首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mediation of phospholipid secretion in rat sublingual salivary gland cells maintained in the presence of [3H]choline was investigated. The secretion of [3H]choline-containing phospholipids was enhanced by beta-adrenergic agonist, isoproterenol, to a greater extent than the cholinergic agonist carbachol. A 2.9-fold increase in phospholipid secretion occurred with isoproterenol, while carbachol evoked only about 1.3-fold increase. In contrast to carbachol, the enhanced phospholipid secretion due to isoproterenol was accompanied by an increase in cAMP concentration. The secretion of phospholipids was also stimulated by dibutyryl-cAMP and the protein kinase C activator, phorbol myristate acetate, but not by 4 alpha-phorbol 12, 13-didecanoate which does not activate protein kinase C. Furthermore, the effects of dibutyryl-cAMP and phorbol myristate acetate were additive. The phospholipids secreted in response to isoproterenol exhibited a 52% decrease in lysophosphatidylcholine, while those secreted in response to carbachol showed a 23% lower content of phosphatidylcholine, and were enriched in lysophosphatidylcholine (2.8-fold) and sphingomyelin (1.4-fold). The results suggest that salivary phospholipid secretion remains mainly under beta-adrenergic control, while the phospholipid makeup is under cholinergic regulation.  相似文献   

2.
The influence of adrenergic and cholinergic mediators on phospholipid secretion in rat sublingual salivary gland cells maintained in the presence of [3H]choline was investigated. The secretion of [3H]choline-containing phospholipids over 30 min period averaged 1.93% of the total cellular labeled phospholipids in the absence of any mediator, and was enhanced by beta-adrenergic agonist, isoproterenol, to a greater extent than the cholinergic agonists, pilocarpine and carbachol. A 2.9-fold increase in phospholipid secretion occurred with isoproterenol, while pilocarpine and carbachol evoked only 1.3-fold increase. The effect of isoproterenol was inhibited by alprenolol and that of pilocarpine and carbachol by atropine. In contrast to pilocarpine and carbachol, the enhanced phospholipid secretion due to isoproterenol was accompanied by an increase in cAMP concentration. The secretion of phospholipids was also stimulated by dibutyryl-cAMP and the protein kinase C activator, phorbol myristate acetate, but not by 4 alpha-phorbol 12,13-didecanoate which does not activate protein kinase C. Furthermore, the effects of dibutyryl-cAMP and phorbol myristate acetate were additive. The phospholipids secreted in response to isoproterenol exhibited a 52% decrease in lysophosphatidylcholine, while those secreted in response to pilocarpine and carbachol showed a 21-23% lower content of phosphatidylcholine, and were enriched in lysophosphatidylcholine (2.6-2.8-fold) and sphingomyelin (1.5-1.6-fold). The results indicate that salivary phospholipid secretion remains mainly under beta-adrenergic regulation, while the phospholipid makeup of the secretion is under cholinergic control.  相似文献   

3.
RHC 80267, on inhibitor of diacylglycerol lipase, was used to investigate the role of diacylglycerol in acid secretion by isolated rat gastric parietal cells. Unexpectedly, RHC 80267 stimulated the production of inositol phosphates in [3H]inositol-prelabeled cells and increased levels of 32P-labeled phosphatidic acid to the same degree as did carbachol. RHC 80267 increased diacylglycerol to a greater extent than did carbachol, and additionally decreased levels of [3H]arachidonic acid. This suggests that RHC 80267 stimulated phospholipase C and inhibited diacylglycerol lipase in parietal cells. RHC inhibited [14C]aminopyrine uptake, a measure of acid secretion, stimulated by carbachol or by simultaneous addition of carbachol and dibutyryl-cAMP. These data support the model that the diacylglycerol/protein kinase C branch of the phosphoinositide system is inhibitory to acid secretion.  相似文献   

