首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus subtilis CN2 isolated from a Vietnamese fish sauce produced a large quantity of an alkaline protease, when grown on a soy peptone medium. The protease was purified to an electrophoretically homogeneous state and crystallized in its pure condensed solution. The molecular weight was determined to be 27,636 Da, and the N-terminal amino acid sequence was AQSVPYGISQIKAPAL. The optimum pH and temperature were pH 10.0 and 50 °C, respectively. The protease was active over a wide pH range of pH 7.0–11.0, and also active over a broad temperature range of 30–60 °C. The enzyme was potently inhibited by 1 mM phenylmethanesulphonyl fluoride, but resistant to 1 mM sodium dodecyl sulphate (SDS). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
A serine protease secreted by the haloalkaliphilic archaeon Natrialba magadii at the end of the exponential growth phase was isolated. This enzyme was purified 83 fold with a total yield of 25% by ethanol precipitation, affinity chromatography, and gel filtration. The native molecular mass of the enzyme determined by gel filtration was 45 kDa. Na. magadii extracellular protease was dependent on high salt concentrations for activity and stability, and it had an optimum temperature of 60°C in the presence of 1.5 M NaCl. The enzyme was stable and had a broad pH profile (6–12) with an optimum pH of 8–10 for azocasein hydrolysis. The protease was strongly inhibited by diisopropyl fluorophosphate (DFP), phenylmethyl sulfonylfluoride (PMSF), and chymostatin, indicating that it is a serine protease. It was sensitive to denaturing agents such as SDS, urea, and guanidine HCl and activated by thiol-containing reducing agents such as dithiotreitol (DTT) and 2-mercaptoethanol. This protease degraded casein and gelatin and showed substrate specificity for synthetic peptides containing Phe, Tyr, and Leu at the carboxyl terminus, showing that it has chymotrypsin-like activity. Na. magadii protease presented no cross-reactivity with polyclonal antibodies raised against the extracellular protease of Natronococcus occultus, suggesting that although these proteases share several biochemical traits, they might be antigenically unrelated. Received: October 1, 1999 / Accepted: February 1, 2000  相似文献   

3.
An alkaline protease secreting Haloalkaliphilic bacterium (Gene bank accession number EU118361) was isolated from the Saurashtra Coast in Western India. The alkaline protease was purified by a single step chromatography on phenyl sepharose 6 FF with 28% yield. The molecular mass was 40 kDa as judged by SDS-PAGE. The enzyme displayed catalysis and stability over pH 8–13, optimally at 9–11. It was stable with 0–4 M NaCl and required 150 mM NaCl for optimum catalysis at 37 °C; however, the salt requirement for optimal catalysis increased with temperature. While crude enzyme was active at 25–80 °C (optimum at 50 °C), the purified enzyme had temperature optimum at 37 °C, which shifted to 80 °C in the presence of 2 M NaCl. The NaCl not only shifted the temperature profile but also enhanced the substrate affinity of the enzyme as reflected by the increase in the catalytic constant (K cat). The enzyme was also calcium dependent and with 2 mM Ca+2, the activity reached to maximum at 50 °C. The crude enzyme was highly thermostable (37–90 °C); however, the purified enzyme lost its stability above 50 °C and its half life was enhanced by 30 and sevenfold at 60 °C with 1 M NaCl and 50 mM Ca+2, respectively. The activity of the enzyme was inhibited by PMSF, indicating its serine type. While the activity was slightly enhanced by Tween-80 (0.2%) and Triton X-100 (0.05%), it marginally decreased with SDS. In addition, the enzyme was highly stable with oxidizing-reducing agents and commercial detergents and was affected by metal ions to varying extent. The study assumes significance due to the enzyme stability under the dual extremities of pH and salt coupled with moderate thermal tolerance. Besides, the facts emerged on the enzyme stability would add to the limited information on this enzyme from Haloalkaliphilic bacteria.  相似文献   

