首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Qi ZM  Wang J  Sun ZR  Ma FM  Zhang QR  Hirose S  Jiang Y 《Immunogenetics》2005,57(9):697-702
Several studies suggest that interleukin (IL)-10 pathway is involved in murine lupus, while no linkage of IL-10 gene polymorphism to disease susceptibility has been reported in studies with lupus-prone mice. Since IL-10 functions through the specific IL-10 receptor alpha (IL-10RA) chain and the IL-10RA gene (Il10ra) is linked to the susceptibility loci of atopic dermatitis and Crohn's disease identified using mouse models, we supposed that IL-10RA might be involved in murine lupus. By flow cytometry analysis, we found that NZW mice, one of the parental strains of lupus-prone (NZB×NZW) F1 mice, express extremely low levels of IL-10RA compared with NZB mice, the other parental strain, and the healthy BALB/c and C57BL/6 mice. Sequence analyses of Il10ra cDNA of NZW mice showed multiple nucleotide mutations compared with that of NZB and C57BL/6 strains, some of which would result in amino acid substitutions in the IL-10RA protein. Lupus-prone MRL mice shared the same polymorphism with NZW. Analyses using (NZB×NZW) F1×NZB backcross mice showed that high serum levels of IgG antichromatin antibodies were regulated by a combinatorial effect of the NZW Il10ra allele and a heterozygous genotype for Tnfa microsatellite locus. Our data suggest that the polymorphic NZW-type Il10ra may be involved in the pathologic production of antichromatin antibodies and, if so, may contribute in part to the development of systemic lupus erythematosus as one susceptibility allele. The Il10ra polymorphism data reported in this paper have been submitted to the Mouse Genome Informatics database and have been assigned the accession number MGI: 3528086.  相似文献   

2.
NK cell-mediated resistance to viruses is subject to genetic control in humans and mice. Here we used classical and quantitative genetic strategies to examine NK-mediated murine cytomegalovirus (MCMV) control in genealogically related New Zealand white (NZW) and black (NZB) mice. NZW mice display NK cell-dependent MCMV resistance while NZB NK cells fail to limit viral replication after infection. Unlike Ly49H+ NK resistance in C57BL/6 mice, NZW NK-mediated MCMV control was Ly49H-independent. Instead, MCMV resistance in NZW (Cmv2) involves multiple genetic factors. To establish the genetic basis of Cmv2 resistance, we further characterized a major chromosome X-linked resistance locus (DXMit216) responsible for innate MCMV control in NZW × NZB crosses. We found that the DXMit216 locus affects early MCMV control in New Zealand F2 crosses and demonstrate that the NZB-derived DXMit216 allele enhances viral resistance in F2 males. The evolutionary conservation of the DXMit216 region in mice and humans suggests that a Cmv2-related mechanism may affect human antiviral responses. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Multiplex inheritance of component phenotypes in a murine model of lupus   总被引:3,自引:0,他引:3  
We analyzed the linkage of GN and a wide spectrum of serological phenotypes associated with systemic lupus erythematosus in a (NZM2410 × C57BL/6)F2 cross. Some phenotypes, such as glomerulonephritis (GN) and anti-chromatin IgG antibody production, were more penetrant in females, but others, such as anti-dsDNA antibody production, did not show a gender bias. These results suggest that gender bias affects only a subset of SLE-component phenotypes, and that NZM2410 can be used to dissect the genetic basis of this phenomenon. Genome scanning linked six chromosomal intervals with the expression of one or more component phenotypes. These loci included two Sle loci previously identified in an (NZM2410 × B6)F1× NZM2410 backcross, loci identified by others in the NZB/W model. Our analysis also suggested two new intervals on chromosomes (Chrs.) 10 and 11. Detailed analysis of the segregation of different phenotypes within these intervals suggests that they encompass more than one susceptibility locus. This clustering has been a common finding in several murine polygenic traits. Each of NZM2410 susceptibility loci can be aligned with a specific genetic pathways contributing to SLE pathogenesis on the basis of the spectrum of component phenotypes expressed. Received: 4 August 1998 / Accepted: 29 September 1998  相似文献   

