首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the behaviour of Lactobacillus fermentum CRL 722 and CRL 251 were evaluated under different pH conditions (pH 6.0, 5.5, 5.0, 4.5) and without pH control. Growth was similar under all conditions assayed except at pH 4.5. These microorganisms were able to eliminate raffinose, a nondigestible -oligosaccharide (NDO) found in soy products, showing a consumption rate of 0.25 g l–1 h–1 (pH 6.0–5.0). The removal of raffinose was due to the high -galactosidase (-gal) activities of these lactic acid bacteria, which was highest at pH 5.5 (5.0 U/ml). The yield of organic acids produced during raffinose consumption was also highest at this pH. The results of this study will allow selection of the optimum growth conditions of L. fermentum with elevated levels of -gal to be used in the reduction of NDO in soy products when used as starter cultures.  相似文献   

2.
The influence of soybean galactosaccharides (stachyose, raffinose, melibiose) as well as galactose and glucose on the synthesis and activity of α-galactosidase (α-gal) from Lactobacillus fermentum CRL 251 was studied. Stachyose was the most effective inducer, followed by melibiose, raffinose, and galactose; scarce activity was detected with glucose. Exogenously supplied glucose inhibited the synthesis of the enzyme in cultures of L. fermentum growing on galactose. This effect was reversed by the addition of cyclic adenosine-3′,5′ monophosphate (cAMP), which suggests that this compound could be involved in the regulation of α-gal synthesis. Received: 1 April 1996 / Accepted: 6 May 1996  相似文献   

3.
Formate oxidase was found in cell-free extracts of Debaryomyces vanrijiae MH201, a soil isolate. After purification by column chromatography, the preparation showed a protein band corresponding to a molecular mass (MM) of 64 kDa on sodium dodecyl sulfate–polyacrylamide gel electrophoresis. The MM, estimated by a gel filtration, was 99 kDa. The preparation showed two and three bands on isoelectric focusing under denaturing and native conditions, respectively. These results suggest that the preparation contained three isoforms, each of which might be composed of αα, αβ, and ββ subunits with apparently similar MM. The preparation acted on formate with K m and V max values of 11.7 mM and 262 μmol min−1 mg−1, respectively, at pH 4.5 and 25°C, but showed no evidence of activity on the other compounds tested. The optimum pH and temperature were pH 4.0 and 35°C, respectively. The preparation showed activities of 85% of the initial activity after storage at pH 6.0 and 4°C for 8 weeks. When 10 mM formaldehyde was reacted with 2.0 U ml−1 of the enzyme preparation at pH 5.5 and room temperature in the presence of 2.0 U ml−1 of a microbial aldehyde oxidase and 100 U ml−1 of catalase for 180 min, neither of formate nor formaldehyde was detected, suggesting that the reaction involved the quantitative conversion of formaldehyde to carbon dioxide.  相似文献   

4.
Summary β-galactosidase from Bifidobacterium longum CCRC 15708 was first extracted by ultrasonication then purified by Q Fast-Flow chromatography and gel chromatography on a Superose 6 HR column. These steps resulted in a purification of 15.7-fold, a yield of 29.3%, and a specific activity of 168.6 U mg−1 protein. The molecular weight was 357 kDa as determined from Native-PAGE. Using o-nitrophenyl-β-d-galactopyranoside (ONPG) as a substrate, the pH and temperature optima of the purified β-galactosidase were 7.0 and 50 °C, respectively. The enzyme was stable at a temperature up to 40 °C and at pH values of 6.5–7.0. K m and V max for this purified enzyme were noted to be 0.85 mM and 70.67 U/mg, respectively. Na+ and K+ stimulated the enzyme up to 10-fold, while Fe3+, Fe2+, Co2+, Cu2+, Ca2+, Zn2+, Mn2+ and Mg2+ inhibited the activity of β-galactosidase. Furthermore, although glucose, galactose, maltose, or raffinose exerted little or no effect on the β-galactosidase activity, lactose and fructose inhibited the enzyme activity. The effect of lactose on the enzyme activity for ONPG is probably a case of competitive inhibition. A relatively high specific activity of β-galactosidase from B. longum CCRC 15708 could be obtained by Q Fast-Flow chromatography and gel chromatography on a Superose 6 HR column. In some aspects, particularly the activation by monovalent cations, the properties of β-galactosidase of B. longum CCRC 15708 are different from those obtained from other sources. Data collected in the present study are of value and indispensable when β-galactosidase from B. longum CCRC 15708 is employed in practical application.  相似文献   