4.
Wang B  Wu W  Liu X 《Mycopathologia》2007,163(3):169-176
Serine protease plays an important role in fungal infection to invertebrate hosts. An extracellular protease (Hnsp) was detected in liquid culture of Hirsutella rhossiliensis OWVT-1 with nematodes (Panagrellus redivivus) as the unique nitrogen source and purified to homogeneity by ammonium sulphate precipitation, anion exchange chromatography and gel filtration. Its molecular mass was about 32 kDa, and the optimal reaction pH value and temperature were pH 7 and 40°C, respectively. The Hnsp activity was stable at pH 6–8 and decreased radically at 50°C for 10 min. Hnsp was highly sensitive to inhibitor of PMSF and well decomposed the substrate N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide, suggesting that it belonged to the chymotrypsin/subtilisin of serine proteases. The N-terminal amino acid sequence of Hnsp was SVTDQQGADCGLARISHRE, which showed high homology with other serine proteases from nematophagous fungi. Ability to kill nematode and degrade its cuticle in vitro indicated that Hnsp could be involved in the infection of nematode.  相似文献   

5.
A novel fibrinolytic enzyme from Fusarium sp. CPCC 480097, named Fu-P, was purified to electrophoretic homogeneity using ammonium sulfate precipitation and ion exchange and gel filtration chromatography. Fu-P, a single protein had a molecular weight of 28 kDa, which was determined by SDS-PAGE and gel filtration chromatography. The isoelectric point of Fu-P determined by isoelectric focusing electrophoresis (IEF) was 8.1, and the optimum temperature and pH value were 45°C and 8.5, respectively. Fu-P cleaved the α-chain of fibrin (ogen) with high efficiency, and the β-chain and γ-γ (γ-)-chain with lower efficiency. Fu-P activity was inhibited by EDTA and PMSF, and the enzyme exhibited a high specificity for the chymotrypsin substrate S-2586. Fu-P was therefore identified as a chymotrypsin-like serine metalloprotease. The first 15 amino acids of the N-terminal sequence of Fu-P were Q-A-S–S-G-T-P-A-T-I-R-V-L-V–V and showed no homology with that of other known fibrinolytic enzymes. This protease may have potential applications in thrombolytic therapy and in thrombosis prevention.  相似文献   

6.
A leaf protease of tobacco whose activity was enhanced during curing was purified about 60 times with ammonium sulfate fractionation, ethanol precipitation, calcium phosphate gel treatment and Sephadex G-200 column chromatography, and some properties of the protease were examined. The purified enzyme showed the optimum pH at 5.5 and the optimum temperature at 60°C. The protease activity was stable between pH 4.5 and 5.5 at 50°G or at pH 5.5 below 40°C for 1 hr, but completely destroyed at 70°C during 1 hr. The protease activity was greatly activated by reducing agents such as cysteine, glutathione or mercaptoethanol and inhibited by p-chloromercuribenzoate, phenyl- mercuric acetate or silver ions. Metal ions except for silver ion and ethylenediamine tetraacetic acid did not affect the protease activity so far examined.  相似文献   

7.
The acpI gene encoding an alkaline protease (AcpI) from a deep-sea bacterium, Alkalimonas collagenimarina AC40T, was shotgun-cloned and sequenced. It had a 1,617-bp open reading frame encoding a protein of 538 amino acids. Based on analysis of the deduced amino acid sequence, AcpI is a subtilisin-like serine protease belonging to subtilase family A. It consists of a prepropeptide, a catalytic domain, and a prepeptidase C-terminal domain like other serine proteases from the genera Pseudomonas, Shewanella, Alteromonas, and Xanthomonas. Heterologous expression of the acpI gene in Escherichia coli cells yielded a 28-kDa recombinant AcpI (rAcpI), suggesting that both the prepropeptide and prepeptidase C-terminal domains were cleaved off to give the mature form. Analysis of N-terminal and C-terminal amino acid sequences of purified rAcpI showed that the mature enzyme would be composed of 273 amino acids. The optimal pH and temperature for the caseinolytic activity of the purified rAcpI were 9.0–9.5 and 45°C in 100 mM glycine–NaOH buffer. Calcium ions slightly enhanced the enzyme activity and stability. The enzyme favorably hydrolyzed gelatin, collagen, and casein. AcpI from A. collagenimarina AC40T was also purified from culture broth, and its molecular mass was around 28 kDa, indicating that the cleavage manner of the enzyme is similar to that in E. coli cells.  相似文献   

