首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determinethe mechanism of fatty acid modulation of rabbit pulmonary arterylarge-conductance Ca2+-activated K+(BKCa) channel activity, we studied effects of fatty acidsand other lipids on channel activity in excised patches withpatch-clamp techniques. The structural features of the fatty acidrequired to increase BKCa channel activity (or averagenumber of open channels, NPo) were identified tobe the negatively charged head group and a sufficiently long (C > 8) carbon chain. Positively charged lipids like sphingosine, which havea sufficiently long alkyl chain (C  8), produced a decrease inNPo. Neutral and short-chain lipids did notalter NPo. Screening of membrane surface chargewith high-ionic-strength bathing solutions (330 mM K+ or130 mM K+, 300 mM Na+) did not alter themodulation of the BKCa channel NPoby fatty acids and other charged lipids, indicating that channelmodulation is unlikely to be due to an alteration of the membraneelectric field or the attraction of local counterions to the channel.Fatty acids and other negatively charged lipids were able to modulate BKCa channel activity in bathing solutions containing 0 mMCa2+, 20 mM EGTA, suggesting that calcium is not requiredfor this modulation. Together, these results indicate that modulationof BKCa channels by fatty acids and other charged lipidsmost likely occurs by their direct interaction with the channel proteinitself or with some other channel-associated component.

  相似文献   

2.
We determined the structural features necessary for fatty acids to exert their action on K+ channels of gastric smooth muscle cells. Examination of the effects of a variety of synthetic and naturally occurring lipid compounds on K+ channel activity in cell-attached and excised membrane patches revealed that negatively charged analogs of medium to long chain fatty acids (but not short chain analogs) as well as certain other negatively charged lipids activate the channels. In contrast, positively charged, medium to long chain analogs suppress activity, and neutral analogs are without effect. The key requirements for effective compounds seem to be a sufficiently hydrophobic domain and the presence of a charged group. Furthermore, those negatively charged compounds unable to "flip" across the bilayer are effective only when applied at the cytosolic surface of the membrane, suggesting that the site of fatty acid action is also located there. Finally, because some of the effective compounds, for example, the fatty acids themselves, lysophosphatidate, acyl Coenzyme A, and sphingosine, are naturally occurring substances and can be liberated by agonist- activated or metabolic enzymes, they may act as second messengers targeting ion channels.  相似文献   

3.
High-conductanceCa2+-activatedK+(KCa) channels werestudied in mouse skeletal muscle fibers using thepatch-clamp technique. In inside-out patches, application of negativepressure to the patch induced a dose-dependent and reversibleactivation of KCa channels.Stretch-induced increase in channel activity was found to be of thesame magnitude in the presence and in the absence ofCa2+ in the pipette. Thedose-response relationships betweenKCa channel activity andintracellular Ca2+ and betweenKCa channel activity and membranepotential revealed that voltage andCa2+ sensitivity were not alteredby membrane stretch. In cell-attached patches, in the presence of highexternal Ca2+ concentration,stretch-induced activation was also observed. We conclude that membranestretch is a potential mode of regulation of skeletal muscleKCa channel activity and could beinvolved in the regulation of muscle excitability duringcontraction-relaxation cycles.

  相似文献   

4.
Two populations,Ca2+-dependent(BKCa) andCa2+-independentK+ (BK) channels of largeconductance were identified in inside-out patches of nonlabor and laborfreshly dispersed human pregnant myometrial cells, respectively.Cell-attached recordings from nonlabor myometrial cells frequentlydisplayed BKCa channel openings characterized by a relatively low open-state probability, whereas similar recordings from labor tissue displayed either no channel openings or consistently high levels of channel activity that oftenexhibited clear, oscillatory activity. In inside-out patch recordings,Ba2+ (2-10 mM),4-aminopyridine (0.1-1 mM), andShaker B inactivating peptide("ball peptide") blocked theBKCa channel but were much lesseffective on BK channels. Application of tetraethylammonium toinside-out membrane patches reduced unitary current amplitude ofBKCa and BK channels, withdissociation constants of 46 mM and 53 µM, respectively.Tetraethylammonium applied to outside-out patches decreased the unitaryconductance of BKCa and BKchannels, with dissociation constants of 423 and 395 µM,respectively. These results demonstrate that the properties of humanmyometrial large-conductance K+channels in myocytes isolated from laboring patients are significantly different from those isolated from nonlaboring patients.