4.
It is found that secretion of pancreastatin and somatostatin from QGP-1N cells is regulated through muscarinic receptor-mediated activation of phosphatidylinositide hydrolysis system. In this report, whether the cAMP pathway interacts with the phosphoinositide turnover system for the secretion of pancreastatin and somatostatin from QGP-1N cells through muscarinic receptors was studied. Stimulation of QGP-1N cells with carbachol increased intracellular cAMP levels. The carbachol-induced increase in cAMP levels was inhibited by atropine. Calcium ionophore (A23187) and phorbol 12-myristate 13-acetate increased cAMP synthesis. Dibutyryl cAMP, forskolin and theophylline stimulated secretion of pancreastatin and somatostatin. When either dibutyryl cAMP, forskolin or theophylline was added in culture medium with A23187, phorbol ester or carbachol, a synergistic effect was found on pancreastatin and somatostatin secretion. These results suggest that interaction between the phosphoinositide turnover system and the cAMP pathway occurs in QGP-1N cells through muscarinic receptor stimulation for the secretion of pancreastatin and somatostatin.  相似文献   

5.
We investigated the effect of agents which raise intracellular levels of cyclic AMP (cAMP) on the secretion of tissue-type plasminogen activator (t-PA) and type 1 plasminogen activator inhibitor (PAI-1) by cultured human umbilical-vein endothelial cells. Significant inhibition of baseline (unstimulated) t-PA and PAI-1 secretion was observed in response to several agents which, when added exogenously, cause increased intracellular cAMP: cholera toxin, 1-methyl-3-isobutylxanthine (MIX), dibutyryl-cAMP, and prostaglandin E1. These agents also significantly reduced or abolished the previously reported stimulatory effects of thrombin and histamine on t-PA secretion, and, with the exception of MIX, significantly reduced the previously reported stimulatory effect of thrombin on PAI-1 secretion. MIX at a concentration (10 microM) below that required to inhibit t-PA and PAI-1 secretion when tested alone, significantly increased the inhibitory effects of cholera toxin, dibutyryl-cAMP, and prostaglandin E1 on both t-PA and PAI-1 secretion. The data suggest that elevated intracellular levels of cAMP inhibit both spontaneous endothelial secretion of t-PA and PAI-1, and secretion induced by agents (thrombin and histamine) which stimulate endothelial phosphoinositide metabolism, consistent with bidirectional regulation of endothelial fibrinolytic protein secretion by the adenylate cyclase and phosphoinositide signal transduction pathways. The inhibitory effects of cAMP do not appear to be specific for t-PA and PAI-1, since cholera toxin and MIX also inhibited endothelial secretion of the adhesive protein, fibronectin. Significant inhibition of baseline endothelial t-PA and PAI-1 secretion was also caused by the stable prostacyclin analogue iloprost (ZK 36 374) and by arachidonic acid, which is converted by endothelial cells to prostacyclin, suggesting that prostacyclin produced endogenously by endothelial cells may inhibit secretion of fibrinolytic proteins by increasing intracellular cAMP.  相似文献   

6.
We previously found that addition of cAMP and a Ca(2+)/PKC-dependent agonist causes synergism or potentiation of protein secretion from rat lacrimal gland acini. In the present study we determined whether cAMP decreases p44/p42 mitogen-activated protein kinase (MAPK) activity in the lacrimal gland. Since we know that activation of MAPK attenuates protein secretion stimulated by Ca(2+)- and PKC-dependent agonists, we also determined whether this activation causes potentiation of secretion. Freshly prepared rat lacrimal gland acinar cells were incubated with dibutyryl cAMP (DBcAMP), carbachol (a cholinergic agonist), phenylephrine (an alpha(1)-adrenergic agonist), or epidermal growth factor (EGF). The latter three agonists are known to activate p44/p42 MAPK. p44/p42 MAPK activity and protein secretion were measured. As measured by Western blot analysis, DBcAMP inhibited both basal and agonist-stimulated p44/p42 MAPK activity. Cellular cAMP levels were increased by 1) using two different cell-permeant cAMP analogs, 2) activating adenylyl cyclase (L-858051), or 3) activation of G(s)-coupled receptors (VIP). The cell-permeant cAMP analogs, L-858051, and VIP inhibited basal p44/p42 MAPK activity by 50, 40, and 40%, respectively. DBcAMP and VIP inhibited carbachol- and EGF-stimulated MAPK activity. cAMP, but not VIP, inhibited phenylephrine-stimulated MAPK activity. Potentiation of secretion was detected when carbachol, phenylephrine, or EGF was simultaneously added with DBcAMP. We conclude that increasing cellular cAMP levels inhibits p44/p42 MAPK activity and that this could account for potentiation of secretion obtained when cAMP was elevated and Ca(2+) and PKC were increased by agonists.  相似文献   