8.
A novel fibrinolytic enzyme (AJ) was purified from Staphylococcus sp. strain AJ screened from Korean salt-fermented Anchovy-jeot. Relative molecular weight of AJ was determined as 26 kDa by using SDS-PAGE and fibrin zymography. Based on a 2D gel, AJ was found to consist of three active isoforms (pI 5.5–6.0) with the same N-terminal amino acid sequence. AJ exhibited optimum pH and temperature at 2.5–3.0 and 85°C, respectively. AJ kept 85% of the initial activity after heating at 100°C for 20 min on the zymogram gel. The Michaelis constant (K m) and K cat values of AJ towards α-casein were 0.38 mM and 19.73 s−1, respectively. AJ cleaved the Aα-chain of fibrinogen but did not affect the Bβ- and γ-chains, indicating that it is an α-fibrinogenase. The fibrinolytic activity was inhibited by diisopropyl fluorophosphate, indicating AJ is a serine protease. Interestingly, AJ was very stable at acidic condition, SDS, and heat (100°C), whereas it was easily degraded at neutral and alkaline conditions. In particular, AJ formed an active homo-dimer in the pH range from 7.0 to 8.0. To our knowledge, a similar combination of acid and heat stability has not yet been reported for other fibrinolytic enzymes.  相似文献   

9.
A thermophilic Thermoactinomyces sp. E79 producing a highly thermostable alkaline protease was isolated from soil. The protease, produced extracellularly by Thermoactinomyces sp. E79, was purified by DEAE-Sepharose CL-6B and Butyl-Toyopearl 650M column chromatography. The relative molecular mass was estimated to be 31,000 by SDS–polyacrylamide gel electrophoresis. Enzyme activity was inhibited by phenylmethylsulfonyl fluoride, suggesting the enzyme to be a serine protease. The optimum temperature for the enzyme activity was 85°C, and about 50% of the original activity remained after incubation at 90°C for 10 min in the presence of Ca2 + . The optimum pH for the enzyme activity was 11.0 and the enzyme was fairly stable from pH 5.0 to 12.0. The gene for this thermostable alkaline protease was cloned in Escherichia coli and the expressed intracellular enzyme was activated by heat treatment. Sequence analysis showed an open reading frame of 1,152 base pairs, coding for a poiypeptide of 384 amino acids. The polypeptide was composed of a signal sequence (25 amino acids), a prosequence (81 amino acids), and a mature protein of 278 amino acids. The deduced amino acid sequence of the mature protease had high similarity with thermitase, a serine protease from Thermoactinomyces vulgaris, and the extent of sequence identity was 76%.  相似文献   

10.
An extracellular alkaline serine protease has been purified from a strain of Aspergillus clavatus, to apparent homogeneity, by ammonium sulfate precipitation and chromatography on Sephadex G-75. Its molar mass, estimated by SDS-PAGE, was 35 kDa. Maximum protease activity was observed at pH 9.5 and 40°C. The enzyme was active between pH 6.0 and 11.0 and was found to be unstable up to 50°C. Calcium at 5 mM increased its thermal stability. The protease was strongly inhibited by PMSF and chymostatin as well as by SDS, Tween 80 and carbonate ion. Substrate specificity was observed with N-p-Tos-Gly-Pro-Arg-p-nitroanilide and N-Suc-Ala-Ala-Ala-p-nitroanilide being active substates. Parts of the amino acid sequence were up to 81% homologous with those of several fungal alkaline serine proteases.  相似文献   

11.
An extracellular thermostable alkaline protease isolated from Bacillus laterosporus-AK1 was purified by sephadex G-200 gel filtration and DEAE cellulose ion-exchange chromatography techniques. The purified protease showed a maximum relative activity of 100% on casein substrate and appeared as a single band on SDS-PAGE with the molecular mass of 86.29 kDa. The protease was purified to 11.1-folds with a yield of 34.3%. Gelatin zymogram also revealed a clear hydrolytic zone due to proteolytic activity, which corresponded to the band obtained with SDS-PAGE. The protease enzyme had on optimum pH of 9.0 and exhibited highest activity at 75°C. The enzyme activity was highly susceptible to the specific serine protease inhibitor PMSF, suggesting the presence of serine residues at the active sites. Enzyme activity strongly enhanced by the metal ions Ca2+ and Mg2+ and this enzyme compatible with aril detergent stability retained 75% even 1-h incubation. The purified protease remove bloodstain completely when used with Wheel detergent.  相似文献   

