首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Maple syrup urine disease is caused by deficiency in the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) complex. The clinical phenotype includes often fatal ketoacidosis, neurological derangement, and mental retardation. The type IA mutations Y393N-alpha, Y368C-alpha, and F364C-alpha, which occur in the E1alpha subunit of the decarboxylase (E1) component of the BCKD complex, impede the conversion of an alphabeta heterodimeric intermediate to a native alpha(2)beta(2) heterotetramer in the E1 assembly pathway. In the present study, we show that a natural osmolyte trimethylamine N-oxide (TMAO) at the optimal 1 m concentration restores E1 activity, up to 50% of the wild type, in the mutant E1 carrying the above missense mutations. TMAO promotes the conversion of otherwise trapped mutant heterodimers to active heterotetramers. This slow step does not involve dissociation/reassociation of the mutant heterodimers, which are preformed in the presence of chaperonins GroEL/GroES and Mg-ATP. The TMAO-stimulated mutant E1 activity is remarkably stable upon removal of the osmolyte, when cofactor thiamine pyrophosphate and the transacylase component of the BCKD complex are present. The above in vitro results offer the use of chemical chaperones such as TMAO as an approach to mitigate assembly defects caused by maple syrup urine disease mutations.  相似文献   

3.
We report the occurrence of three novel mutations in the E1 alpha (BCKDHA) locus of the branched-chain alpha-keto acid dehydrogenase (BCKAD) complex that cause maple syrup urine disease (MSUD). An 8-bp deletion in exon 7 is present in one allele of a compound-heterozygous patient (GM-649). A single C nucleotide insertion in exon 2 occurs in one allele of an intermediate-MSUD patient (Lo). The second allele of patient Lo carries an A-to-G transition in exon 9 of the E1 alpha gene. This missense mutation changes Tyr-368 to Cys (Y368C) in the E1 alpha subunit. Both the 8-bp deletion and the single C insertion generate a downstream nonsense codon. Both mutations appear to be associated with a low abundance of the mutant E1 alpha mRNA, as determined by allele-specific oligonucleotide probing. Transfection studies strongly suggest that the Y368C substitution in the E1 alpha subunit impairs its proper assembly with the normal E1 beta. Unassembled as well as misassembled E1 alpha and E1 beta subunits are degraded in the cell.  相似文献   

4.
We have expressed an active recombinant E1 decarboxylase component of the mammalian branched-chain alpha-ketoacid dehydrogenase complex in Escherichia coli by subcloning mature E1 alpha and E1 beta subunit cDNA sequences into a bacterial expression vector. To permit affinity purification under native conditions, the mature E1 alpha subunit was fused with the affinity ligand E. coli maltose-binding protein (MBP) through an endoprotease Factor Xa-specific linker peptide. When co-expressed, the MBP-E1 alpha fusion and E1 beta subunits were shown to co-purify as a MBP-E1 component that exhibited both E1 activity and binding competence for recombinant branched-chain E2 component. In contrast, in vitro mixing of individually expressed MBP-E1 alpha and E1 beta did not result in assembly or produce E1 activity. Following proteolytic removal of the affinity ligand and linker peptide with Factor Xa, a recombinant E1 species was eluted from a Sephacryl S-300HR sizing column as an enzymatically active 160-kDa species. The latter showed 1:1 subunit stoichiometry, which was consistent with an alpha 2 beta 2 structure. The recovery of this 160-kDa recombinant E1 species (estimated at 0.07% of total lysate protein) was low, with the majority of the recombinant protein lost as insoluble aggregates. Our findings suggest that the concurrent expression of both E1 alpha and E1 beta subunits in the same cellular compartment is important for assembly of both subunits into a functional E1 alpha 2 beta 2 heterotetramer. By using this co-expression system, we also find that the E1 alpha missense mutation (Tyr-393----Asn) characterized in Mennonites with maple syrup urine disease prevents the assembly of soluble E1 heterotetramers.  相似文献   

