首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
EnvZ and OmpR are the sensor and response regulator proteins of a two-component system that controls the porin regulon of Escherichia coli in response to osmolarity. Three enzymatic activities are associated with EnvZ: autokinase, OmpR kinase, and OmpR-phosphate (OmpR-P) phosphatase. Conserved histidine-243 is critical for both autokinase and OmpR kinase activities. To investigate its involvement in OmpR-P phosphatase activity, histidine-243 was mutated to several other amino acids and the phosphatase activity of mutated EnvZ was measured both in vivo and in vitro. In agreement with previous reports, we found that certain substitutions abolished the phosphatase activity of EnvZ. However, a significant level of phosphatase activity remained when histidine-243 was replaced with certain amino acids, such as tyrosine. In addition, the phosphatase activity of a previously identified kinase- phosphatase+ mutant was not abolished by the replacement of histidine-243 with asparagine. These data indicated that although conserved histidine-243 is important for the phosphatase activity, a histidine-243-P intermediate is not required. Our data are consistent with a previous model that proposes a common transition state with histidine-243 (EnvZ) in close contact with aspartate-55 (OmpR) for both OmpR phosphorylation and dephosphorylation. Phosphotransfer occurs from histidine-243-P to aspartate-55 during phosphorylation, but water replaces the phosphorylated histidine side chain leading to hydrolysis during dephosphorylation.  相似文献   

2.
Superimposition of deacetoxycephalosporin C synthase (DAOCS) and isopenicillin N synthase (IPNS) structures revealed that R74, R160, R266 and N304 are strategically located in the catalytic cavity of Streptomyces clavuligerus DAOCS (scDAOCS) and are crucial for orchestrating different substrates. Substitutions at these sites to a hydrophobic leucine residue were expected to stabilize the hydrophobic substrate bound state. Substantial improvements in the biotransformation of penicillin G, ampicillin and amoxicillin to their respective cephalosporin moieties were observed using the N304L mutant scDAOCS. Thus, our results have demonstrated the enhancement of scDAOCS activity via critical computational analysis and site-directed mutagenesis of endogenous ligands.  相似文献   

3.
The influence of aspartate-168 on the proton-donating and -accepting properties of histidine-195 (the active site acid/base catalyst in lactate dehydrogenase) was evaluated by use of site-directed mutagenesis to change the residue to asparagine and to alanine. Despite the fact that asparagine could form a hydrogen bond to histidine while alanine could not, the two mutant enzymes have closely similar catalytic and ligand-binding properties. Both bind pyruvate and its analogue (oxamate) 200 times more weakly than the wild-type enzyme but show little disruption in their binding of lactate and its unreactive analogue, trifluorolactate. Neither mutation alters the binding of coenzymes (NADH and NAD+) or the pK of the histidine-195 residue in the enzyme-coenzyme complex. We conclude that a strong histidine-aspartate interaction is only formed when both coenzyme and substrate are bound. Deletion of the negative charge of aspartate shifts the equilibrium between enzyme-NADH-pyruvate (protonated histidine) and enzyme-NAD+-lactate (unprotonated histidine) toward the latter. In contrast to the wild-type enzyme, the rate of catalysis in both directions in the mutants is limited by a slow hydride ion transfer step.  相似文献   

4.
本文对青霉素扩环酶(Penicillin expandase,也称Deacetoxycephalosporin C synthase,DAOCS)在高浓度青霉素G下的底物抑制现象进行初步评价与表征,筛选适合工业应用条件的高活力突变体。我们通过HPLC对已报道的几个DAOCS高活力突变体在青霉素G浓度5.6至500 mmol/L间的比活力进行定量测定,并与不同催化反应动力学模型的理论推测变化趋势比较,发现DAOCS野生型酶及高活力突变体H4、H5、H6与H7在高浓度青霉素G条件下均表现出明显的底物抑制现象,但是变化趋势不同。野生型酶与突变体H4的比活力先上升后下降,与竞争性抑制模型预测不符。突变体H5、H6与H7的比活力变化呈现更复杂的变化趋势。在所有测试的突变体中,H6的活性显著高于其他突变体酶。青霉素G对野生型DAOCS的底物抑制现象符合非竞争性抑制模型的预测。而部分突变体表现出复杂的底物抑制行为,表明其具有更复杂的作用机制。在高底物浓度下筛选具有较强催化活性的青霉素扩环酶突变体对于推动其在工业生产中的应用具有重要指导作用。  相似文献   