4.
In order to assess the importance of interleukin 2 receptor (IL-2R)-positive activated lymphocytes and macrophages in the pathogenesis of autoimmunity, we tested the prophylactic therapeutic efficacy of an anti-IL-2R (M7/20) monoclonal antibody, which recognizes the 55-kDa subunit of the heterodimeric IL-2R in two distinct models: the nonobese diabetic mouse and the NZB x NZW F1 hybrid with lupus. Treatment with anti-IL-2R monoclonal antibody suppressed autoimmune insulitis in nonobese diabetic mice and lupus nephritis in the NZB x NZW F1 hybrid. These studies indicate that highly selective targeting to activated lymphocytes and macrophages expressing the IL-2R provides a discrete method of dampening autoimmunity.  相似文献   

5.

Background

The purpose of this study was to examine the effect of aldosterone receptor blockade on the immunopathogenesis and progression of nephritis in the (NZB × NZW) F1 murine lupus model.

Methods

Female NZB/W F1 mice (11 weeks old) were treated daily with 25 or 50 mg/kg oral spironolactone or vehicle. Proteinuria, renal function, and serum autoantibody levels were monitored. Renal histopathology, immune complex deposition, and immunohistochemistry were analyzed at various time points. Targeted microarray analysis was performed on renal tissue, with subsequent real-time PCR analysis of several differentially expressed genes.

Results

Treatment with spironolactone was well tolerated by the mice throughout the course of their disease progression, with no significant differences in azotemia or serum potassium levels between vehicle-treated and spironolactone-treated animals. By 36 weeks of age, fewer spironolactone-treated mice developed nephrotic range proteinuria as compared with the control mice (control 70.8%, 25 mg/kg spironolactone 51.3%, and 50 mg/kg spironolactone 48.6%). Compared with control mice, mice treated with 25 mg/kg spironolactone had significantly lower serum anti-single-stranded DNA levels (2,042 μg/ml versus 1,036 μg/ml; P = 0.03) and anti-double-stranded DNA levels (3,433 μg/ml versus 614 μg/ml; P = 0.05). Spironolactone-treated mice exhibited decreased histopathologic evidence of inflammation and tissue damage, as compared with control mice. Additionally, spironolactone treatment resulted in decreased expression in the kidney of several inflammatory and proapoptotic genes, including those encoding interferon-γ, B lymphocyte stimulator (BlyS), tumor necrosis factor related apoptosis inducing ligand (TRAIL), tumor necrosis factor related weak inducer of apoptosis (TWEAK), and Fas ligand.

Conclusion

Aldosterone receptor blockade is safe and well tolerated in progressive murine lupus nephritis, and it results in decreased levels of clinical proteinuria, lower serum levels of autoantibodies, and decreased kidney damage. It appears to modulate inflammatory changes during the progression of glomerulonephritis and may also have a previously undescribed role in attenuating apoptosis  相似文献   

6.
New Zealand Black (NZB) and New Zealand White (NZW) mice are genetically predisposed to a lupus-like autoimmune syndrome. To further define the loci linked to disease traits in NZB and NZW mice in the context of the BALB/c genetic background, linkage analyses were conducted in two crosses: (NZW x BALB/c.H2(z))F(1) x NZB and (NZB x BALB/c)F(2). Novel loci linked to autoantibody production and glomerulonephritis, present in both NZB and NZW mice, were identified on proximal chromosomes 12 and 4. The chromosome 12 locus showed the strongest linkage to anti-nuclear Ab production. Additionally, a number of other novel loci linked to lupus traits derived from both the New Zealand and non-autoimmune BALB/c genomes were identified. Furthermore, we confirm the linkage of disease to a number of previously described lupus-associated loci, demonstrating that they are relatively background independent. These data provide a number of additional candidate gene regions in murine lupus, and highlight the powerful effect the non-autoimmune background strain has in influencing the genetic loci linked to disease.  相似文献   

7.

