(1-3):191-214
A sampling programme was developed in three stream types, of siliceous geology, from the south of Portugal (small and mid-sized lowland streams and small-sized median altitude streams). The samples were taken according to the AQEM site protocol procedure, keeping transport and depositional habitats samples separated. In each stream type, at least 13 sites were studied over a gradient of organic pollution (pre-classification). The benthic macroinvertebrates were identified to the lowest possible taxonomic level. A Detrended Correspondence Analysis of macroinvertebrate communities identified a gradient of organic pollution strongly related to the first axis. This ordination allowed the establishment of classes of organic pollution using the Kmeans software (post-classification). Metrics based on the macroinvertebrate communities (tolerance, richness, composition and trophic structure) were computed and tested for correlation with the gradient of organic pollution (first axis of DCA). Most of the selected metrics were able to discriminate the four quality classes (high, good, moderate and poor) of ecological status. A multimetric index, integrating ASPT′ index, Trichoptera families and percentage of Gasteropoda, Oligochaeta and Diptera, is proposed to assess the ecological status of Portuguese southern siliceous basins.  相似文献   

19.
BACKGROUND AND AIMS: The Alpine Meadow Grass Poa alpina is common in subalpine and alpine natural sites and agriculturally used land, where it is an important fodder grass. Natural factors and human land use are supposed to have been shaping its genetic diversity for hundreds of years. The species comprises sexually and vegetatively reproducing plants. The aim of this study was to investigate the effects of agricultural land use, environmental factors and the mode of reproduction on the distribution of its microsatellite diversity within and among populations and to analyse whether its genetic diversity is correlated with plant species diversity in grassland parcels. METHODS: Genetic diversity of P. alpina was assessed with five microsatellite markers for 569 plants originating from 20 natural sites and from 54 grassland parcels of different cultural tradition, land use and altitude in the Swiss Alps. Due to polyploidy and frequent aneuploidy of the species, data analyses were based on the presence of microsatellite bands. KEY RESULTS: A low but significant differentiation was found in microsatellite bands among natural sites and agriculturally used parcels, while their microsatellite band diversity within populations did not differ. An increased differentiation was found in microsatellite bands with increasing geographic distance among parcels, and a differentiation among grazed and mown parcels, and among sexually and vegetatively reproducing populations. Band richness of sampled plants per village was higher for villages where parcels represented more different land-use types. Within populations, microsatellite band diversity was higher in grazed than in mown parcels. CONCLUSIONS: The diversity of human land use in the Alps was associated with genetic diversity of P. alpina. Therefore, the ongoing socio-economically motivated land-use changes, which reduce the number of different land-use types, will affect the genetic diversity of P. alpina negatively.  相似文献   

20.
1. Spatial patterns of benthic-invertebrate communities were examined in the 62 900 km2 South Platte River Basin in Colorado, Nebraska and Wyoming, U.S.A., to determine major environmental factors associated with invertebrate distribution. Stable substrates were sampled semiquantitalively for invertebrates from 27 July to 7 August 1992, at twenty-one sites. Data on physical and chemical variables were collected concurrently at each site. 2. Four site groups were identified using derrended correspondence analysis (DCA), one in the mountains and three in the plains (braided channels, tributaries near the confluence with the main stem, and sites affected by effluent from wastewater-treatment plants). DCA axis 1 separated sites into the two major ecoregions (Southern Rocky Mountains and Western High Plains), and regression of DCA axis 1 with environmental variables indicated significant relationships primarily with slope, water temperature, specific conductance, and concentrations of organic nitrogen + ammonia and total phosphorus in surface water. Regression of DCA axis 2 with environmental variables indicated significant relationships with channel width and concentrations of nitrate + nitrite in surface water. 3. Invertebrate community composition and structure varied between ecoregions with greater number of taxa and number of insect families in mountain streams than in plains streams. Within an ecoregion, land use affected the invertebrate community. 4. Factors affecting invertebrate community distribution in stream ecosystems are scale dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号