5.
J L Markley  I B Iba?ez 《Biochemistry》1978,17(22):4627-4640
Reversible unfolding of bovine chymotrypsinogen A in 2H2O either by heating at low pH or by exposure to 6 M guanidinium chloride results in the exchange of virtually all the nitrogen-bound hydrogens that give rise to low-field 1H NMR peaks, without significant exchange of the histidyl ring Cepsilon1 hydrogens. These preexchange procedures have enabled the resolution of two peaks, using 250-MHz correlation 1H NMR spectroscopy, that are attributed to the two histidyl residues of chymotrypsinogen A. Assignments of the Cepsilon1 hydrogen peaks to histidine-40 and -57 were based on comparison of the NMR titration curves of the native zymogen with those of the diisopropylphosphoryl derivative. Two histidyl Cepsilon1 H peaks were also resolved with solutions of preexchanged chymotrypsin Aalpha. The histidyl peaks of chymotrypsin Aalpha were assigned by comparison of NMR titration curves of the free enzyme with those of its complex with bovine pancreatic trypsin inhibitor (Kunitz). The NMR titration curves of histidine-57 in the zymogen and enzyme and histidine-40 in the zymogen exhibit two inflections; the additional inflections were assigned to interactions with neighboring carboxyl groups: aspartate-102 in the case of histidine-57 and aspartate-194 in the case of histidine-40 of the zymogen. In bovine chymotrypsinogen A in 2H2O at 31 degrees C, histidine-57 has a pK' of 7.3 and aspartate-102 a pK' of 1.4, and the histidine-40-aspartate-194 system exhibits inflections at pH 4.6 and 2.3. In bovine chymotrypsin Aalpha under the same conditions, the histidine-57-aspartate-102 system has pK' values of 6.1 and 2.8, and histidine-40 has a pK' of 7.2. The results suggest that the pK' of histidine-57 is higher than the pK' of aspartate-102 in both zymogen and enzyme. A significant difference exists in the structure and properties of the catalytic center between the zymogen and activated enzyme. In addition to the difference in pK' values, the chemical shift of histidine-57, which is highly abnormal in the zymogen (deshielded by 0.6 ppm), becomes normalized upon activation. These changes may explain part of the increase in the catalytic activity upon activation. The 1H NMR chemical shift of the Cepsilon1 H of histidine-57 in the chymotrypsin Aalpha-pancreatic trypsin inhibitor (Kunitz) complex is constant between pH 3 and 9 at a value similar to that of histidine-57 in the porcine trypsin-pancreatic trypsin inhibitor complex [Markley, J.L., and Porubcan, M. A. (1976), J. Mol. Biol. 102, 487--509], suggesting that the mechanisms of interaction are similar in the two complexes.  相似文献   