Background

A majority of autoimmune diseases, including systemic lupus erythematosus (SLE), occur predominantly in females. Recent studies have identified specific dysregulated microRNAs (miRNAs) in both human and murine lupus, implying an important contribution of these miRNAs to lupus pathogenesis. However, to date, there is no study that examined sex differences in miRNA expression in immune cells as a plausible basis for sex differences in autoimmune disease. This study addresses this aspect in NZB/WF1 mice, a classical murine lupus model with marked female bias, and further investigates estrogen regulation of lupus-associated miRNAs.

Methods

The Taqman miRNA assay system was used to quantify the miRNA expression in splenocytes from male and female NZB/WF1 mice at 17–18, 23, and 30 weeks (wks) of age. To evaluate potential estrogen's effect on lupus-associated miRNAs, 6-wk-old NZB/WF1 male mice were orchidectomized and surgically implanted with empty (placebo) or estrogen implants for 4 and 26 wks, respectively. To assess the lupus status in the NZB/WF1 mice, serum anti-dsDNA autoantibody levels, proteinuria, and renal histological changes were determined.

Results

The sex differences in the expression of lupus-associated miRNAs, including the miR-182-96-183 cluster, miR-155, miR-31, miR-148a, miR-127, and miR-379, were markedly evident after the onset of lupus, especially at 30 wks of age when female NZB/WF1 mice manifested moderate to severe lupus when compared to their male counterparts. Our limited data also suggested that estrogen treatment increased the expression of aforementioned lupus-associated miRNAs, with the exception of miR-155, in orchidectomized male NZB/WF1 mice to a similar level in age-matched intact female NZB/WF1 mice. It is noteworthy that orchiectomy, itself, did not affect the expression of lupus-associated miRNAs.

Conclusion

To our knowledge, this is the first study that demonstrated sex differences in the expression of lupus-associated miRNAs in splenocytes, especially in the context of autoimmunity. The increased expression of lupus-associated miRNA in female NZB/WF1 mice and conceivably in estrogen-treated orchidectomized male NZB/WF1 mice was associated with lupus manifestation. The notable increase of lupus-associated miRNAs in diseased, female NZB/WF1 mice may be a result of both lupus manifestation and the female gender.
  相似文献   

8.
The F1 hybrids of New Zealand Black (NZB) and New Zealand White (NZW) mice spontaneously develop an autoimmune disease that serves as a model for human systemic lupus erythematosus. Autoimmunity in (NZB x NZW)F1 mice includes the production of autoantibodies to the endogenous retroviral envelope glycoprotein, gp70, and gp70-anti-gp70 immune complexes (gp70 IC) have been implicated in the development of lupus nephritis in these animals. We used backcross and intercross combinations of C57BL/6 (B6; low gp70 levels) and NZB mice (high gp70 levels) to examine the contribution of serum gp70 Ag levels to the development of gp70 IC and nephritis. Analysis of (B6.H2z x NZB)F1 x NZB backcross mice and (NZB x B6)F2 mice showed a much stronger association of gp70 IC with kidney disease compared with IgG anti-chromatin autoantibodies in both populations of mice. Serum levels of gp70 correlated with production of gp70 IC in mice producing autoantibodies, although the overall effect on nephritis appeared to be small. Genetic mapping revealed three NZB-derived regions on chromosomes 2, 4, and 13 that were strongly linked with increased gp70 levels, and together, accounted for over 80% of the variance for this trait. However, additional linkage analyses of these crosses showed that loci controlling autoantibody production rather than gp70 levels were most important in the development of nephritogenic immune complexes. Together, these studies characterize a set of lupus-susceptibility loci distinct from those that control autoantibody production and provide new insight into the components involved in the strong association of gp70 IC with murine lupus nephritis.  相似文献   