5.
An extracellular α-amylase produced by the thermophilic bacterium Thermus filiformis Ork A2 was purified from cell-free culture supernatant by ion exchange chromatography. The molecular mass was estimated to be 60 000 Da by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme was rich in both basic and hydrophobic amino acids, presenting the following NH2-terminal amino acid sequence: Thr-Ala-Asp-Leu-Ile-Val-Lys-Ile-Asn-Phe. Amylolytic activity on soluble starch was optimal at pH 5.5–6.0 and 95°C, and the enzyme was stable in the pH range of 4.0–8.0. Calcium enhanced thermostability at temperatures above 80°C, increasing the half-life of activity to more than 8 h at 85°C, 80 min at 90°C, and 19 min at 95°C. Ethylenediaminetetraacetic acid (EDTA) inhibited amylase activity, the inhibition being reversed by the addition of calcium or strontium ions. The α-amylase was also inhibited by copper and mercuric ions, and p-chloromercuribenzoic acid, the latter being reversed in the presence of dithiothreitol. Dithiothreitol and β-mercaptoethanol activated the enzyme. The α-amylase exhibited Michaelis-Menten kinetics for starch, with a K m of 5.0 mg·ml−1 and k cat/K m of 5.2 × 105 ml·mg−1 s−1. Similar values were obtained for amylose, amylopectin, and glycogen. The hydrolysis pattern was similar for maltooligosaccharides and polysaccharides, with maltose being the major hydrolysis product. Glucose and maltotriose were generated as secondary products, although glucose was produced in high levels after a 6-h digestion. To our knowledge this is the first report of the characterization of an α-amylase from a strain of the genus Thermus. Received: June 2, 1997 / Accepted: September 16, 1997  相似文献   

6.
We investigated the relevance of the relationship between the compactness of β-galactosidase inclusion bodies (β-gal IBs) and their enhanced enzymatic activity with or without the addition of D-fucose (inducer analog) or methyl α-D-glucopyranoside (α-MG, catabolite repressor) after induction in the araBAD promoter system of Escherichia coli. Experiments conducted to evaluate the solubilization of β-gal IBs in guanidine hydrochloride as well as their trypsin degradation and temperature stability revealed that β-gal IBs expressed in response to the addition of D-fucose or α-MG had a looser structure. Additionally, β-gal IBs expressed when D-fucose or α-MG was added were more quickly solubilized in guanidine hydrochloride or degraded by trypsin-treatment than those produced when these compounds were not added. Moreover, the activity of β-gal IBs expressed when D-fucose or α-MG were added was less stable at various temperatures. Consequently, we deduced that the looser structure of β-gal IBs resulted in enhanced enzymatic activity of β-gal IBs upon addition of D-fucose or α-MG after induction.  相似文献   

7.
Bacillus sp. GRE1 isolated from an Ethiopian hyperthermal spring produced raw-starch digesting, Ca2+-independent thermostable α-amylase. Enzyme production in shake flask experiments using optimum nutrient supplements and environmental conditions was 2,360 U l−1. Gel filtration chromatography yielded a purification factor of 33.6-fold and a recovery of 46.5%. The apparent molecular weight of the enzyme was 55 kDa as determined by SDS-PAGE. Presence or absence of Ca2+ produced similar temperature optima of 65–70°C. The optimum pH was in the range of 5.5–6.0. The enzyme maintained 50% of its original activity after 45 min of incubation at 80°C and was stable at a pH range of 5.0–9.0. The V max and K m values for soluble starch were 42 mg reducing sugar min−1 and 4.98 mg starch ml−1, respectively. Strong inhibitors of enzyme activity included Cu2+, Zn2+ and Fe2+. The enzyme coding gene and the deduced protein translation revealed a characteristic but markedly atypical homology to Bacillus species α-amylase sequences. The enzyme hydrolyzed wheat, corn and tapioca starch granules efficiently below their gelatinization temperatures. Rather than the higher oligosaccharides normally produced by Bacillus α-amylases operating at high temperatures, maltose was the major hydrolysis product with the present enzyme.  相似文献   