6.
3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) lyase catalyzes the divalent cation-dependent cleavage of HMG-CoA to produce acetyl-CoA and acetoacetate. Arginine-41 is an invariant residue in HMG-CoA lyases. Mutation of this residue (R41Q) correlates with human HMG-CoA lyase deficiency. To evaluate the functional importance of arginine-41, R41Q and R41M recombinant mutant human HMG-CoA lyase proteins have been constructed, expressed, and purified. These mutant proteins retain structural integrity based on Mn(2+) binding and affinity labeling stoichiometry. R41Q exhibits a 10(5)-fold decrease in V(max); R41M activity is >or=10-fold lower than the activity of R41Q. Acetyldithio-CoA, an analogue of the reaction product, acetyl-CoA, has been employed to test the function of arginine-41, as well as other residues (e.g., aspartate-42 and histidine-233) implicated in catalysis. Acetyldithio-CoA supports enzyme-catalyzed exchange of the methyl protons of the acetyl group with solvent; exchange is dependent on the presence of Mg(2+) and acetoacetate. In comparison with wild-type human enzyme, D42A and H233A mutant enzymes exhibit 4-fold and 10-fold decreases, respectively, in the proton exchange rate. In contrast, R41Q and R41M mutants do not catalyze any substantial enzyme-dependent proton exchange. These results suggest a role for arginine-41 in deprotonation or enolization of acetyldithio-CoA and implicate this residue in the HMG-CoA cleavage reaction chemistry that leads to acetyl-CoA product formation. Assignment of arginine-41 as an active site residue is also supported by a homology model for HMG-CoA lyase based on the structure of 4-hydroxy-2-ketovalerate aldolase. This model suggests the proximity of arginine-41 to other amino acids (aspartate-42, glutamate-72, histidine-235) implicated as active site residues based on their function as ligands to the activator cation.  相似文献   

7.
Biosynthesis of cephalosporin antibiotics involves an expansion of the five-membered thiazolidine ring of penicillin N to the six-membered dihydrothiazine ring of deacetoxycephalosporin C by a deacetoxycephalosporin C synthetase (DAOCS) enzyme activity. Hydroxylation of deacetoxycephalosporin C to form deacetylcephalosporin C by a deacetylcephalosporin C synthetase (DACS) activity is the next step in biosynthesis of cephalosporins. In Cephalosporium acremonium, both of these catalytic activities are exhibited by a bifunctional enzyme, DAOCS-DACS, encoded by a single gene, cefEF. In Streptomyces clavuligerus, separable enzymes, DAOCS (expandase) and DACS (hydroxylase), catalyze these respective reactions. We have cloned, sequenced, and expressed in E. coli an S. clavuligerus gene, designated cefE, which encodes DAOCS but not DACS. The deduced amino acid sequence of DAOCS from S. clavuligerus (calculated Mr of 34,519) shows marked similarity (approximately 57%) to the deduced sequence of DAOCS-DACS from C. acremonium; however, the latter sequence is longer by 21 amino acid residues.  相似文献   

8.
To investigate the functional role of an invariant histidine residue in Trigonopsis variabilis D-amino acid oxidase (DAAO), a set of mutant enzymes with replacement of the histidine residue at position 324 was constructed and their enzymatic properties were examined. Wild-type and mutant enzymes have been purified to homogeneity using the His-bound column and the molecular masses were determined to be 39.2 kDa. Western blot analysis revealed that the in vivo synthesized mutant enzymes are immuno-identical with that of the wild-type DAAO. The His324Asn and His324Gln mutants displayed comparable enzymatic activity to that of the wild-type enzyme, while the other mutant DAAOs showed markedly decreased or no detectable activity. The mutants, His324/Asn/Gln/Ala/Tyr/Glu, exhibited 38-181% increase in Km and a 2-10-fold reduction in kcat/Km. Based on the crystal structure of a homologous protein, pig kidney DAAO, it is suggested that His324 might play a structural role for proper catalytic function of T. variabilis DAAO.  相似文献   