12.
An extracellular alkaline serine protease has been purified from Aspergillus terreus (IJIRA 6.2). The purification procedure involved chromatography on DEAE-Sephadex A25, phosphocellulose, hydroxyapatite, casein-Sepharose, gel filtration on Sephacryl-S-300 and by glycerol density gradient centrifugation. The enzyme was further purified to apparent homogeneity through a combination of electrophoresis in polyacrylamide gel containing 0.1% sodium dodecyl sulfate (SDS) with or without protease substrate (gelatin) and subsequent regeneration of its activity in situ by removal of SDS. The active enzyme was visualized in a zymogram or on the basis of protease activity exhibited on an X-ray film. The protein in the unstained segment of the gel was electroeluted. The eluted protein with protease activity exhibited a molecular mass of 37,000-daltons on electrophoresis in SDS-polyacrylamide gel. A sedimentation coefficient of 3.2S was obtained by glycerol density gradient contrifugation. Maximum activity of protease was observed at pH 8.5 and at 37°C. Purified protease was active between pH 5.5 and 9.5 and was found to be stable up to 60°C. With Na-caseinate, the K m of the purified protease was found to be 0.055 mM. Antipain, phenylmethane sulfonyl fluoride, and chymostatin served as non-competitive inhibitors. Substrate specificity was determined by using a synthetic chromogenic peptide containing N-P-Tosyl-Gly-Pro-Arg-p-nitroanilide. Results showed that the protease cleaved the peptide on the -COOH end of arginine residue. Received: 8 October 1999 / Accepted: 3 November 1999  相似文献   

13.
In this communication, we report the presence of a newly identified serine alkaline protease producing bacteria, Virgibacillus pantothenticus (MTCC 6729) in the fresh chicken meat samples and the factors affecting biosynthesis as well as characterization of protease. The strain produced only 14.3 U ml−1 protease in the standard medium after 72 h of incubation, while in optimized culture conditions the production of protease was increased up to 18.2 U ml−1. The strain was able to produce protease at 40°C at pH 9.0. The addition of dextrose and casein improved protease production. The protease was partially purified and characterized in terms of pH and temperature stability, effect of metal ions and inhibitors. The protease was found to be thermostable alkaline by retaining its 100% and 85% stability at pH 10.0 and at 50°C respectively. The protease was compatible with some of the commercial detergents tested, and was effective in removing protein stains from cotton fabrics. The V. pantothenticus, MTCC 6729 protease appears to be potentially useful as an additive in detergents as a stain remover and other bio-formulations.  相似文献   

14.
Abstract

An extracellular keratinolytic protease produced by Bacillus sp. P45 was purified and characterized. The keratinase had a molecular weight of approximately 26 kDa and was active over wide pH and temperature ranges, with optimal activity at 55°C and pH 8.0. However, this enzyme displayed low thermostability, being completely inactivated after 10 min at 50°C. Keratinase activity increased with Ca2+, Mg2+, Triton X-100, ethanol and DMSO, was stable in the presence of the reducing agent 2-mercaptoethanol, and was inactivated by SDS. PMSF (phenylmethylsulfonyl fluoride) completely inactivated and EDTA strongly inhibited the enzyme, indicating that the keratinase is a serine protease depending on metal ions for optimal activity and/or stability. Accordingly, analysis of tryptic peptides revealed sequence homologies which characterize the keratinase as a subtilisin-like serine protease. The purified enzyme was able to hydrolyze azokeratin and keratin azure. Casein was hydrolyzed at higher rates than keratinous substrates, and 2-mercaptoethanol tended to enhance keratin hydrolysis. With synthetic substrates, the keratinase showed a preference for aromatic and hydrophobic residues at the P1 position of tetrapeptides; the enzyme was not active, or the activity was drastically diminished, towards shorter peptides. Keratinase from Bacillus sp. P45 might potentially be employed in the production of protein hydrolysates at moderate temperatures, being suitable for the bioconversion of protein-rich wastes through an environmentally friendly process requiring low energy inputs.  相似文献   