5.
The activity of the branched-chain alpha-keto acid dehydrogenase complex is deficient in patients with the inherited maple syrup urine disease (MSUD). To elucidate the molecular basis of this metabolic disorder, we have isolated three overlapping cDNA clones encoding the E1 alpha subunit of the human enzyme complex. The composite human E1 alpha cDNA consists of 1783 base pairs encoding the entire human E1 alpha subunit of 400 amino acids with calculated Mr = 45,552. The human E1 alpha and the previously isolated human E2 cDNAs were used as probes in Northern blot analysis with cultured fibroblasts and lymphoblasts from seven unrelated MSUD patients. The results along with those of Western blotting have revealed five distinct molecular phenotypes according to mRNA and protein-subunit contents. These consist of type I, where the levels of E1 alpha mRNA and E1 alpha and E1 beta subunits are normal in cells, but E1 activity is deficient; Type II, where the E1 alpha mRNA is present in normal quantity, whereas the contents of E1 alpha and E1 beta subunits are reduced; Type III, where the level of E1 alpha mRNA is markedly reduced with a concomitant loss of E1 alpha and E1 beta subunits; Type IV, where the contents of both E2 mRNA and E2 subunits are markedly reduced; and Type V, where the E2 mRNA is normally expressed, but the E2 subunit is markedly reduced or completely absent. Type V includes thiamin-responsive (WG-34) and certain classical MSUD cells. These molecular phenotypes have demonstrated the complexity of MSUD and identified the affected gene in different patients for further characterization.  相似文献   

6.
BACKGROUND: Mutations in components of the extraordinarily large alpha-ketoacid dehydrogenase multienzyme complexes can lead to serious and often fatal disorders in humans, including maple syrup urine disease (MSUD). In order to obtain insight into the effect of mutations observed in MSUD patients, we determined the crystal structure of branched-chain alpha-ketoacid dehydrogenase (E1), the 170 kDa alpha(2)beta(2) heterotetrameric E1b component of the branched-chain alpha-ketoacid dehydrogenase multienzyme complex. RESULTS: The 2.7 A resolution crystal structure of human E1b revealed essentially the full alpha and beta polypeptide chains of the tightly packed heterotetramer. The position of two important potassium (K(+)) ions was determined. One of these ions assists a loop that is close to the cofactor to adopt the proper conformation. The second is located in the beta subunit near the interface with the small C-terminal domain of the alpha subunit. The known MSUD mutations affect the functioning of E1b by interfering with the cofactor and K(+) sites, the packing of hydrophobic cores, and the precise arrangement of residues at or near several subunit interfaces. The Tyr-->Asn mutation at position 393-alpha occurs very frequently in the US population of Mennonites and is located in a unique extension of the human E1b alpha subunit, contacting the beta' subunit. CONCLUSIONS: Essentially all MSUD mutations in human E1b can be explained on the basis of the structure, with the severity of the mutations for the stability and function of the protein correlating well with the severity of the disease for the patients. The suggestion is made that small molecules with high affinity for human E1b might alleviate effects of some of the milder forms of MSUD.  相似文献   

7.
8.
The human mitochondrial branched-chain alpha-ketoacid decarboxylase/dehydrogenase (BCKD) is a heterotetrameric (alpha(2)beta(2)) thiamine diphosphate (TDP)-dependent enzyme. The recently solved human BCKD structure at 2.7 A showed that the two TDP-binding pockets are located at the interfaces between alpha and beta' subunits and between alpha' and beta subunits. In the present study, we show that the E76A-beta' mutation results in complete inactivation of BCKD. The result supports the catalytic role of the invariant Glu-76-beta' residue in increasing basicity of the N-4' amino group during the proton abstraction from the C-2 atom on the thiazolium ring. A substitution of His-146-beta' with Ala also renders the enzyme completely inactive. The data are consistent with binding of the alpha-ketoacid substrate by this residue based on the Pseudomonas BCKD structure. Alterations in Asn-222-alpha, Tyr-224-alpha, or Glu-193-alpha, which coordinates to the Mg(2+) ion, result in an inactive enzyme (E193A-alpha) or a mutant BCKD with markedly higher K(m) for TDP and a reduced level of the bound cofactor (Y224A-alpha and N222S-alpha). Arg-114-alpha, Arg-220-alpha, and His-291-alpha interact with TDP by directly binding to phosphate oxygens of the cofactor. We show that natural mutations of these residues in maple syrup urine disease (MSUD) patients (R114W-alpha and R220W-alpha) or site-directed mutagenesis (H291A-alpha) also result in an inactive or partially active enzyme, respectively. Another MSUD mutation (T166M-alpha), which affects one of the residues that coordinate to the K(+) ion on the alpha subunit, also causes inactivation of the enzyme and an attenuated ability to bind TDP. In addition, fluorescence measurements establish that Trp-136-beta in human BCKD is the residue quenched by TDP binding. Thus, our results define the functional roles of key amino acid residues in human BCKD and provide a structural basis for MSUD.  相似文献   