9.
Irradiation with ultraviolet B (UVB; 290–320 nm) initiates systemic immunosuppression of contact hypersensitivity (CHS). UV dose-responses for suppression of CHS to trinitrochlorobenzene were established in 18 strains of inbred mice. Three phenotypes with significantly different susceptibilities to UV suppression were identified. The phenotypes were: high (HI) susceptibility, 50% suppression with 0.7–2.3 kJ/m2 UV (C57BL/6, C57BL/10, and C57L and NZB females); low (LO) susceptibility, 50% suppression with 9.6–12.3 kJ/m2 UV (BALB/c, AKR, SJL and NZW), and intermediate (INT) susceptibility, 50% suppression with 4.7–6.9 kJ/m2 UV (DBA/2, C57BR, C3H/HeJ, C3H/HeN, CBA/N and A/J). UV suppression was not correlated with skin pigmentation or with the magnitude of the CHS response in non-irradiated animals. Major histocompatibility complex (MHC) haplotype was not correlated with UV suppression in MHC congenic strains B10.D2/oSnJ, B10.D2/nSnJ, B10.BR/SgSnJ, and A.BY/SnJ. There were no sex differences in UV suppression in BALB/c, C57BL/6, or NZW animals. In the autoimmune NZB strain, however, male mice (LO) were seven times less sensitive to UV suppression than NZB female mice (HI). Both sexes of (NZB × NZW)F1 and (NZW × NZB)F1 mice were HI, supporting dominance of HI over LO. Thus there are genetic factors and interacting sex-limited factors determining susceptibility to UV suppression. These findings may be of relevance to UV-related diseases such as photosensitive lupus and skin cancer. Correspondence to: F. P. Noonan.  相似文献   

10.
Peritoneal macrophages were isolated from wild type (WT) mice and from mice invalidated for the P2X7 receptor (KO) which had been pretreated with thioglycolate. In cells from WT mice, 1 mM ATP increased the intracellular concentration of calcium ([Ca2+]i), the uptake of ethidium bromide, the production of reactive oxygen species (ROS), the secretion of IL-1β, the release of oleic acid and of lactate dehydrogenase; it decreased the intracellular concentration of potassium ([K+]i). In KO mice, ATP transiently increased the [Ca2+]i confirming that the P2X7 receptor is a major receptor of peritoneal macrophages. WKYMVm, an agonist of receptors for formylated peptides (FPR) also increased the [Ca2+]i in murine macrophages. The slight increase of the [Ca2+]i was strongly potentiated by ivermectin confirming the expression of functional P2X4 receptors by murine peritoneal macrophages. CRAMP, the unique antimicrobial peptide derived from cathelin in mouse inhibited all the responses coupled to P2X7 receptors in macrophages from WT mice. Agonists for FPR had no effect on the increase of the [Ca2+]i in response to ATP. CRAMP had no effect on the increase of the [Ca2+]i evoked by a combination of ATP and ivermectin in macrophages from P2X7-KO mice.In summary CRAMP inhibits the responses secondary to the activation of the murine P2X7 receptors expressed by peritoneal macrophages. This inhibition is not mediated by FPR receptors and is specific since CRAMP has no effect on the response coupled to P2X4 receptors. It can thus be concluded that the interaction between P2X7 receptors and cathelin-derived antimicrobial peptides is species-specific, in some cases (man) positive in others (mouse) negative.  相似文献   

11.
New Zealand Black (NZB) and NZB by New Zealand White (NZW) F1 hybrid (BW) mice develop clinical signs of autoimmune disease between 6 and 10 months of age but spleen cells from these strains have a greatly reduced in vitro response to sheep erythrocytes (SRBC) as early as 5–6 weeks of age. This hyporesponsiveness can be only partially restored with 2-mercaptoethanol, allogeneic macrophages or spleen cells, or allogeneic factor. The response of NZB and BW spleen cells to the thymic independent antigen DNP-Ficoll is nearly normal. The reduced in vitro SRBC response was found to be attributable to splenic T and B cells rather than macrophages. Macrophages from NZB mice were found to function normally. The in vitro behavior of NZB lymphocytes is very similar to non-autoimmune mice infected with common murine viral pathogens. NZB and BW mice may be making an active immune response as early as 5 weeks of age.  相似文献   