7.
A characteristic of acute pancreatitis is the premature activation and retention of enzymes within the pancreatic acinar cell. Because ligands linked to cAMP production may prevent some forms of pancreatitis, we evaluated the effects of increased intracellular cAMP in the rat pancreatic acinar cell. Specifically, this study examined the effects of the cholinergic agonist carbachol and agents that increase cAMP [secretin and 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP)] on zymogen activation (trypsin and chymotrypsin), enzyme secretion, and cellular injury in isolated pancreatic acini. Although cAMP agonists affected the responses to physiological concentrations of carbachol (1 microM), their most prominent effects were observed with supraphysiological concentrations (1 mM). When secretin was added to 1 mM carbachol, there was a slight increase in zymogen activation, but no change in the secretion of amylase or chymotrypsin. Furthermore, coaddition of secretin increased parameters of cell injury (trypan blue exclusion, lactic dehydrogenase release, and morphological markers) compared with carbachol (1 mM) alone. Although directly increasing cellular cAMP by 8-Br-cAMP caused much greater zymogen activation than carbachol (1 mM) alone or with secretin, 8-Br-cAMP cotreatment reduced all parameters of injury to the level of unstimulated acini. Furthermore, 8-Br-cAMP dramatically enhanced the secretion of amylase and chymotrypsin from the acinar cell. This study demonstrates that increasing acinar cell cAMP can overcome the inhibition of enzyme secretion caused by high concentrations of carbachol and eliminate acinar cell injury.  相似文献   

8.
The influence of adenosine 5'-triphosphate on gastric acid secretion stimulated by histamine, carbachol, dibutyryl-cAMP and the phosphodiesterase inhibitors 8-phenyl-theophylline and rolipram in isolated rabbit gastric glands was studied. Changes oi gastric acid secretion were measured by the aminopyrine accumulation method. Histamine-stimulated acid secretion was significantly inhibited by ATP 1 mM, whereas the secretory responses elicited by carbachol, dibutyryl-cAMP, 8-phenyl-theophylline or rolipram were not. Assays with indomethacin, a well known prostaglandin synthesis inhibitor, showed that this agent significantly reduced the inhibitory effect of ATP on histamine responses. The results indicate that the antisecretory effect of ATP was specific for histamine and that it was mediated, at least in part, via stimulation of endogenous prostaglandin production.  相似文献   