9.
J L Chuang  R P Cox  D T Chuang 《FEBS letters》1990,262(2):305-309
We have isolated a cDNA encoding the E1b-beta subunit of the human branched-chain alpha-keto acid dehydrogenase complex. The human E1b-beta cDNA is 1401 base pairs in length. It encodes the entire mature E1b-beta subunit consisting of 342 amino acid residues, and a mitochondrial targeting presequence of 31 residues. The calculated molecular mass of the mature human E1b-beta subunit is 37,851 Da, and the calculated isoelectric point is pH 5.18. A hydropathy plot shows that the human E1b-beta subunit is highly hydrophobic. Northern blot analysis shows that the human E1b-beta mRNA is approximately 1.4 kb in size. It is present at the normal level in fibroblasts from two unrelated maple syrup urine disease patients.  相似文献   

10.
Molecular heterogeneity for bovine maple syrup urine disease   总被引:2,自引:0,他引:2  
In Poll Herefords, it is known that maple syrup urine disease results from a nonsense mutation in codon -6 of the gene for the Elα subunit of branched-chain α-keto acid dehydrogenase. The disease also occurs in Poll Shorthorns, but its molecular basis in this breed has not yet been determined. Allele-specific hybridization and allele-specific amplification, both based on the Poll Hereford mutation, failed to detect the mutant allele in Poll Shorthorn heterozygotes, and detected the normal allele in affected Poll Hereford-cross-Poll Shorthorn calves. These results demonstrate between breed molecular heterogeneity for bovine maple syrup urine disease.  相似文献   

11.
Maple syrup urine disease (MSUD) results from mutations affecting different subunits of the mitochondrial branched-chain alpha-ketoacid dehydrogenase complex. In this study, we identified seven novel mutations in MSUD patients from Israel. These include C219W-alpha (TGC to TGG) in the E1alpha subunit; H156Y-beta (CAT to TAT), V69G-beta (GTT to GGT), IVS 9 del[-7:-4], and 1109 ins 8bp (exon 10) in the E1beta subunit; and H391R (CAC to CGC) and S133stop (TCA to TGA) affecting the E2 subunit of the branched-chain alpha-ketoacid dehydrogenase complex. Recombinant E1 proteins carrying the C219W-alpha or H156Y-beta mutation show no catalytic activity with defective subunit assembly and reduced binding affinity for cofactor thiamin diphosphate. The mutant E1 harboring the V69G-beta substitution cannot be expressed, suggesting aberrant folding caused by this mutation. These E1 mutations are ubiquitously associated with the classic phenotype in homozygous-affected patients. The H391R substitution in the E2 subunit abolishes the key catalytic residue that functions as a general base in the acyltransfer reaction, resulting in a completely inactive E2 component. However, wild-type E1 activity is enhanced by E1 binding to this full-length mutant E2 in vitro. We propose that the augmented E1 activity is responsible for robust thiamin responsiveness in homozygous patients carrying the H391R E2 mutation and that the presence of a full-length mutant E2 is diagnostic of this MSUD phenotype. The present results offer a structural and biochemical basis for these novel mutations and will facilitate DNA-based diagnosis for MSUD in the Israeli population.  相似文献   

12.
Untreated maple syrup urine disease (MSUD) results in mental and physical disabilities and often leads to neonatal death. Newborn-screening programs, coupled with the use of protein-modified diets, have minimized the severity of this phenotype and allowed affected individuals to develop into productive adults. Although inheritance of MSUD adheres to rules for single-gene traits, mutations in the genes for E1alpha, E1beta, or E2 of the mitochondrial branched-chain alpha-ketoacid dehydrogenase complex can cause the disease. Randomly selected cell lines from 63 individuals with clinically diagnosed MSUD were tested by retroviral complementation of branched-chain alpha-ketoacid dehydrogenase activity to identify the gene locus for mutant alleles. The frequencies of the mutations were 33% for the E1alpha gene, 38% for the E1beta gene, and 19% for the E2 gene. Ten percent of the tested cell lines gave ambiguous results by showing no complementation or restoration of activity with two gene products. These results provide a means to establish a genotype/phenotype relationship in MSUD, with the ultimate goal of unraveling the complexity of this single-gene trait. This represents the largest study to date providing information on the genotype for MSUD.  相似文献   