  相似文献   

5.
The effect of sphingosine-1-phosphate (S1P) on large-conductance Ca2+-activated K+ (BKCa) channels was examined in primary cultured human umbilical vein endothelial cells by measuring intracellular Ca2+ concentration ([Ca2+]i), whole cell membrane currents, and single-channel activity. In nystatin-perforated current-clamped cells, S1P hyperpolarized the membrane and simultaneously increased [Ca2+]i. [Ca2+]i and membrane potentials were strongly correlated. In whole cell clamped cells, BKCa currents were activated by increasing [Ca2+]i via cell dialysis with pipette solution, and the activated BKCa currents were further enhanced by S1P. When [Ca2+]i was buffered at 1 µM, the S1P concentration required to evoke half-maximal activation was 403 ± 13 nM. In inside-out patches, when S1P was included in the bath solution, S1P enhanced BKCa channel activity in a reversible manner and shifted the relationship between Ca2+ concentration in the bath solution and the mean open probability to the left. In whole cell clamped cells or inside-out patches loaded with guanosine 5'-O-(2-thiodiphosphate) (GDPS; 1 mM) using a patch pipette, GDPS application or pretreatment of cells with pertussis toxin (100 ng/ml) for 15 h did not affect S1P-induced BKCa current and channel activation. These results suggest that S1P enhances BKCa channel activity by increasing Ca2+ sensitivity. This channel activation hyperpolarizes the membrane and thereby increases Ca2+ influx through Ca2+ entry channels. Inasmuch as S1P activates BKCa channels via a mechanism independent of G protein-coupled receptors, S1P may be a component of the intracellular second messenger that is involved in Ca2+ mobilization in human endothelial cells. sphingolipid metabolites; intracellular second messenger; Ca2+ mobilization  相似文献   

6.
Cell-attached and cell-free configurations of the patch-clamptechnique were used to investigate the conductive properties andregulation of the major K+channels in the basolateral membrane of outer hair cells freshly isolated from the guinea pig cochlea. There were two majorvoltage-dependent K+ channels. ACa2+-activatedK+ channel with a high conductance(220 pS,PK/PNa = 8) was found in almost 20% of the patches. The inside-out activityof the channel was increased by depolarizations above 0 mV andincreasing the intracellular Ca2+concentration. External ATP or adenosine did not alter thecell-attached activity of the channel. The open probability of theexcised channel remained stable for several minutes without rundown andwas not altered by the catalytic subunit of protein kinase A (PKA)applied internally. The most frequentK+ channel had a low conductanceand a small outward rectification in symmetricalK+ conditions (10 pS for inwardcurrents and 20 pS for outward currents, PK/PNa = 28). It was found significantly more frequently in cell-attached andinside-out patches when the pipette contained 100 µM acetylcholine. It was not sensitive to internalCa2+, was inhibited by4-aminopyridine, was activated by depolarization above 30 mV,and exhibited a rundown after excision. It also had a slow inactivationon ensemble-averaged sweeps in response to depolarizing pulses. Thecell-attached activity of the channel was increased when adenosine wassuperfused outside the pipette. This effect also occurred with permeantanalogs of cAMP and internally applied catalytic subunit of PKA. Bothchannels could control the cell membrane voltage of outer hair cells.