9.
The role of calcium in control of HCl secretion by the gastric parietal cell was examined using a recently available intracellular calcium-releasing agent, thapsigargin, which has been shown, in some cell types, to induce sustained elevation of intracellular calcium ([Ca2+]i), an action that appears to be independent of inositol lipid breakdown and protein kinase C activation and to be mediated, at least partially, by selective inhibition of endoplasmic reticulum Ca2(+)-ATPase. Using the calcium-sensitive fluorescent probe, fura-2, in combination with digitized video image analysis of single cells as well as standard fluorimetric techniques, we found that thapsigargin induced sustained elevation of [Ca2+]i in single parietal cells and in parietal cells populations. Chelation of medium calcium led to a transient rise and fall in [Ca2+]i, indicating that the sustained elevation in [Ca2+]i in response to thapsigargin was due to both intracellular calcium release and influx. Although thapsigargin appeared to affect the same calcium pool(s) regulated by the cholinergic agonist, carbachol, and the pattern of thapsigargin-induced increases in [Ca2+]i were similar to the plateau phase of the cholinergic response, thapsigargin did not induce acid secretory responses of the same magnitude as those initiated by carbachol (28 vs 600% of basal). The protein kinase C activator, 12-O-tetradecanoyl phorbol-13-acetate (TPA) potentiated the secretory response to thapsigargin but this combined response also did not attain the same magnitude as the maximal cholinergic response. In the presence but not the absence of medium calcium, thapsigargin potentiated acid secretory responses to histamine, which elevate both cyclic AMP (cAMP) and [Ca2+]i in parietal cells, as well as forskolin and cAMP analogues but had no effect on submaximal and an inhibitory effect on maximal cholinergic stimulation. Furthermore, thapsigargin did not fully mimic potentiating interactions between histamine and carbachol, either in magnitude or in the pattern of temporal response. Assuming that the action of thapsigargin is specific for intracellular calcium release mechanisms, these data suggest that 1) sustained influx of calcium is necessary but not sufficient for cholinergic activation of parietal cell HCl secretion and for potentiating interactions between cAMP-dependent agonists and carbachol; 2) mechanisms in addition to elevated [Ca2+]i and protein kinase C activation may be involved in cholinergic regulation; and 3) increases in [Ca2+]i in response to histamine are not directly involved in the mechanism of histamine-stimulated secretion.  相似文献   

10.
The pancreatic acinar cell has several phenotypic responses to cAMP agonists. At physiological concentrations of the muscarinic agonist carbachol (1 microM) or the CCK analog caerulein (100 pM), ligands that increase cytosolic Ca(2+), cAMP acts synergistically to enhance secretion. Supraphysiological concentrations of carbachol (1 mM) or caerulein (100 nM) suppress secretion and cause intracellular zymogen activation; cAMP enhances both zymogen activation and reverses the suppression of secretion. In addition to stimulating cAMP-dependent protein kinase (PKA), recent studies using cAMP analogs that lack a PKA response have shown that cAMP can also act through the cAMP-binding protein, Epac (exchange protein directly activated by cyclic AMP). The roles of PKA and Epac in cAMP responses were examined in isolated pancreatic acini. The activation of both cAMP-dependent pathways or the selective activation of Epac was found to enhance amylase secretion induced by physiological and supraphysiological concentrations of the muscarinic agonist carbachol. Similarly, activation of both PKA or the specific activation of Epac enhanced carbachol-induced activation of trypsinogen and chymotrypsinogen. Disorganization of the apical actin cytoskeleton has been linked to the decreased secretion observed with supraphysiological concentrations of carbachol and caerulein. Although stimulation of PKA and Epac or Epac alone could largely overcome the decreased secretion observed with either supraphysiological carbachol or caerulein, stimulation of cAMP pathways did not reduce the disorganization of the apical cytoskeleton. These studies demonstrate that PKA and Epac pathways are coupled to both secretion and zymogen activation in the pancreatic acinar cell.  相似文献   

11.
Carbamoylcholine (carbachol) has been shown to inhibit somatostatin release from gastric D-cells. We observed that this dose-dependent inhibitory effect was accompanied by decreases in cellular cyclic adenosine 3':5'-monophosphate (cAMP) production and increases in parameters of membrane inositol phospholipid turnover. However, after pretreatment of D-cells with pertussis toxin (200 ng/ml), carbachol paradoxically stimulated basal somatostatin release and potentiated the secretagogue action of forskolin. Pertussis toxin pretreatment blocked the ability of carbachol to decrease cAMP production but changes in inositol phospholipid turnover were unaffected. Atropine reversed all of the observed changes induced by carbachol. These data suggest that muscarinic cholinergic receptors mediate both stimulatory and inhibitory regulation of D-cells. The inhibitory effect may involve pertussis toxin-sensitive inhibitory guanine nucleotide binding proteins while the stimulatory effect may result from the consequences of membrane phosphoinositide turnover.  相似文献   