8.
A novel fibrinolytic enzyme (AJ) was purified from Staphylococcus sp. strain AJ screened from Korean salt-fermented Anchovy-jeot. Relative molecular weight of AJ was determined as 26 kDa by using SDS-PAGE and fibrin zymography. Based on a 2D gel, AJ was found to consist of three active isoforms (pI 5.5–6.0) with the same N-terminal amino acid sequence. AJ exhibited optimum pH and temperature at 2.5–3.0 and 85°C, respectively. AJ kept 85% of the initial activity after heating at 100°C for 20 min on the zymogram gel. The Michaelis constant (K m) and K cat values of AJ towards α-casein were 0.38 mM and 19.73 s−1, respectively. AJ cleaved the Aα-chain of fibrinogen but did not affect the Bβ- and γ-chains, indicating that it is an α-fibrinogenase. The fibrinolytic activity was inhibited by diisopropyl fluorophosphate, indicating AJ is a serine protease. Interestingly, AJ was very stable at acidic condition, SDS, and heat (100°C), whereas it was easily degraded at neutral and alkaline conditions. In particular, AJ formed an active homo-dimer in the pH range from 7.0 to 8.0. To our knowledge, a similar combination of acid and heat stability has not yet been reported for other fibrinolytic enzymes.  相似文献   

9.
Xylanase production by the Antarctic psychrophilic yeast Cryptococcus adeliae was increased 4.3 fold by optimizing the culture medium composition using statistical designs. The optimized medium containing 24.2 g l−1 xylan and 10.2 g l−1 yeast extract and having an initial pH of 7.5 yielded xylanase activity at 400 nkat (nanokatal) ml−1 after 168-h shake culture at 4°C. In addition, very little endoglucanase, β-mannanase, β-xylosidase, β-glucosidase, α-l-arabinofuranosidase, and no filter paper cellulase activities were detected. Among 12 carbon sources tested, maximum xylanase activity was induced by xylan, followed by lignocelluloses such as steamed wheat straw and alkali-treated bagasse. The level of enzyme activity produced on other carbon sources appeared to be constitutive. Among the complex organic nitrogen sources tested, the xylanase activity was most enhanced by yeast extract, followed by soymeal, Pharmamedia (cotton seed protein), and Alburex (potato protein). A batch culture at 10°C in a 5-l fermenter (3.5-1 working volume) using the optimized medium gave 385 nkat at 111 h of cultivation. The crude xylanase showed optimal activity at pH 5.0–5.5 and good stability at pH 4–9 (21 h at 4°C). Although the enzyme was maximally active at 45°–50°C, it appeared very thermolabile, showing a half-life of 78 min at 35°C. At 40°–50°C, it lost 71%–95% activity within 5 min. This is the first report on the production as well as on the properties of thermolabile xylanase produced by an Antarctic yeast. Received: December 10, 1999 / Accepted: March 23, 2000  相似文献   

10.
Studies were conducted to characterize the effect of gene amplification and foreign gene expression on recombinant CHO cell growth. Chinese hamster ovary (CHO) cells were transfected with an expression vector containing the gene for dihydrofolate reductase (dhfr) and the gene for human β-interferon (β-IFN) or thelac Z gene which codes for β-galactosidase (β-gal). The recombinant genes in these CHO cells were amplified stepwise by growth in 0, 10−7, and 10−6 M methotrexate (MTX), and the β-gal expressing cells were adapted to suspension culture. Flow cytometric methods (FCM) were used to measure the distribution of amplifieddhfr gene content and foreign β-gal gene expression in the cell populations. A biochemical assay for β-gal was also used. Beta-gal expression was found to increase with increasing gene amplification. The growth rate of recombinant CHO cells at 10−7 M MTX was found to be 20% lower than that of recombinant CHO cells in MTX-free medium, and the cell growth rate at 10−6 M MTX was 20% lower than that of recombinant CHO cells at 10−7 M MTX. There was no effect of 10−5 M MTX on the growth of CHO-DG44 (dhfr-) cells. The reduction of growth rate in recombinant CHO cells is therefore thought to be mainly due to the effect ofdhfr and foreign gene amplification and increased β-galactosidase expression.  相似文献   

