首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The present experiments show that the single gene for the lens-specific protein alpha A-crystallin of chickens and mice uses a different subset of cis- and trans-acting regulatory elements for expression in transfected embryonic chicken lens epithelial cells. A chicken alpha A-crystallin-chloramphenicol acetyltransferase (CAT) fusion gene required 162 base pairs whereas the murine alpha A-crystallin-CAT fusion gene required only 111 base pairs of 5'-flanking sequences for efficient tissue-specific expression in the transfected chicken lens cells. Gel retardation and competition experiments were performed using embryonic chicken lens nuclear extract and oligodeoxynucleotides identical to the 5'-flanking region of the chicken (-170/-111) and murine (-111/-88 and -88/-55) alpha A-crystallin gene. The results indicated that these homologous promoters use different nuclear factors for function. Methylation interference analysis identified a dyad of symmetry (CTGGTTCCCACCAG) at position -153 to -140 in the chicken alpha A-crystallin promoter which binds one or more lens nuclear factors. Gel mobility shift experiments using nuclear extracts of brain, reticulocytes, and muscle of embryonic chickens or HeLa cells suggested that the factor(s) binding to the chicken alpha A-crystallin gene promoter sequences are not lens specific. Despite differences in the functional and protein-binding properties of the alpha A-crystallin gene promoter of chickens and mice, expression of the chicken alpha A-crystallin-CAT fusion gene in transgenic mice was lens specific, consistent with a common underlying mechanism for expression of the alpha A-crystallin gene in chickens and mice.  相似文献   

3.
A negative element involved in vimentin gene expression.   总被引:13,自引:8,他引:5       下载免费PDF全文
  相似文献   

4.
One copy of the mouse alpha A-crystallin gene alpha A-CRYBP1 site activated the thymidine kinase (tk) promoter in a mouse lens epithelial cell line but not in primary chicken lens cells; multiple copies further activated the tk promoter and extended expression to fibroblasts, B cells, and chicken lens cultures. The loss of lens specificity by multimerization may place selective constraints on the number of alpha A-CRYBP1 sites in the alpha A-crystallin promoter.  相似文献   

5.
6.
Previous experiments have shown that the minimal promoters required for function of the squid SL20-1 and SL11 crystallin genes in transfected rabbit lens epithelial cells contain an overlapping AP-1/antioxidant responsive element (ARE) upstream of the TATA box. This region resembles the PL-1 and PL-2 elements of the chicken B 1-cry stallin promoter which are essential for promoter function in transfected primary chicken lens epithelial cells. Here we demonstrate by site-directed mutagenesis that the AP-1/ARE sequence is essential for activity of the squid SL20-1 and SL11 promoters in transfected embryonic chicken lens cells and fibroblasts. Promoter activity was higher in transfected lens cells than in fibroblasts. Electrophoretic mobility shift and DNase protection experiments demonstrated the formation of numerous complexes between nuclear proteins of the embryonic chicken lens and the AP-1/ARE sequences of the squid SL20-1 and SL11 crystallin promoters. One of these complexes comigrated and cross-competed with that formed with the PL-1 element of the chicken B1-crystallin promoter. This complex formed with nuclear extracts from the lens, heart, brain, and skeletal muscle of embryonic chickens and was eliminated by competition with a consensus AP-1 sequence. The nonfunctional mutant AP-1/ ARE sequences did not compete for complex formation. These data raise the intriguing possibility that entirely different, nonhomologous crystallin genes of the chicken and squid have convergently evolved a similar cis-acting regulatory element (AP-1/ARE) for high expression in the lens. Correspondence to: S. I. Tomarev  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
In order to identify DNA sequences responsible for the regulation beta-casein gene expression, lines of transgenic mice bearing the entire rat beta-casein gene and two rat beta-casein promoter chloramphenicol acetyltransferase (CAT) fusion genes have been established. All three transgenes have been shown previously to be regulated in a tissue- and stage specific manner. To investigate the relative contribution of promoter and intragenic sequences in the hormonal regulation of the beta-casein gene, mammary explant cultures derived from these lines of mice have now been performed, and the effects of PRL and glucocorticoids on transgene as compared with endogenous beta-casein gene expression have been quantified. After the addition of PRL to cultures performed in the presence of insulin and glucocorticoids, a 25- to 40-fold induction of endogenous mouse beta-casein mRNA was observed after 48 hr. A comparable greater than 25-fold induction of transgene expression after PRL addition was observed in explant cultures derived from a line of mice expressing the entire rat beta-casein gene. In contrast, PRL addition elicited only a 1- to 4.5-fold increase in CAT activity in cultures derived from two lines of mice bearing casein-CAT fusion genes with either 524 or 2300 base pairs of 5'-flanking DNA. In the presence of insulin, glucocorticoid or PRL addition alone increased endogenous beta-casein gene expression 2- to 2.5-fold and 5- to 10-fold, respectively, but only a 1.2- to 2.5-fold induction of CAT activity was observed for each hormone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号