9.
Deacetoxycephalosporin C synthase (DAOCS) from Streptomyces clavuligerus catalyses the oxidative ring expansion of the penicillin nucleus into the nucleus of cephalosporins. The reaction requires dioxygen and 2-oxoglutarate as co-substrates to create a reactive iron-oxygen intermediate from a ferrous iron in the active site. The active enzyme is monomeric in solution. The structure of DAOCS was determined earlier from merohedrally twinned crystals where the last four C-terminal residues (308-311) of one molecule penetrate the active site of a neighbouring molecule, creating a cyclic trimeric structure in the crystal. Shortening the polypeptide chain from the C terminus by more than four residues diminishes activity. Here, we describe a new crystal form of DAOCS in which trimer formation is broken and the C-terminal arm is free. These crystals show no signs of twinning, and were obtained from DAOCS labelled with an N-terminal His-tag. The modified DAOCS is catalytically active. The free C-terminal arm protrudes into the solvent, and the C-terminal domain (residues 268-299) is rotated by about 16 degrees towards the active site. The last 12 residues (300-311) are disordered. Structures for various enzyme-substrate and enzyme-product complexes in the new crystal form confirm overlapping binding sites for penicillin and 2-oxoglutarate. The results support the notion that 2-oxoglutarate and dioxygen need to react first to produce an oxidizing iron species, followed by reaction with the penicillin substrate. The position of the penicillin nucleus is topologically similar in the two crystal forms, but the penicillin side-chain in the new non-twinned crystals overlaps with the position of residues 304-306 of the C-terminal arm in the twinned crystals. An analysis of the interactions between the C-terminal region and residues in the active site indicates that DAOCS could also accept polypeptide chains as ligands, and these could bind near the iron.  相似文献   

10.
Before the structure of cAMP-dependent protein kinase had been solved, sequence alignments had already suggested that several highly conserved peptide motifs described as kinase subdomains I through XI might play some functional role in catalysis. Crystal structures of several members of the protein kinase superfamily have suggested that the nearly invariant aspartate residue within subdomain IX contributes to the conformational stability of the catalytic loop by forming hydrogen bonds with backbone amides within subdomain VI. However, substitution of this aspartate with alanine or threonine in some protein kinases have indicated that these interactions are not essential for activity. In contrast, we show here that conversion of this aspartate to arginine abolished the catalytic activity of the Fer protein-tyrosine kinase when expressed either in mammalian cells or in bacteria. Structural modeling predicted that the catalytic loop of the FerD743R mutant was disrupted by van der Waal's repulsion between the side chains of the substituted arginine residue in subdomain IX and histidine-683 in subdomain VI. The FerD743R mutant model predicted a shift in the peptide backbone of the catalytic loop, and an outward rotation of histidine-683 and arginine-684 side chains. However, the position and orientation of the presumptive catalytic base, aspartate-685, was not substantially changed. The proposed model explains how substitutions of some, but not all residues could be tolerated at this nearly invariant aspartate in kinase subdomain IX.  相似文献   

11.
S-adenosylhomocysteine hydrolase (AdoHcyase) catalyzes the hydrolysis of S-adenosylhomocysteine (AdoHcy) to form adenosine and homocysteine. The crystal structure of the K185N mutated enzyme, which has weak catalytic activity (0.1%), has been determined at 2.8 A resolution and supports the previously predicted mechanism [Takata, Y., Yamada, T., Huang, Y., Komoto, J., Gomi, T., Ogawa, H., Fujioka, M., & Takusagawa, F. (2002). Catalytic mechanism of S-adenosylhomocysteine hydrolase. Site-directed mutagenesis of Asp-130, Lys-185, Asp-189, and Asn-190. J. Biol. Chem. 277, 22670-22676]. The mutated enzyme has an intermediate structure between the open and closed conformation, observed in the substrate-free enzyme and in the inhibitor complexes, respectively. H54, H300, and H352 were mutated to asparagine, respectively, to identify the roles of the histidine residues in catalysis. The kinetic data of H54N, H300N, and H354N mutated enzymes suggest that H54 is the amino acid residue that acts as a general acid/base to cleave the C5'-S(D) bond of AdoHcy. The E155Q mutated enzyme retained a large portion of the catalytic activity (31%), while the E155D mutated enzyme lost most of it (0.3%). The NADH accumulation measurements of the mutated enzymes indicated that the C3'-oxidation and the C4'-proton abstraction are a concerted event and the C5'-S(D) bond cleavage is an independent event. The C4'-proton exchange measurements indicate that the enzyme has an open conformation when AdoHcy is converted to 3'-keto-4', 5'-dehydro-Ado in the active site. With the results of this study and those of the previous studies, a detailed catalytic mechanism of AdoHcyase is described. K185 facilitates the C3'-oxidation, D130 abstracts the C4'-proton, D189, and E155 act as a communicator between the concerted C3'-oxidation and C4'-proton abstraction, and H54 plays as a general acid to cleave the C5'-S(D) bond of AdoHcy.  相似文献   