  相似文献   

7.
Arterial smooth muscle cell large-conductance Ca2+-activated potassium (KCa) channels have been implicated in modulating hypoxic dilation of systemic arteries, although this is controversial. KCa channel activity in arterial smooth muscle cells is controlled by localized intracellular Ca2+ transients, termed Ca2+ sparks, but hypoxic regulation of Ca2+ sparks and KCa channel activation by Ca2+ sparks has not been investigated. We report here that in voltage-clamped (–40 mV) cerebral artery smooth muscle cells, a reduction in dissolved O2 partial pressure from 150 to 15 mmHg reversibly decreased Ca2+ spark-induced transient KCa current frequency and amplitude to 61% and 76% of control, respectively. In contrast, hypoxia did not alter Ca2+ spark frequency, amplitude, global intracellular Ca2+ concentration, or sarcoplasmic reticulum Ca2+ load. Hypoxia reduced transient KCa current frequency by decreasing the percentage of Ca2+ sparks that activated a transient KCa current from 89% to 63%. Hypoxia reduced transient KCa current amplitude by attenuating the amplitude relationship between Ca2+ sparks that remained coupled and the evoked transient KCa currents. Consistent with these data, in inside-out patches at –40 mV hypoxia reduced KCa channel apparent Ca2+ sensitivity and increased the Kd for Ca2+ from 17 to 32 µM, but did not alter single-channel amplitude. In summary, data indicate that hypoxia reduces KCa channel apparent Ca2+ sensitivity via a mechanism that is independent of cytosolic signaling messengers, and this leads to uncoupling of KCa channels from Ca2+ sparks. Transient KCa current inhibition due to uncoupling would oppose hypoxic cerebrovascular dilation. transient calcium-activated potassium current  相似文献   

8.
Increased extracellular osmolarity ([Os]e) suppresses stimulated hormone secretion from anterior pituitary cells. Ca2+ influx may mediate this effect. We show that increase in [Os]e (by 18–125%) differentially suppresses L-type and T-type Ca2+ channel currents (IL and IT, respectively); IL was more sensitive than IT. Hyperosmotic suppression of IL depended on the magnitude of increase in [Os]e and was correlated with the percent decrease in pituitary cell volume, suggesting that pituitary cell shrinkage can modulate L-type currents. The hyperosmotic suppression of IL and IT persisted after incubation of pituitary cells either with the actin-disrupter cytochalasin D or with the actin stabilizer phalloidin, suggesting that the actin cytoskeleton is not involved in this modulation. The hyperosmotic suppression of Ca2+ influx was not correlated with changes in reversal potential, membrane capacitance, and access resistance. Together, these results suggest that the hyperosmotic suppression of Ca2+ influx involves Ca2+ channel proteins. We therefore recorded the activity of L-type Ca2+ channels from cell-attached patches while exposing the cell outside the patch pipette to hyperosmotic media. Increased [Os]e reduced the activity of Ca2+ channels but did not change single-channel conductance. This hyperosmotic suppression of Ca2+ currents may therefore contribute to the previously reported hyperosmotic suppression of hormone secretion. L-type Ca2+ channels; osmosensitivity; mechanosensitivity; osmolarity; hyperosmolarity  相似文献   

9.
Transfected Chinese hamster ovary cells stably expressing thebovine cardiacNa+/Ca2+exchanger (CK1.4 cells) were used to determine the range of cytosolic Ca2+ concentrations([Ca2+]i)that activateNa+/Ca2+exchange activity. Ba2+ influx wasmeasured in fura 2-loaded, ionomycin-treated cells under conditions inwhich the intracellular Na+concentration was clamped with gramicidin at ~20 mM.[Ca2+]iwas varied by preincubating ionomycin-treated cells with either theacetoxymethyl ester of EGTA or medium containing 0-1 mM added CaCl2. The rate ofBa2+ influx increased in asaturable manner with[Ca2+]i,with the half-maximal activation value of 44 nM and a Hill coefficientof 1.6. When identical experiments were carried out with cellsexpressing a Ca2+-insensitivemutant of the exchanger, Ba2+influx did not vary with[Ca2+]i.The concentration for activation of exchange activity was similar tothat reported for whole cardiac myocytes but approximately an order ofmagnitude lower than that reported for excised, giant patches. Thereason for the difference in Ca2+regulation between whole cells and membrane patches is unknown.