15.
A protease-producing bacterium was isolated from an alkaline wastewater of the soap industry and identified as Vibrio metschnikovii J1 on the basis of the 16S rRNA gene sequencing and biochemical properties. The strain was found to over-produce proteases when it was grown at 30°C in media containing casein as carbon source (14,000 U ml−1). J1 enzyme, the major protease produced by V. metschnikovii J1, was purified by a three-step procedure, with a 2.1-fold increase in specific activity and 33.3% recovery. The molecular weight of the purified protease was estimated to be 30 kDa by SDS-PAGE and gel filtration. The N-terminal amino acid sequence of the first 20 amino acids of the purified J1 protease was AQQTPYGIRMVQADQLSDVY. The enzyme was highly active over a wide range of pH from 9.0 to 12.0, with an optimum at pH 11.0. The optimum temperature for the purified enzyme was 60°C. The activity of the enzyme was totally lost in the presence of PMSF, suggesting that the purified enzyme is a serine protease. The kinetic constants K m and K cat of the purified enzyme using N-succinyl-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide were 0.158 mM and 1.14 × 105 min−1, respectively. The catalytic efficiency (K cat /K m) was 7.23 × 108 min−1 M−1. The enzyme showed extreme stability toward non-ionic surfactants and oxidizing agents. In addition, it showed high stability and compatibility with some commercial liquid and solid detergents. The aprJ1 gene, which encodes the alkaline protease from V. metschnikovii J1, was isolated, and its DNA sequence was determined. The deduced amino acid sequence of the preproenzyme differs from that of V. metschnikovii RH530 detergent-stable protease by 12 amino acids, 7 located in the propeptide and 5 in the mature enzyme.  相似文献   

16.
An extracellular detergent tolerant protease producing strain VSG-4 was isolated from tropical soil sample and identified as Bacillus subtilis based on morphological, biochemical characteristics as well as 16S-rRNA gene sequencing. The VSG-4 protease was purified to homogeneity using ammonium sulphate precipitation, dialysis and sephadex G-200 gel permeation chromatography with a 17.4 purification fold. The purified enzyme was active and stable over a broad range of pH (8.0–11.0, optimum at 9.0) and temperature (40°C to 60°C, optimum at 50°C). The thermostability of the enzyme was significantly increased by the addition CaCl2. This enzyme was strongly inhibited by PMSF and DFP, suggesting that it belongs to the serine protease superfamily. The purified VSG-4 alkaline protease showed remarkable stability in anionic (5 mM SDS) and ionic (1% Trion X-100 and 1% Tween 80) detergents. It retained 97±2% and 83.6±1.1% of its initial activity after 1 h preincubation in the presence of 1 % H2O2 and 1 % sodium perborate, respectively. Furthermore, the purified enzyme showed excellent stability and compatibility with some commercial laundry detergents besides its stain removal capacity. Considering these promising properties, VSG-4 protease may find tremendous application in laundry detergent formulations.  相似文献   

17.
Protease secreted into the culture medium by alkalophilic Thermoactinomyces sp. HS682 was purified to an electrophoretically homogeneous state through only two chromatograhies using Butyl-Toyopearl 650M and SP-Toyopearl 650S columns. The purified enzyme has an apparent relative molecular mass of 25, 000 according to gel filtration on a Sephadex G-75 column and SDS-PAGE and an isoelectric point above 11.0.