12.
Kinetic analysis of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase has implicated a glutamate or aspartate residue in (i) formation of mevaldate thiohemiacetal by proton transfer to the carbonyl oxygen of mevaldate and (ii) enhanced ionization of CoASH by the resulting enzyme carboxylate anion, facilitating attack by CoAS- on the carbonyl carbon of mevaldate (Veloso, D., Cleland, W. W., and Porter, J. W. (1981) Biochemistry 81, 887-894). Although neither the identity of this acidic residue nor its location is known, the catalytic domains of 11 sequenced HMG-CoA reductases contain only 3 conserved acidic residues. For HMG-CoA reductase of Pseudomonas mevalonii, these residues are Glu52, Glu83, and Asp183. To identify the acidic residue that functions in catalysis, we generated mutants having alterations in these residues. The mutant proteins were expressed, purified, and characterized. Mutational alteration of residues Glu52 or Asp183 of P. mevalonii HMG-CoA reductase yielded enzymes with significant, but in some cases reduced, activity (Vmax = 100% Asp183----Ala, 65% Asp183----Asn, and 15% Glu52----Gln of wild-type activity, respectively). Although the activity of mutant enzymes Glu52----Gln and Asp183----Ala was undetectable under standard assay conditions, their Km values for substrates were 4-300-fold higher than those for wild-type enzyme. Km values for wild-type enzyme and for mutant enzymes Glu52----Gln and Asp183----Ala were, respectively: 0.41, 73, and 120 mM [R,S)-mevalonate); 0.080, 4.4, and 2.0 mM (coenzyme A); and 0.26, 4.4, and 1.0 mM (NAD+). By these criteria, neither Glu52 nor Asp183 is the acidic catalytic residue although each may function in substrate recognition. During chromatography on coenzyme A agarose or HMG-CoA agarose, mutant enzymes Asp183----Asn and Glu83----Gln behaved like wild-type enzyme. By contrast, and in support of a role for these residues in substrate recognition, mutant enzymes Glu52----Gln and Asp183----Ala exhibited impaired ability to bind to either support. Despite displaying Km values for substrates and chromatographic behavior on substrate affinity supports comparable to wild-type enzyme, only mutant enzyme Glu83----Gln was essentially inactive under all conditions studied (Vmax = 0.2% that of wild-type enzyme). Glutamate residue 83 of P. mevalonii HMG-CoA reductase, and consequently the glutamate of the consensus Pro-Met-Ala-Thr-Thr-Glu-Gly-Cys-Leu-Val-Ala motif of the catalytic domains of eukaryotic HMG-CoA reductases, is judged to be the acidic residue functional in catalysis.  相似文献   