12.
Systemic lupus erythematosus (SLE) is inherited as a complex polygenic trait. (New Zealand Black (NZB) x New Zealand White (NZW)) F(1) hybrid mice develop symptoms that remarkably resemble human SLE, but (NZB x PL/J)F(1) hybrids do not develop lupus. Our study was conducted using (NZW x PL/J)F(1) x NZB (BWP) mice to determine the effects of the PL/J and the NZW genome on disease. Forty-five percent of BWP female mice had significant proteinuria and 25% died before 12 mo of age compared with (NZB x NZW)F(1) mice in which >90% developed severe renal disease and died before 12 mo. The analysis of BWP mice revealed a novel locus (chi(2) = 25.0; p < 1 x 10(-6); log of likelihood = 6.6 for mortality) designated Wbw1 on chromosome 2, which apparently plays an important role in the development of the disease. We also observed that both H-2 class II (the u haplotype) and TNF-alpha (TNF(z) allele) appear to contribute to the disease. A suggestive linkage to proteinuria and death was found for an NZW allele (designated Wbw2) telomeric to the H-2 locus. The NZW allele that overlaps with the previously described locus Sle1c at the telomeric part of chromosome 1 was associated with antinuclear autoantibody production in the present study. Furthermore, the previously identified Sle and Lbw susceptibility loci were associated with an increased incidence of disease. Thus, multiple NZW alleles including the Wbw1 allele discovered in this study contribute to disease induction, in conjunction with the NZB genome, and the PL/J genome appears to be protective.  相似文献   

13.
《Autophagy》2013,9(7):1113-1123
Macroautophagy was recently shown to regulate both lymphocyte biology and innate immunity. In this study we sought to determine whether a deregulation of autophagy was linked to the development of autoimmunity. Genome-wide association studies have pointed out nucleotide polymorphisms that can be associated with systemic lupus erythematosus, but the potential role of autophagy in the initiation and/or development of this syndrome is still unknown. Here, we provide first clues of macroautophagy deregulation in lupus. By the use of LC3 conversion assays and electron microscopy experiments, we observed that T cells from two distinct lupus-prone mouse models, i.e., MRLlpr/lpr and (NZB/NZW)F1, exhibit high loads of autophagic compartments compared with nonpathologic control CBA/J and BALB/c mice. Unlike normal mice, autophagy increases with age in murine lupus. In vivo lipopolysaccharide stimulation in CBA/J control mice efficiently activates T lymphocytes but fails to upregulate formation of autophagic compartments in these cells. This argues against a deregulation of autophagy in lupus T cells solely resulting from an acute inflammation injury. Autophagic vacuoles quantified by electron microscopy are also found to be significantly more frequent in T cells from lupus patients compared with healthy controls and patients with non-lupus autoimmune diseases. This elevated number of autophagic structures is not distributed homogeneously and appears to be more pronounced in certain T cells. These results suggest that autophagy could regulate the survival of autoreactive T cell during lupus, and could thus lead to design new therapeutic options for lupus.  相似文献   

14.
The F1 hybrid of New Zealand black and New Zealand white mice - the NZB/W mouse - spontaneously develops a disease similar to human systemic lupus erythematosus. Male NZB/W mice with established disease were treated with a stable derivative of prostaglandin E1, 15(S)-15 methyl PGE1 (4 μg twice daily) from 7 months of age. The PGE analog prolonged survival of these mice: At 14 months 7 of 10 control mice had died, whereas 9 of 10 15(S)-15 methyl PGE1 treated mice remained alive. Thus a dose of 200 μg/Kg/day 15(S)-15 methyl PGE1 retards progression of murine lupus.  相似文献   

15.
Dai R  Zhang Y  Khan D  Heid B  Caudell D  Crasta O  Ahmed SA 《PloS one》2010,5(12):e14302

Background

Recent reports have shown that microRNAs (miRNAs) regulate vital immunological processes and have emerged as key regulators of immune system development and function. Therefore, it is important to determine miRNA dysregulation and its pathogenic contribution in autoimmune diseases, an aspect not adequately addressed thus far.