12.
When dispersed chief cells from guinea pig stomach were first incubated with carbachol, washed, and then reincubated with carbachol in fresh incubation solution, the stimulation of pepsinogen secretion and the rise in intracellular calcium concentration during the second incubation were reduced. Carbachol did not cause residual enzyme secretion, but the same range of concentrations that causes enzyme secretion caused desensitization that was rapid, temperature dependent, and reversible with time. Preincubation with carbachol caused approximately a 65% reduction in enzyme secretion stimulated during a subsequent incubation with this agonist, but the potency of carbachol was unaffected. Prior exposure to carbachol also reduced subsequent stimulation caused by cholecystokinin (CCK-8), gastrin I, ionophore A23187, or 12-O-tetradecanoylphorbol 13-acetate but did not alter stimulation by any agonist that increases cellular cAMP. Carbachol pretreatment of Fura-loaded chief cells caused a threefold increase in the EC50 for carbachol-stimulated [Ca2+]i and approximately a 30% reduction in the maximal rise in [Ca2+]i in response to carbachol or CCK-8. Inhibition of [N-methyl-3H] scopolamine binding by carbachol following carbachol pretreatment indicated that modulation of receptor affinity or number did not account for functional desensitization. These data indicate that carbachol causes heterologous desensitization of pepsinogen secretion stimulated by agonists that mobilize cellular Ca2+ or activate protein kinase C through a postreceptor action and suggest that an attenuated rise in chief cell calcium is one mechanism mediating the desensitization of enzyme secretion.  相似文献   

13.
Clonidine, an alpha 2-adrenergic agonist, also binds to non-adrenergic imidazole receptors in brain and peripheral tissues. In adrenal medulla, however, clonidine appears to bind only to imidazole receptors. To assess whether the signal transduction mechanism of imidazole receptors differs from alpha 2-adrenergic receptors, we studied the actions of clonidine on the turnover of phosphoinositide and the production of cAMP and cGMP in slices of rat adrenal gland. Clonidine did not modify basal or carbachol mediated increases in phosphoinositide turnover or production of cAMP, however it increased the production of cGMP. The increase in cGMP was slow and unaffected by the addition of the phosphodiesterase inhibitor, IBMX. We conclude that the second messenger response triggered by clonidine in adrenal differs from that usually coupled to alpha 2-adrenergic receptors. Whether the effect is mediated by cell surface imidazole receptors remains to be established.  相似文献   

14.
In dispersed rat parotid gland acinar cells, the beta-adrenergic agonist (-)-isoproterenol, but not its stereoisomer (+)-isoproterenol, induced a transient 1.6-fold (at maximum stimulation, 2 x 10(-4) M) increase in cytosolic free calcium ([Ca2+]i) within 9 s, which returned to resting levels (approximately 190 nM) by 60 s. This [Ca2+]i response was not altered by chelating extracellular Ca2+ with [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) and could be completely blocked by the beta-adrenergic antagonists propranolol (beta 1 + beta 2) and ICI 118,551 (beta 2) but not by atenolol (beta 1). The muscarinic-cholinergic agonist carbachol (at maximum stimulation, 10(-5) M) induced a 3-4-fold elevation in [Ca2+]i within 6 s, which slowly returned to resting levels by 8-10 min. The peak carbachol [Ca2+]i response was not substantially altered by the addition of EGTA to the extracellular medium. However, if the cells were first stimulated with isoproterenol in the EGTA-containing medium, the peak carbachol response was decreased approximately 54%. When carbachol was added to cells in the presence of high extracellular calcium, at the isoproterenol-stimulated [Ca2+]i peak, the resulting [Ca2+]i level was equal to that achieved when carbachol was either added alone or added after propranolol and isoproterenol. 8-Bromo-cyclic AMP induced a [Ca2+]i response similar to that elicited by isoproterenol, which was not additive to that by carbachol. Carbachol induced a approximately 3.5-fold increase in inositol trisphosphate (IP3) production in parotid cells within 30 s. 8-Bromo-cAMP, N6,O2'-dioctanoyl-cAMP, and isoproterenol consistently induced a significant stimulation in IP3 production. The half-maximal concentration of isoproterenol required for [Ca2+]i mobilization and IP3 production was comparable (approximately 10(-5) M). Isoproterenol-induced IP3 formation was blocked by propranolol. The data show that in rat parotid acinar cells, beta-adrenergic stimulation results in IP3 formation and mobilization of a carbachol-sensitive intracellular Ca2+ pool by a mechanism involving cAMP. This demonstrates an interaction between the cAMP and phosphoinositide second messenger systems in these cells.  相似文献   