13.
Identification of mammalian aspartate-4-decarboxylase   总被引:1,自引:0,他引:1  
Several animal tissues were examined for aspartate-4-decarboxylase (EC 4.1.1.12) activity. Highest activity was seen in murine livers, in rodent livers, and in rodent kidneys. The rat liver enzyme was membrane associated and could be solubilized and partially purified with the aid of detergents. The purification studies, and studies on the stoichiometry and kinetics of the reaction, showed that aspartate is directly converted to alanine. Such a metabolic reaction had not been reported before in animals. The rat liver enzyme differed significantly from the microbial aspartate-4-decarboxylases. Among other things, the rat liver beta-decarboxylase could be purified away from a cysteine sulfinate desulfinase activity. Also, unlike the bacterial enzymes, the mammalian beta-decarboxylase could not be inactivated by preincubation with aspartate or cysteine sulfinate. These later observations strongly suggest that the mammalian aspartate-4-decarboxylase does not have an inherent transaminase activity. Like many decarboxylases, rat liver aspartate-4-decarboxylase could be inhibited by reagents which react with carbonyl groups; however, the enzyme showed no dependence on pyridoxal 5'-phosphate.  相似文献   

14.
Huang YC  Colman RF 《Biochemistry》2002,41(17):5637-5643
Sequence alignment predicts that His(309) of pig heart NADP-dependent isocitrate dehydrogenase is equivalent to His(339) of the Escherichia coli enzyme, which interacts with the coenzyme in the crystal structure [Hurley et al. (1991) Biochemistry 30, 8671-8688], and porcine His(315) and His(319) are close to that site. The mutant porcine enzymes H309Q, H309F, H315Q, and H319Q were prepared by site-directed mutagenesis, expressed in E. coli, and purified. The H319Q mutant has K(m) values for NADP, isocitrate, and Mn(2+) similar to those of wild-type enzyme, and V(max) = 20.1, as compared to 37.8 micromol of NADPH min(-1) (mg of protein)(-1) for wild type. Thus, His(319) is not involved in coenzyme binding and has a minimal effect on catalysis. In contrast, H315Q exhibits a K(m) for NADP 40 times that of wild type and V(max) = 16.2 units/mg of protein, with K(m) values for isocitrate and Mn(2+) similar to those of wild type. These results implicate His(315) in the region of the NADP site. Replacement of His(309) by Q or F yields enzyme with no detectable activity. The His(309) mutants bind NADPH poorly, under conditions in which wild type and H319Q bind 1.0 mol of NADPH/mol of subunit, indicating that His(309) is important for the binding of coenzyme. The His(309) mutants bind isocitrate stoichiometrically, as do wild-type and the other mutant enzymes. However, as distinguished from the wild-type enzyme, the His(309) mutants are not oxidatively cleaved by metal isocitrate, implying that the metal ion is not bound normally. Since circular dichroism spectra are similar for wild type, H315Q, and H319Q, these amino acid substitutions do not cause major conformational changes. In contrast, replacement of His(309) results in detectable change in the enzyme's CD spectrum and therefore in its secondary structure. We propose that His(309) plays a significant role in the binding of coenzyme, contributes to the proper coordination of divalent metal ion in the presence of isocitrate, and maintains the normal conformation of the enzyme.  相似文献   