Methodology/Principal Findings

In this study, we profiled miRNA expressions in splenic lymphocytes from three murine lupus models (MRL-lpr, B6-lpr and NZB/WF1) with different genetic background by miRNA microarray assays and Real-time RT-PCR. Despite the genetic differences among these three lupus stains, a common set of dysregulated miRNAs (miR-182-96-183 cluster, miR-31, and miR-155) was identified in splenocytes when compared with age-matched control mice. The association of these miRNAs with the disease was highlighted by our observation that this miRNA expression pattern was evident in NZB/W mice only at an age when lupus disease is manifested. Further, we have shown that the miRNA dysregulation in MRL-lpr mice was not simply due to the activation of splenocytes. By Real-time RT-PCR, we confirmed that these miRNAs were upregulated in both purified splenic B and T cells from MRL-lpr mice. miR-127 and miR-379, which were greatly upregulated in splenocytes from lpr mice, were moderately increased in diseased NZB/W mice. In addition, Real-time RT-PCR revealed that miR-146a, miR-101a, and miR-17-92 were also markedly upregulated in splenic T, but not B cells from MRL-lpr mice.

Conclusions/Significance

The identification of common lupus disease-associated miRNAs now forms the basis for the further investigation of the pathogenic contribution of these miRNAs in autoimmune lupus, which will advance our knowledge of the role of miRNAs in autoimmunity. Given that miRNAs are conserved, with regard to both evolution and function, our observation of a common lupus disease-associated miRNA expression pattern in murine lupus models is likely to have significant pathogenic, diagnostic, and/or therapeutic implications in human lupus.  相似文献   

16.
The Sle1c lupus susceptibility interval spans a 7-Mb region on distal murine chromosome 1. Cr2 is the strongest candidate gene for lupus susceptibility in this interval, as its protein products are structurally and functionally altered. B6.Sle1c congenic mice develop Abs to chromatin by 9 mo of age with a 30% penetrance and do not develop GN. To determine whether the New Zealand White (NZW)-derived Sle1c interval would interact with New Zealand Black (NZB) genes to result in enhanced autoimmune phenotypes, NZB mice were bred with B6 or B6.Sle1c congenic mice and approximately 20 female offspring were selected from each breeding for longitudinal study. These mice differ only at the Sle1c locus at which they have either a NZB/B6 or NZB/NZW genotype. NZB x B6.Sle1c mice had an accelerated onset of anti-chromatin Abs (100 vs 68% at 6 mo, p = 0.006) and anti-dsDNA Abs (45 vs 5% at 9 mo, p = 0.0048). Furthermore, median titers of anti-chromatin and anti-dsDNA Abs were significantly higher in the NZB x B6.Sle1c group compared with the NZB x B6 group. This corresponded with a higher prevalence of proliferative GN at 12 mo (55 vs 16%, p = 0.0214) as well as increased glomerular deposition of C3 (p = 0.0272) and IgG (p = 0.032), although blood urea nitrogen remained normal and significant proteinuria was not identified in either group. These data show that the Sle1c interval accelerates and augments the loss of tolerance to chromatin and dsDNA induced by NZB genes and induces significantly greater end-organ damage.  相似文献   