13.
Maple syrup urine disease (MSUD) is caused by a deficiency in the mitochondrial branched-chain alpha-keto acid dehydrogenase complex. The incidence of MSUD in the Philadelphia Mennonites is 1/176 births resulting from consanguinity. In this study, we amplified cDNAs for the decarboxylase E1 alpha subunit of the branched-chain alpha-keto acid dehydrogenase complex from a classical MSUD patient and from an obligatory heterozygote of a Mennonite family by the PCR. Sequencing of the amplified cDNAs disclosed at codon 393 of the mature E1 alpha polypeptide a base substitution changing a tyrosine (encoded by TAC) to an asparagine residue (encoded by AAC), which is designated Y393N. A segment of the E1 alpha gene containing the 5' portion of exon 9 was amplified. Probing of the amplified genomic DNA with allele-specific oligonucleotide probes showed that the mutation in the E1 alpha gene was homozygous in six Mennonites affected with classical MSUD and was present in heterozygous carriers. The identification of the MSUD mutation in the Philadelphia Mennonites will facilitate diagnosis and carrier detection for this population.  相似文献   

14.
B Zhang  D W Crabb  R A Harris 《Gene》1988,69(1):159-164
A 1552-bp cDNA for the E1 alpha subunit of branched-chain alpha-ketoacid dehydrogenase (BCKDH) was isolated from a human liver cDNA library. The cDNA contained a 1134-bp open reading frame that encoded 378 amino acid (aa) residues of the enzyme and 418 bp of 3'-untranslated sequence. The deduced amino acid sequence of the human protein shows 96% identity with that of the rat enzyme subunit. Those 117-aa residues surrounding the phosphorylation sites are completely conserved between man and rat. BCKDH E1 alpha showed considerable amino acid sequence similarity with pyruvate dehydrogenase E1 alpha, particularly in the region of the two principal phosphorylation sites of these proteins. Northern blots of human liver and skin fibroblasts demonstrated a single 1.8-kb mRNA band, with a higher level of E1 alpha mRNA in liver than in normal fibroblasts. Fibroblasts from a patient with thiamine-responsive maple syrup urine disease (MSUD) contained an mRNA of the same size and abundance as that of normal fibroblasts. Genomic DNA from normal and MSUD fibroblasts gave the same restriction maps on Southern blots, and the gene was approximately 10-kb in size.  相似文献   

15.
Maple syrup urine disease (MSUD) is a metabolic disorder associated with often-fatal ketoacidosis, neurological derangement, and mental retardation. In this study, we identify and characterize two novel type IB MSUD mutations in Israeli patients, which affect the E1beta subunit in the decarboxylase (E1) component of the branched-chain alpha-ketoacid dehydrogenase complex. The recombinant mutant E1 carrying the prevalent S289L-beta (TCG --> TTG) mutation in the Druze kindred exists as a stable inactive alphabeta heterodimer. Based on the human E1 structure, the S289L-beta mutation disrupts the interactions between Ser-289-beta and Glu-290-beta', and between Arg-309-beta and Glu-290-beta', which are essential for native alpha(2)beta(2) heterotetrameric assembly. The R133P-beta (CGG --> CCG) mutation, on the other hand, is inefficiently expressed in Escherichia coli as heterotetramers in a temperature-dependent manner. The R133P-beta mutant E1 exhibits significant residual activity but is markedly less stable than the wild-type, as measured by thermal inactivation and free energy change of denaturation. The R133P-beta substitution abrogates the coordination of Arg-133-beta to Ala-95-beta, Glu-96-beta, and Ile-97-beta, which is important for strand-strand interactions and K(+) ion binding in the beta subunit. These findings provide new insights into folding and assembly of human E1 and will facilitate DNA-based diagnosis for MSUD in the Israeli population.  相似文献   

16.
We have identified two novel mutant alleles in the transacylase (E2) gene of the human branched-chain alpha-keto acid dehydrogenase (BCKAD) complex in 6 of 38 patients with maple syrup urine disease (MSUD). One mutation, a 2-bp (AT) deletion in exon 2 of the E2 gene, causes a frameshift downstream of residue (-26) in the mitochondrial targeting presequence. The second mutation, a G-to-T transversion in exon 6 of the E2 gene, produces a premature stop codon at Glu-163 (E163*). Transfection of constructs harboring the E163* mutation into an E2-deficient MSUD cell line produced a truncated E2 subunit. However, this mutant E2 chain is unable to assemble into a 24-mer cubic structure and is degraded in the cell. The 2-bp (AT) deletion and the E163* mutant alleles occur in either the homozygous or compound-heterozygous state in the 6 of 38 unrelated MSUD patients studied. Moreover, an array of precise single- and multiple-exon deletions were observed in many amplified E2 mutant cDNAs. The latter results appear to represent secondary effects on RNA processing that are associated with the MSUD mutations at the E2 locus.  相似文献   