  相似文献   

10.
Ethanol inhibition of large-conductance,Ca2+-activated K+ (BKCa) channelsin aortic myocytes may contribute to the direct contraction of aorticsmooth muscle produced by acute alcohol exposure. In this tissue,BKCa channels consist of pore-forming (bslo) and modulatory () subunits. Here, modulation of aortic myocyteBKCa channels by acute alcohol was explored by expressingbslo subunits in Xenopus oocytes, in the absenceand presence of 1-subunits, and studying channelresponses to clinically relevant concentrations of ethanol in excisedmembrane patches. Overall, average values of bslo channelactivity (NPo, with N = no. ofchannels present in the patch; Po = probability of a single channel being open) in response to ethanol(3-200 mM) mildly decrease when compared with pre-ethanol,isosmotic controls. However, channel responses show qualitativeheterogeneity at all ethanol concentrations. In the majority of patches(42/71 patches, i.e., 59%), a reversible reduction inNPo is observed. In this subset, the maximaleffect is obtained with 100 mM ethanol, at whichNPo reaches 46.2 ± 9% of control. Thepresence of 1-subunits, which determines channel sensitivity to dihydrosoyaponin-I and 17-estradiol, fails to modifyethanol action on bslo channels. Ethanol inhibition of bslo channels results from a marked increase in the meanclosed time. Although the voltage dependence of gating remainsunaffected, the apparent effectiveness of Ca2+ to gate thechannel is decreased by ethanol. These changes occur withoutmodifications of channel conduction. In conclusion, a new molecularmechanism that may contribute to ethanol-induced aortic smooth musclecontraction has been identified and characterized: a functionalinteraction between ethanol and the bslo subunit and/or itslipid microenvironment, which leads to a decrease in BKCachannel activity.

  相似文献   

11.
Activation of K+-Channel in Membrane Excitation of Nitella axilliformis   总被引:1,自引:0,他引:1  
Two processes of the K+ channel activation in plasma membraneexcitation are suggested for Nitella axilliformis. One is relatedto the repolarizing process in the action potential and theother to the after-hyperpolarization (AH). Extra- and intracellulartetraethylammonium (TEA+) and extracellular Co2+ prolonged theaction potential, indicating involvement of K+ channel activationin the repolarizing process of the action potential. The following findings showed that AH is caused by K+ channelactivation. First, AH was inhibited by extracellular K+ andRb+ but not by Na+ and Li+. Second, it was not inhibited byintracellular TEA+ but by extracellular TEA+. Third, the membraneconductance increased during AH. Generation of AH was dependenton the level of the resting membrane potential [(Em)rest] whichis affected by the activity of the electrogenic H+ pump. AHwas generated, when (Em)rest was more positive than a criticalvalue, which was supposed to be the equilibrium potential forK+ across the plasma membrane. Since extracellular Ca2+ competed with extracellular TEA+ andCo2+ in prolonging the action potential, and sometimes in inhibitingAH, Ca2+ may be involved in the K+ channel activation. (Received June 11, 1983; Accepted September 21, 1983)  相似文献   

12.
The effect ofCa2+/calmodulin-dependent protein kinase II (CaMKII)stimulation on unitary low voltage-activated (LVA) T-type Ca2+ channel currents in isolated bovine adrenalglomerulosa (AG) cells was measured using the patch-clamp technique. Incell-attached and inside-out patches, LVA channel activity wasidentified by voltage-dependent inactivation and a single-channelconductance of ~9 pS in 110 mM BaCl2 orCaCl2. In the cell-attached patch, elevation of bathCa2+ from 150 nM to 1 µM raised intracellularCa2+ in K+-depolarized (140 mM) cells andevoked an increase in the LVA Ca2+ channel probability ofopening (NPo) by two- to sixfold. This augmentation was associated with an increase in the number of nonblanksweeps, a rise in the frequency of channel opening in nonblank sweeps,and a 30% reduction in first latency. No apparent changes in thesingle-channel open-time distribution, burst lengths, or openings/burstwere apparent. Preincubation of AG cells with lipophilic or peptideinhibitors of CaMKII in the cell-attached or excised (inside-out)configurations prevented the rise in NPo elicited by elevated Ca2+ concentration.Furthermore, administration of a mutant recombinant CaMKIIexhibiting cofactor-independent activity in the absence of elevatedCa2+ produced a threefold elevation in LVA channelNPo. These data indicate that CaMKII activity isboth necessary and sufficient for LVA channel activation byCa2+.