15.
Severalsecretagogues induce mucin secretion in epithelial monolayers, asdetermined by measuring released granule contents. To assess whetherdifferent agonists act on the same granule pool, capacitance changes inintact monolayers of the goblet cell line HT29-Cl.16E were measured bya novel impedance method. Apical ATP (purinergic agonist) andbasolateral carbachol (cholinergic agonist) induce rapid exocytosiswith maximal capacitance changes within 3 min. The maximal levels ofexocytosis that can be induced by optimal concentrations of eitheragonist are the same and produce a 30-40% increase in totalmonolayer capacitance. When ATP and carbachol are appliedsimultaneously, the magnitude of exocytosis is unchanged from thesingle-secretagogue level. The recovery of capacitance to baseline(endocytosis) is significantly faster after ATP stimulation than aftercarbachol stimulation. When ATP and carbachol are applied sequentiallyat doses that give maximal exocytosis, the magnitude of the capacitanceincrease produced by the second secretagogue is less than or equal tothat of the capacitance decrease during the recovery period. Together,these data suggest that purinergic and cholinergic agonists act on the same granule pool.  相似文献   

16.
Abstract: Metabotropic glutamate receptors (mGluRs) in the CNS are coupled to a variety of second messenger systems, the best characterized of which is activation of phosphoinositide hydrolysis. Recently, we found that activation of mGluRs in rat brain slices by the selective mGluR agonist 1-aminocyclopentane-1 S ,3 R -dicarboxylic acid (1 S ,3 R -ACPD) potentiates cyclic AMP (cAMP) responses elicited by activation of other receptors coupled to Gs. It has been suggested that mGluR-mediated potentiation of cAMP responses is secondary to activation of phosphoinositide hydrolysis. However, preliminary evidence suggests that this is not the case. Therefore, we designed a series of experiments to test more fully the hypothesis that mGluR-mediated potentiation of cAMP responses is secondary to phosphoinositide hydrolysis. Inhibitors of both protein kinase C and intracellular calcium mobilization failed to antagonize 1 S ,3 R -ACPD-stimulated potentiation of cAMP responses. Further, coapplication of phorbol esters and 1 S ,3 R -ACPD induced a cAMP response that was greater than additive. Finally, ( RS )-3,5-dihydroxyphenylglycine, a selective agonist of mGluRs coupled to phosphoinositide hydrolysis, failed to potentiate cAMP responses, whereas (2 S ,1' R ,2' R ,3' R )-2-(2,3-dicarboxycyclopropyl)glycine, an mGluR agonist that does not activate mGluRs coupled to phosphoinositide hydrolysis, elicited a robust potentiation of cAMP responses. In total, these data strongly suggest that mGluR-mediated potentiation of cAMP responses is not secondary to activation of phosphoinositide hydrolysis and is likely mediated by a group II mGluR.  相似文献   

17.
Androgens regulate the synthesis and secretion of secretory component (SC), the IgA antibody receptor, by acinar cells from the lacrimal gland. However, this hormone action may be susceptible to significant modification by other agents from the endocrine, nervous, or immune systems. To investigate the nature of this neuroimmunoendocrine interaction, the present study examined the impact of hormones, neurotransmitters, and lymphokines on basal and androgen-induced SC production by lacrimal gland acinar cells in vitro. Our results demonstrated that vasoactive intestinal peptide, the beta-adrenergic agonist, isoproterenol, PGE2, IL-1 alpha, IL-1 beta, and TNF-alpha significantly increased media SC levels in control or androgen-containing cell cultures. In contrast, the cholinergic agonist, carbachol, significantly decreased cellular SC output. These effects may be mediated through the agents' known capacity to alter intracellular cAMP levels. In support of this hypothesis, exposure of acinar cells to stimulators or analogues of cAMP resulted in a significant enhancement of SC production. Thus, these findings indicate that SC output in lacrimal tissue may be modulated by interactions between the endocrine, nervous and immune systems.  相似文献   