15.
Electrophilic catalysis by histidine-95 in triosephosphate isomerase has been probed by using Fourier transform infrared spectroscopy and X-ray crystallography. The carbonyl stretching frequency of dihydroxyacetone phosphate bound to the wild-type enzyme is known to be 19 cm-1 lower (at 1713 cm-1) than that of dihydroxyacetone phosphate free in solution (at 1732 cm-1), and this decrease in stretching frequency has been ascribed to an enzymic electrophile that polarizes the substrate carbonyl group toward the transition state for the enolization. Infrared spectra of substrate bound to two site-directed mutants of yeast triosephosphate isomerase in which histidine-95 has been changed to glutamine or to asparagine show unperturbed carbonyl stretching frequencies between 1732 and 1742 cm-1. The lack of carbonyl polarization when histidine-95 is removed suggests that histidine-95 is indeed the catalytic electrophile, at least for dihydroxyacetone phosphate. Kinetic studies of the glutamine mutant (H95Q) have shown that the enzyme follows a subtly different mechanism of proton transfers involving only a single acid-base catalytic group. These findings suggest an additional role for histidine-95 as a general acid-base catalyst in the wild-type enzyme. The X-ray crystal structure of the H95Q mutant with an intermediate analogue, phosphoglycolohydroxamate, bound at the active site has been solved to 2.8-A resolution, and this structure clearly implicates glutamate-165, the catalytic base in the wild-type isomerase, as the sole acid-base catalyst for the mutant enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
1. The induction of the enzymes for the degradation of l-histidine, imidazolylpropionate and imidazolyl-l-lactate in Pseudomonas testosteroni was investigated. 2. The activities of histidine ammonia-lyase, histidine-2-oxoglutarate aminotransferase and urocanase are consistent with these enzymes being subject to co-ordinate control under most growth conditions. However, a further regulatory mechanism may be superimposed for histidase alone under conditions where degradation of histidine must take place for growth to occur. 3. Experiments with a urocanase(-) mutant show that urocanate is an inducer for the enzymes given above and also for N-formiminoglutamate hydrolyase and N-formylglutamate hydrolase. 4. N-Formiminoglutamate hydrolase and N-formylglutamate hydrolase are also induced by their substrates, and it is suggested that these two enzymes may be different gene products from those expressed in the presence of urocanate. 5. Induction of the enzyme system for the oxidation of imidazolylpropionate is dependent on exposure of cells to this compound.  相似文献   

17.
The major toxic and fibrinolytic activity of the saliva and hemolymph of the larval form of Lonomia achelous was purified to homogeneity by a combination of metal chelate and affinity chromatography. Two apparent isozymes, Achelase I (213 amino acids, pIcalc = 10.55) and Achelase II (214 amino acids, pIcalc = 8.51), were sequenced by automated Edman degradation, and their C-termini confirmed by Fourier-transform mass spectrometry. The calculated molecular weights (22,473 and 22,727) correspond well to Mr estimates of 24,000 by SDS-PAGE. No carbohydrate was detected during sequencing. The enzymes degraded all three chains of fibrin, alpha greater than beta much greater than gamma, yielding a fragmentation pattern indistinguishable from that produced by trypsin. Chromogenic peptides S-2222 (Factor Xa and trypsin), S-2251 (plasmin), S-2302 (kallikrein) and S-2444 (urokinase) were substrates while S-2288 (broad range of serine proteinases including thrombin) was not hydrolyzed. Among a range of inhibitors Hg+2, aminophenylmercuriacetate, leupeptin, antipain and E-64 but not N-ethylmaleimide or iodoacetate abolished the activity of the purified isozymes against S-2444. Phenylmethylsulfonyl fluoride, soybean trypsin inhibitor and aprotinin were less effective. The presence of the classic catalytic triad (histidine-41, aspartate-86 and serine-189) suggests that Achelases I and II may be serine proteinases, but with a potentially free cysteine-185 which could react with thiol proteinase-directed reagents.  相似文献   