  相似文献   

13.
We report here the expression in C2C12 myoblasts of the intermediate-conductance Ca2+-activated K+ (IKCa) channel. The IKCa current, recorded under perforated-patch configuration, had a transient time course when activated by ionomycin (0.5 µM; peak current density 26.2 ± 3.7 pA/pF; n = 10), but ionomycin (0.5 µM) + 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (100 µM) evoked a stable outward current (28.4 ± 8.2 pA/pF; n = 11). The current was fully inhibited by charybdotoxin (200 nM), clotrimazole (2 µM), and 5-nitro-2-(3-phenylpropylamino)benzoic acid (300 µM), but not by tetraethylammonium (1 mM) or D-tubocurarine (300 µM). Congruent with the IKCa channel, elevation of intracellular Ca2+ in inside-out patches resulted in the activation of a voltage-insensitive K+ channel with weak inward rectification, a unitary conductance of 38 ± 6 pS (at negative voltages), and an IC50 for Ca2+ of 530 nM. The IKCa channel was activated metabotropically by external application of ATP (100 µM), an intracellular Ca2+ mobilizer. Under current-clamp conditions, ATP application resulted in a membrane hyperpolarization of 35 mV. The IKCa current downregulated during myogenesis, ceasing to be detectable 4 days after the myoblasts were placed in differentiating medium. Downregulation was prevented by the myogenic suppressor agent basic FGF (bFGF). We also found that block of the IKCa channel by charybdotoxin did not inhibit bFGF-sustained myoblast proliferation. These observations show that in C2C12 myoblasts the IKCa channel expression correlates inversely with differentiation, yet it does not appear to have a role in myoblast proliferation. ATP; cell proliferation  相似文献   

14.
The presence of Ca2+ in a hypo-osmotic reaction medium reducessuccinate: cytochrome c reductase activity and the release ofouter membrane-specific antimycin A-insensitive NADH: cytochromec reductase. The action of Ca2+ is non-competitive and approximately30 mmol m–3 Ca2+ affords half-maximal (I50) protection.The effect of a range of inorganic and organic multivalent cationson succinate: cytochrome c reductase activity suggests thatthe action of Ca2+ is non-specific and probably involves Ca2+binding to outer membrane component(s) which may be proteins. Valinomycin- or gramicidin-induced passive swelling of isolatedcorn mitochondria in isotonic K.C1 is also non-competitivelyinhibited by up to 50% with Ca2+. Half-maximal inhibition (I50)occurs at 0-35 mol m–3 Ca2+ for valinomycin and 1-0 molm–3 Ca2+ for gramicidin. Other divalent cations, Mg2+,Sr2+ and Ba2+, seem to inhibit similarly while the trivalentcations La3+ and Ho3+ show a maximum inhibition of up to 85%,with an I50 of 0.1 mol m–3 for valinomycin. It is suggestedthat non-specific cation binding may reduce membrane fluiditythereby slowing down the rate of ionophore penetration throughthe inner membrane. Key words: Calcium, Mitochondria, Membranes  相似文献   

15.
The role of Cl in the reactivation of O2 evolution inphotosystem II (PS II) particles derived from spinach chloroplastswas studied in the presence of various salts. Multivalent ion(especially anion) salts were found to strongly suppress thereactivation of O2 evolution by Cl in the Cl-depletedPS II particles in a competitive manner. The effectiveness ofanions in the suppression of Cl-supported O2 evolutionwas in the order of trivalent>divalent>monovalent ones.Multivalent anions similarly suppressed O2 evolution in theuntreated PS II particles under low and moderate Cl concentrations.pH dependence of the Cl-affinity (Km) value for Cl)was also studied. Within the pH range 5.5 to 8 the Km valuebecame higher as the pH of the medium increased. These resultssuggest that the membrane surface in the vicinity of the Claction site is net positively charged and attracts Clelectrostatically, and that the site is almost freely accessibleto various anions. The origin and role of the local net positivedomain and the role of peripheral proteins are discussed. (Received May 27, 1985; Accepted October 8, 1985)  相似文献   