18.
A Ray  K M MacLeod 《Life sciences》1992,51(18):1411-1418
The muscarinic agonist carbachol antagonized positive inotropic responses of rabbit left atria to the beta-adrenoceptor agonist isoproterenol, the adenylate cyclase activator forskolin and the phosphodiesterase inhibitor IBMX. Carbachol also reduced cAMP levels elevated by isoproterenol, but had no significant effect on cAMP levels in the presence of either forskolin or IBMX. Pre-treatment of rabbits with a dose of pertussis toxin which completely blocked the reduction by carbachol of isoproterenol-induced increases in cAMP, also blocked the reversal by carbachol of positive inotropic responses to isoproterenol, but only partially attenuated the antagonism by carbachol of inotropic responses to forskolin and IBMX. These data suggest that antagonism by carbachol of forskolin and IBMX-induced increases in cAMP levels does not play an important role in the functional interaction of carbachol with these cAMP-elevating agents.  相似文献   

19.
The gastric parietal cell is responsible for the secretion of HCl into the lumen of the stomach mainly due to stimulation by histamine via the cAMP pathway. However, the participation of several other receptors and pathways have been discovered to influence both stimulation and inhibition of acid secretion (e.g., cholinergic). Here we examine the role of phosphoinositide 3-kinase (PI3K) in the modulation of acid secretion. Treatment of isolated gastric glands and parietal cells with the PI3K inhibitor, LY294002 (LY), potentiated acid secretion in response to histamine to nearly the maximal secretion obtained with histamine plus phosphodiesterase inhibitors. As cAMP levels were elevated in response to histamine plus LY, but other means of elevating cAMP (e.g., forskolin, dbcAMP) were not influenced by LY, we posited that the effect might require activation of G-protein-coupled histamine H(2) receptors, possibly through the protein kinase B pathway (also known as Akt). Study of downstream effectors of PI3K showed that histaminergic stimulation increased Akt phosphorylation, which in turn was blocked by inhibition of PI3K. Expression studies showed that high expression of active Akt decreased acid secretion, whereas dominant-negative Akt increased acid secretion. Taken together, these data suggest stimulation with histamine increases the activity of PI3K leading to increased activity of Akt and decreased levels of cAMP in the parietal cell.  相似文献   

20.
Acid secretion in isolated rabbit gastric glands was monitored by the accumulation of [(14)C]aminopyrine. Stimulation of the glands with carbachol synergistically augmented the response to dibutyryl cAMP. The augmentation persisted even after carbachol was washed out and was resistant to chelated extracellular Ca(2+) and to inhibitors of either protein kinase C or calmodulin kinase II. Cytochalasin D at 10 microM preferentially blocked the secretory effect of carbachol and its synergism with cAMP, whereas it had no effect on histamine- or cAMP-stimulated acid secretion within 15 min. Cytochalasin D inhibited the carbachol-stimulated intracellular Ca(2+) concentration ([Ca(2+)](i)) increase due to release from the Ca(2+) store. Treatment of the glands with cytochalasin D redistributed type 3 inositol 1,4,5-trisphosphate receptor (the major subtype in the parietal cell) from the fraction containing membranes of large size to the microsomal fraction, suggesting a dissociation of the store from the plasma membrane. These findings suggest that intracellular Ca(2+) release by cholinergic stimulation is critical for determining synergism with cAMP in parietal cell activation and that functional coupling between the Ca(2+) store and the receptor is maintained by actin microfilaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号