18.
S-Adenosylhomocysteine hydrolase (AdoHcyase) catalyzes the hydrolysis of S-adenosylhomocysteine to form adenosine and homocysteine. On the bases of crystal structures of the wild type enzyme and the D244E mutated enzyme complexed with 3'-keto-adenosine (D244E.Ado*), we have identified the important amino acid residues, Asp-130, Lys-185, Asp-189, and Asn-190, for the catalytic reaction and have proposed a catalytic mechanism (Komoto, J., Huang, Y., Gomi, T., Ogawa, H., Takata, Y., Fujioka, M., and Takusagawa, F. (2000) J. Biol. Chem. 275, 32147-32156). To confirm the proposed catalytic mechanism, we have made the D130N, K185N, D189N, and N190S mutated enzymes and measured the catalytic activities. The catalytic rates (k(cat)) of D130N, K185N, D189N, and N190S mutated enzymes are reduced to 0.7%, 0.5%, 0.1%, and 0.5%, respectively, in comparison with the wild type enzyme, indicating that Asp-130, Lys-185, Asp-189, and Asn-190 are involved in the catalytic reaction. K(m) values of the mutated enzymes are increased significantly, except for the N190S mutation, suggesting that Asp-130, Lys-185, and Asp-189 participate in the substrate binding. To interpret the kinetic data, the oxidation states of the bound NAD molecules of the wild type and mutated enzymes were measured during the catalytic reaction by monitoring the absorbance at 340 nm. The crystal structures of the WT and D244E.Ado*, containing four subunits in the crystallographic asymmetric unit, were re-refined to have the same subunit structures. A detailed catalytic mechanism of AdoHcyase has been revealed based on the oxidation states of the bound NAD and the re-refined crystal structures of WT and D244E.Ado*. Lys-185 and Asp-130 abstract hydrogen atoms from 3'-OH and 4'-CH, respectively. Asp-189 removes a proton from Lys-185 and produces the neutral N zeta (-NH(2)), and Asn-190 facilitates formation of the neutral Lys-185. His-54 and His-300 hold and polarize a water molecule, which nucleophilically attacks the C5'- of 3'-keto-4',5'-dehydroadenosine to produce 3'-keto-Ado.  相似文献   

19.
The cellular form of human prostatic acid phosphatase (PAcP) is a neutral protein-tyrosine phosphatase (PTP) and may play a key role in regulating the growth and androgen responsiveness of prostate cancer cells. The functional role of the enzyme is at least due in part to its dephosphorylation of c-ErbB-2, an in vivo substrate of the enzyme. In this study, we investigated the molecular mechanism of phosphotyrosine dephosphorylation by cellular PAcP. We mutated several amino acid residues including one cysteine residue that was proposed to be involved in the PTP activity of the enzyme by serving as the phosphate acceptor. The cDNA constructs of mutant enzymes were transiently transfected into C-81 LNCaP and PC-3 human prostate cancer cells that lack the endogenous PAcP expression. The phosphotyrosine level of ErbB-2 in these transfected cells was subsequently analyzed. Our results demonstrated that the phosphotyrosine level of ErbB-2 in cells expressing H12A or D258A mutant PAcP is similar to that in control cells without PAcP expression, suggesting that these mutants are incapable of dephosphorylating ErbB-2. In contrast, cells expressing C183A, C281A, or wild-type PAcP had a decreased phosphotyrosine level of ErbB-2, compared with the control cells. Similar results were obtained from in vitro dephosphorylation of immunoprecipitated ErbB-2 by these mutant enzymes. Furthermore, transient expression of C183A, C281A, or the wild-type enzyme, but not H12A or D258A, decreased the growth rate of C-81 LNCaP cells. The data collectively indicate that His-12 and Asp-258, but not Cys-183 or Cys-281, are required for the PTP activity of PAcP.  相似文献   

20.
Cold-adapted enzymes are characterised by an increased catalytic efficiency and reduced temperature stability compared to their mesophilic counterparts. Lately, it has been suggested that an optimisation of the electrostatic surface potential is a strategy for cold adaptation for some enzymes. A visualisation of the electrostatic surface potential of cold-adapted uracil-DNA N-glycosylase (cUNG) from Atlantic cod indicates a more positively charged surface near the active site compared to human UNG (hUNG). In order to investigate the importance of the altered surface potential for the cold-adapted features of cod UNG, six mutants have been characterised and compared to cUNG and hUNG. The cUNG quadruple mutant (V171E, K185V, H250Q and H275Y) and four corresponding single mutants all comprise substitutions of residues present in the human enzyme. A human UNG mutant, E171V, comprises the equivalent residue found in cod UNG. In addition, crystal structures of the single mutants V171E and E171V have been determined. Results from the study show that a more negative electrostatic surface potential reduces the activity and increases the stability of cod UNG, and suggest an optimisation of the surface potential as a strategy for cold-adaptation of this enzyme. Val171 in cod UNG is especially important in this respect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号