Its proteolytic activity was inhibited by active-site inhibitors of serine protease, DFP and PMSF, and metal ions, Cu2+ and Hg2+. The enzyme was stable toward some detergents, sodium perborate, sodium triphosphate, sodium-n-dodecylbenzenesulfonate, and sodium dodecyl sulfate, at a concentration of 0.1% and pH 11.5 and 37°C for 60 min. The optimum pH was pH 11.5–13.0 at 37°C and the optimum temperature was 70°C at pH 11.5. Calcium divalent cation raised the pH and heat stabilities of the enzyme. In the presence of 5 mM CaCl2, it showed maximum proteolytic activity at 80°C and stability from pH 4–12.5 at 60°C and below 75°C at pH 11.5. The stabilization by Ca2+ was observed in secondary conformation deduced from the circular dichroic spectrum of the enzyme. The protease hydrolyzed the ester bond of benzoyl leucine ester well. The amino acid terminal sequence of the enzyme showed high homology with those of Microbiol serine protease, although alanine of the NH2-terminal amino acid was deleted.  相似文献   

18.
The terminal process of xylogenesis, autolysis, is essential for the formation of a tubular system for conduction of water and solutes throughout the whole plant. Several hydrolase types are implicated in autolysis responsible for the breakdown of cytoplasm. Here, we characterize p48h-17 cDNA from in vitro tracheary elements (TEs) of Zinnia elegans which encodes a preproprotein similar to papain. The putative mature protein, a cysteine protease, has a molecular mass of 22,699 Da with a pI of 5.7. DNA gel blot analysis indicated that p48h-17 is likely encoded by one or two genes. The p48h-17 mRNA accumulated markedly in in vitro differentiating TEs, whereas it appeared not to be induced in response to senescence and wounding in the leaves or H2O2 challenge in the cultured mesophyll cells. In stems, the expression of the p48h-17 gene was preferentially associated with differentiating xylem. Activity gel assays demonstrated that a cysteine and a serine protease, which had apparent molecular masses of 20 kDa and 60 kDa, respectively, were markedly induced during in vitro TE differentiation. The cysteine protease activity was also preferentially present in the xylem of Zinnia stems. Transient expression of the p48h-17 cDNA in tobacco protoplasts resulted in the production of a 20 kDa cysteine protease. Taken together, the results indicate that the p48h-17 gene appears to be preferentially associated with xylogenesis, and both the cysteine and serine proteases might be involved in autolysis during xylogenesis.  相似文献   

19.
A protease from fresh leaves of Abrus precatorius was purified using two classical chromatography techniques: ion-exchange (DEAE-Sepharose) and Gel filtration (Sephadex G-75). The purified protease showed a molecular weight of ~?28?kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The optimum pH and temperature for the purified protease was 8 and 40°C, respectively. The purified protease was stable throughout a wide temperature range from 10 to 80°C and pH from 2 to 12. Protease activity was inhibited in the presence of Co2+, Ni2+, Hg2+, and Zn2+ while its activity has increased in the presence of Ca2+ and Mg2+. The protease was highly specific to casein when compared to its specificity for gelatin, bovine serum albumin, hemoglobin, and defatted flour of Ricinodendron heudelotii. Its Vmax and Km determined using casein as a substrate were 94.34?U/mL and 349.07?µg/mL respectively. Inhibition studies showed that this purified protease was inhibited by both phenylmethane sulfonyl fluoride and aprotinin which are recognized as competitive inhibitors of serine proteases.  相似文献   

20.
A protease of a molecular mass of approximately 30 kDa was isolated and purified from the haloalkaliphilic archaeon Natronomonas (formerly Natronobacterium) pharaonis. The enzyme hydrolyzed synthetic peptides, preferentially at the carboxyl terminus of phenylalanine or leucine, as well as large proteins. Hydrolysis occurred over the range of pH from 6 to 12, with an optimum at pH 10. The temperature optimum was 61°C. The enzyme was nearly equally active over the range of salt concentration from 0.5 to 4 M (NaCl or KCl). A strong cross-reaction with a polyclonal antiserum against human chymotrypsin was observed. Enzymatic activity was inhibited by typical serine protease inhibitors. There was significant homology between N-terminal and internal sequences from autolytic fragments and the sequence of bovine chymotrypsinogen B; the overall amino acid composition was similar to that of vertebrate chymotrypsinogens. Evidence for a zymogen-like processing of the protease was obtained. Cell extracts from other halobacteria exhibited similar proteolytic activity and immunoreactivity. The data suggested a widespread distribution of a chymotrypsinogen B-like protease among halo- and haloalkaliphilic Archaea. Received: September 12, 1998 / Accepted: December 15, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号