17.
Mice of the NZB and NZW strains and their F1 hybrid produce antihapten plaque-forming cell (PFC) responses to T-dependent antigens (trinitrophenylated bovine gamma globulin and dansylated keyhole limpet hemocyanin) which are of unusually restricted heterogeneity of affinity, are relatively lacking in low-affinity PFC, and are of relatively high average affinity. Since some low-affinity PFC are present in NZB mice early after immunization, the results suggest a particularly marked down-regulation of low-affinity antibody production by these strains. The non-autoimmune-prone F1 hybrid (NZB × CBA) produces a typical heterogeneous response containing a high proportion of low-affinity PFC. Thus, the tendency to down-regulate low-affinity PFC is not inherited as a simple Mendelian dominant trait. The response of NZB mice to T-independent antigens does not show the same restricted heterogeneity of affinity. In fact, late after injections of trinitrophenylated Ficoll, NZB mice tend to have more heterogeneous responses than nonautoimmune-prone BALB/c mice in which a marked down-regulation of high-affinity antibody-producing PFC is seen. The possible relationship between these unusual features of the immune response of NZB and some related strains and their tendency to develop autoimmune disease is discussed.  相似文献   

18.
Macroautophagy was recently shown to regulate both lymphocyte biology and innate immunity. In this study we sought to determine whether a deregulation of autophagy was linked to the development of autoimmunity. Genome-wide association studies have pointed out nucleotide polymorphisms that can be associated with systemic lupus erythematosus, but the potential role of autophagy in the initiation and/or development of this syndrome is still unknown. Here, we provide first clues of macroautophagy deregulation in lupus. By the use of LC3 conversion assays and electron microscopy experiments, we observed that T cells from two distinct lupus-prone mouse models, i.e., MRLlpr/lpr and (NZB/NZW)F1, exhibit high loads of autophagic compartments compared with nonpathologic control CBA/J and BALB/c mice. Unlike normal mice, autophagy increases with age in murine lupus. In vivo lipopolysaccharide stimulation in CBA/J control mice efficiently activates T lymphocytes but fails to upregulate formation of autophagic compartments in these cells. This argues against a deregulation of autophagy in lupus T cells solely resulting from an acute inflammation injury. Autophagic vacuoles quantified by electron microscopy are also found to be significantly more frequent in T cells from lupus patients compared with healthy controls and patients with non-lupus autoimmune diseases. This elevated number of autophagic structures is not distributed homogeneously and appears to be more pronounced in certain T cells. These results suggest that autophagy could regulate the survival of autoreactive T cell during lupus, and could thus lead to design new therapeutic options for lupus.  相似文献   

19.
Ly49H(+) NK cells play a critical role in innate antiviral immune responses to murine CMV (MCMV). Ly49H(b6) recognition of MCMV-encoded m157 on infected cells activates natural killing required for host resistance. We show that mAb 3D10 (anti-Ly49H) recognizes comparable subsets of NK cells from New Zealand White (NZW), New Zealand Black (NZB), and C57BL/6 spleens. However, virus levels in the spleens of MCMV-infected NZW and NZB mice differed greatly. We found that MCMV replication in infected NZW spleens was limited through NK cells. Alternately, NZB mice were profoundly susceptible to MCMV infection. Although 3D10 mAb injections given before infection interfere with Cmv1-type resistance in C57BL/6 mice, similar mAb injections did not affect NZW resistance, likely because NZW NK cell receptors did not bind MCMV-encoded m157. Instead, anti-MCMV host defenses in hybrid NZ offspring were associated with multiple chromosome locations including several putative quantitative trait loci that did not overlap with H-2 or NK gene complex loci. This study revealed a novel pathway used by NK cells to defend against MCMV infection. Thus, the importance of Ly49H in MCMV infection may be shaped by other additional background genes.  相似文献   

20.
The P2X7R (P2X7 receptor) is an ATP‐gated cation channel expressed in normal cells that participates in both cell proliferation and apoptosis. Here, we have confirmed P2X7R expression on murine P388D1 lymphoid neoplasm cells. In addition, ATP‐stimulated P2X7R expression was found to trigger increased intracellular calcium flux. Furthermore, silencing with short hairpin RNA and blocking with P2X7R antibody significantly reduced the metastasis of P388D1 cells to lymph nodes. These results indicate that inhibition of the expression and function of P2X7R attenuates the metastatic ability of murine lymphoid neoplasm cell line P388D1, which represents a new potential target for anti‐metastatic therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号