17.
Maple syrup urine disease (MSUD) is a rare, autosomal recessive disorder of branched-chain amino acid metabolism. We noted that a large proportion (10 of 34) of families with MSUD that were followed in our clinic were of Ashkenazi Jewish (AJ) descent, leading us to search for a common mutation within this group. On the basis of genotyping data suggestive of a conserved haplotype at tightly linked markers on chromosome 6q14, the BCKDHB gene encoding the E1beta subunit was sequenced. Three novel mutations were identified in seven unrelated AJ patients with MSUD. The locations of the affected residues in the crystal structure of the E1beta subunit suggested possible mechanisms for the deleterious effects of these mutations. Large-scale population screening of AJ individuals for R183P, the mutation present in six of seven patients, revealed that the carrier frequency of the mutant allele was approximately 1/113; the patient not carrying R183P had a previously described homozygous mutation in the gene encoding the E2 subunit. These findings suggested that a limited number of mutations might underlie MSUD in the AJ population, potentially facilitating prenatal diagnosis and carrier detection of MSUD in this group.  相似文献   

18.
19.
Maple syrup urine disease (MSUD) is an autosomal recessive disease caused by a deficiency in subunits of the branched-chain α-keto-acid dehydrogenase complex (BCKDH). To characterize the mutations present in five patients with MSUD (four classic and one intermediate), three-step analyses were established: (1) identification of the involved subunit by complementation analysis using three different cell lines derived from homozygotes having E1α, E2β or the E2 mutant gene; (2), screening for a mutation site in cDNA of the corresponding subunit by RT-PCR-SSCP and (3), mutant analysis by sequencing the amplified cDNA fragment. Four single-base missense mutations, R115W, Q1556K, A209T and I282T, were detected in the E1α subunit. A single-base missense mutation H156R and three frame-shift mutations to generate stop codons downstream, including an 11-bp deletion of the tandem repeat in exon 1, a single-base (T) deletion and a single-base (G) insertion, were identified in the E1β subunit gene. All except one (11-bp deletion in E1β (Nobukini, Y., Mitsubuchi, H., Akaboshi, I., Indo, Y., Endo, F., Yoshioka, A. and Matsuda, I. (1991) J. Clin. Invest. 87, 1862–1866)) were novel mutations. The sites of amino-acid substitution were all conserved in other species. Thus, mutations causing MSUD are heterogeneous.  相似文献   

20.
Polyclonal antibodies directed against the dihydrolipoyl transacylase (E2) and alpha subunit of branched-chain alpha-keto acid decarboxylase (E1 alpha) components of the bovine branched-chain keto acid dehydrogenase complex were shown to cross-react with the E2 and E1 alpha polypeptides of the enzyme complex of different rat tissues. Phosphorylation of the branched-chain keto acid dehydrogenase complex resulted in inhibition of enzyme activity concomitant with phosphate incorporation into the E1 alpha polypeptide. Phosphorylation of E1 alpha slowed its rate of migration through sodium dodecyl sulfate-polyacrylamide gels. This permitted resolution of the phosphorylated and unphosphorylated forms of E1 alpha on immunoblots. Liver and skeletal muscle mitochondria were prepared from rats consuming 6, 20, or 50% casein diets. The enzyme complex in mitochondria was measured by radioisotopic enzyme assay and immunoassay. Liver branched-chain keto acid dehydrogenase was 25% active in rats consuming 6% casein diets; whereas in rats consuming 20 or 50% casein diets, the liver enzyme was 82 or 100% active, respectively. Branched-chain keto acid dehydrogenase of muscle was 10, 13, and 22% active, respectively, in rats consuming 6, 20, and 50% casein diets. The amount of protein consumed by rats did not affect the total amount of the enzyme complex per unit of mitochondrial protein as measured by either the radioisotopic assay (enzyme activity) or the immunoassay. However, the protein intake of rats did affect activity of the enzyme kinase in liver. Liver branched-chain keto acid dehydrogenase kinase was more active in rats consuming 6% casein than in those fed chow or 50% casein diets. The amount of protein consumed by rats thus influences the enzyme activity in liver and muscle by affecting the reversible phosphorylation mechanism and not by induction of branched-chain keto acid dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号