16.
The repeated elevation of cytosolic Ca2+ concentration ([Ca2+]i) above resting levels during contractile activity has been associated with long-lasting muscle fatigue. The mechanism underlying this fatigue appears to involve elevated [Ca2+]i levels that induce disruption of the excitation-contraction (E-C) coupling process at the triad junction. Unclear, however, are which aspects of the activity-related [Ca2+]i changes are responsible for the deleterious effects, in particular whether they depend primarily on the peak [Ca2+]i reached locally at particular sites or on the temporal summation of the increased [Ca2+] in the cytoplasm as a whole. In this study, we used mechanically skinned fibers from rat extensor digitorum longus muscle, in which the normal E-C coupling process remains intact. The [Ca2+]i was raised either by applying a set elevated [Ca2+] throughout the fiber or by using action potential stimulation to induce the release of sarcoplasmic reticulum Ca2+ by the normal E-C coupling system with or without augmentation by caffeine or buffering with BAPTA. Herein we show that elevating [Ca2+]i in the physiological range of 2–20 µM irreversibly disrupts E-C coupling in a concentration-dependent manner but requires exposure for a relatively long time (1–3 min) to cause substantial uncoupling. The effectiveness of Ca2+ released via the endogenous system in disrupting E-C coupling indicates that the relatively high [Ca2+]i attained close to the release site at the triad junction is a more important factor than the increase in bulk [Ca2+]i. Our results suggest that during prolonged vigorous activity, the many repeated episodes of relatively high triadic [Ca2+] can disrupt E-C coupling and lead to long-lasting fatigue. skeletal muscle; low-frequency fatigue; ryanodine receptor; skinned fiber  相似文献   

17.
This study examines theCa2+ influx-dependent regulationof the Ca2+-activatedK+ channel(KCa) in human submandibulargland (HSG) cells. Carbachol (CCh) induced sustained increases in theKCa current and cytosolic Ca2+ concentration([Ca2+]i),which were prevented by loading cells with1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Removal of extracellularCa2+ and addition ofLa3+ orGd3+, but notZn2+, inhibited the increases inKCa current and[Ca2+]i.Ca2+ influx during refill (i.e.,addition of Ca2+ to cells treatedwith CCh and then atropine inCa2+-free medium) failed to evokeincreases in the KCa current but achieved internal Ca2+ storerefill. When refill was prevented by thapsigargin,Ca2+ readdition induced rapidactivation of KCa. These dataprovide further evidence that intracellularCa2+ accumulation provides tightbuffering of[Ca2+]iat the site of Ca2+ influx (H. Mogami, K. Nakano, A. V. Tepikin, and O. H. Petersen. Cell 88: 49-55, 1997). We suggestthat the Ca2+ influx-dependentregulation of the sustained KCacurrent in CCh-stimulated HSG cells is mediated by the uptake ofCa2+ into the internalCa2+ store and release via theinositol 1,4,5-trisphosphate-sensitive channel.

  相似文献   

18.
ATP-sensitive potassium (KATP) channels couple cellular metabolic status to changes in membrane electrical properties. Caffeine (1,2,7-trimethylxanthine) has been shown to inhibit several ion channels; however, how caffeine regulates KATP channels was not well understood. By performing single-channel recordings in the cell-attached configuration, we found that bath application of caffeine significantly enhanced the currents of Kir6.2/SUR1 channels, a neuronal/pancreatic KATP channel isoform, expressed in transfected human embryonic kidney (HEK)293 cells in a concentration-dependent manner. Application of nonselective and selective phosphodiesterase (PDE) inhibitors led to significant enhancement of Kir6.2/SUR1 channel currents. Moreover, the stimulatory action of caffeine was significantly attenuated by KT5823, a specific PKG inhibitor, and, to a weaker extent, by BAPTA/AM, a membrane-permeable Ca2+ chelator, but not by H-89, a selective PKA inhibitor. Furthermore, the stimulatory effect was completely abrogated when KT5823 and BAPTA/AM were co-applied with caffeine. In contrast, the activity of Kir6.2/SUR1 channels was decreased rather than increased by caffeine in cell-free inside-out patches, while tetrameric Kir6.2LRKR368/369/370/371AAAA channels were suppressed regardless of patch configurations. Caffeine also enhanced the single-channel currents of recombinant Kir6.2/SUR2B channels, a nonvascular smooth muscle KATP channel isoform, although the increase was smaller. Moreover, bidirectional effects of caffeine were reproduced on the KATP channel present in the Cambridge rat insulinoma G1 (CRI-G1) cell line. Taken together, our data suggest that caffeine exerts dual regulation on the function of KATP channels: an inhibitory regulation that acts directly on Kir6.2 or some closely associated regulatory protein(s), and a sulfonylurea receptor (SUR)-dependent stimulatory regulation that requires cGMP-PKG and intracellular Ca2+-dependent signaling. phosphodiesterase; protein kinase; calcium; single channel; patch clamp  相似文献   

19.
LocalCa2+ transients("Ca2+ sparks") caused bythe opening of one or the coordinated opening of a number of tightlyclustered ryanodine-sensitiveCa2+-release (RyR) channels in thesarcoplasmic reticulum (SR) activate nearbyCa2+-dependentK+(KCa) channels to cause anoutward current [referred to as a "spontaneous transientoutward current" (STOC)]. TheseKCa currents cause membranepotential hyperpolarization of arterial myocytes, which would lead tovasodilation through decreasingCa2+ entry throughvoltage-dependent Ca2+ channels.Therefore, modulation of Ca2+spark frequency should be a means to regulation ofKCa channel currents and hencemembrane potential. We examined the frequency modulation ofCa2+ sparks and STOCs byactivation of protein kinase C (PKC). The PKC activators, phorbol12-myristate 13-acetate (PMA; 10 nM) and 1,2-dioctanoyl-sn-glycerol (1 µM),decreased Ca2+ spark frequency by72% and 60%, respectively, and PMA reduced STOC frequency by 83%.PMA also decreased STOC amplitude by 22%, which could be explained byan observed reduction (29%) inKCa channel open probability inthe absence of Ca2+ sparks. Thereduction in STOC frequency occurred in the presence of an inorganicblocker (Cd2+) ofvoltage-dependent Ca2+ channels.The reduction in Ca2+ sparkfrequency did not result from SRCa2+ depletion, sincecaffeine-induced Ca2+ transientsdid not decrease in the presence of PMA. These results suggest thatactivators of PKC can modulate the frequency ofCa2+ sparks, through an effect onthe RyR channel, which would decrease STOC frequency (i.e.,KCa channel activity).

  相似文献   

20.
Mitochondria show extensive movement along neuronal processes, but the mechanisms and function of this movement are not clearly understood. We have used high-resolution confocal microscopy to simultaneously monitor movement of mitochondria and changes in intracellular [Ca2+] ([Ca2+]i) in rat cortical neurons. A significant percentage (27%) of the total mitochondria in cortical neuronal processes showed movement over distances of >2 µM. The average velocity was 0.52 µm/s. The velocity, direction, and pattern of mitochondrial movement were not affected by transient increases in [Ca2+]i associated with spontaneous firing of action potentials. Stimulation of Ca2+ transients with forskolin (10 µM) or bicuculline (10 µM), or sustained elevations of [Ca2+]i evoked by glutamate (10 µM) also had no effect on mitochondrial transit. Neither removal of extracellular Ca2+, depletion of intracellular Ca2+ stores with thapsigargin, or inhibition of synaptic activity with TTX (1 µM) or a cocktail of CNQX (10 µM) and MK801 (10 µM) affected mitochondrial movement. These results indicate that movement of mitochondria along processes is a fundamental activity in neurons that occurs independently of physiological changes in [Ca2+]i associated with action potential firing, synaptic activity, or release of Ca2+ from intracellular stores. calcium transient; dendrites  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号