11.
This is the first report describing the gene structure and the enzymatic properties of a β-fructosidase of a hyperthermophilic organism. The bfrA gene of the ancestral bacterium Thermotoga maritima MSB8 codes for a 432-residue, polypeptide of about 50 kDa, with significant sequence similarity to other β-fructosidases. On the basis of its primary structure, BfrA can be assigned to glycosyl hydrolase family 32. The bfrA gene was expressed in Escherichia coli and the recombinant enzyme was purified and characterised. BfrA was specific for the fructose moiety and the β-anomeric configuration of the glycosidic linkages of its substrates. The enzyme released fructose from sucrose and raffinose, and the fructose polymer inulin was hydrolysed quantitatively in an exo-type fashion. BfrA displayed similar catalytic efficiencies for the hydrolysis of sucrose and inulin with k cat/K m values (at 75 °C, pH 5.5) of about 4.1 × 104 M−1s−1 and 3.1 × 104 M−1s−1 respectively. BfrA had an optimum temperature of 90–95 °C (10-min assay) and was extremely insensitive to thermo-inactivation. During 5 h at temperatures up to 80 °C at pH 7, the enzyme retained at least 85% of its initial activity. Thus, BfrA is the most thermostable β-fructosidase and also the most thermostable inulinase described to date. In conclusion, the T. maritima enzyme can be classified as an exo-β-d-fructofuranosidase (EC 3.2.1.26) with invertase and inulinase activity. Its catalytic properties along with the extreme thermostability recommend it for use in biotechnology. Received: 28 August 1997 / Received revision: 19 January 1998 / Accepted: 24 January 1998  相似文献   

12.
The growth-inhibiting activities of Paeonia lactiflora (Paeoniaceae) root steam distillate constituents and structurally related compounds against nine harmful intestinal bacteria and eight lactic acid-producing bacteria were compared with those of two antibiotics, amoxicillin and tetracycline. Thymol, α-terpinolene, (−)-perilla alcohol and (1R)-(−)-myrtenol exhibited high to extremely high levels of growth inhibition of all the harmful bacteria, whereas thymol and α-terpinolene (except for Lactobacillus casei ATCC 393) inhibited the growth of all the beneficial bacteria (MIC, both 0.08–0.62 mg mL−1). Tetracycline and amoxicillin exhibited extremely high level of growth inhibition of all the test bacteria (MIC, <0.00002–0.001 mg mL−1). 1,8-Cineole, geraniol, (−)-borneol, (1S,2S,5S)-(−)-myrtanol, nerol, (S)-(−)-β-citronellol and (±)-lavandulol also exhibited inhibitory activity but with differing specificity and levels of activity. Structure–activity relationship indicates that structural characteristics, such as geometric isomerism, degrees of saturation, types of functional groups and types of carbon skeleton, appear to play a role in determining the growth-inhibiting activity of monoterpenoids. Global efforts to reduce the level of antibiotics justify further studies on naturally occurring P. lactiflora root-derived materials as potential preventive agents against various diseases caused by harmful intestinal bacteria such as clostridia.  相似文献   

13.
The invertase of Lactobacillus reuteri CRL 1100 is a glycoprotein composed by a single subunit with a molecular weight of 58 kDa. The enzyme was stable below 45°C over a wide pH range (4.5–7.0) with maximum activity at pH 6.0 and 37°C. The invertase activity was significantly inhibited by bivalent metal ions (Ca++, Cu++, Cd++, and Hg++), β-mercaptoethanol, and dithiothreitol and partially improved by ethylenediaminetetraacetic acid. The enzyme was purified 32 times over the crude extract by gel filtration and ion-exchange chromatography with a recovery of 17%. The K m and Vmax values for sucrose were 6.66 mM and 0.028 μmol/min, respectively. An invertase is purified and characterized for the first time in Lactobacillus, and it proved to be a β-fructofuranosidase. Received: 13 August 1999 / Accepted: 15 September 1999  相似文献   

14.
Cathespin B has been purified 750-fold to apparent homogeneity from human and bovine brain cortex using ammonium sulfate fractionation (30–70%), chromatography on Sephadex G-100, CM-Sephadex C-50, and concanavalin A-Sepharose. Enzyme was assayed fluorometrically at pH 4.0 with pyridoxyl-hemoglobin in the presence of 1 mM DTT and 1 mM EDTA. Properties of the enzyme from the two sources proved to be similar. On disc PAGE the purified preparation produced two bands associated with proteinase activity that are due to existence of two multiple forms of brain cathepsin B with pI 6.1 and 6.8. The enzyme is completely inactivated by thiol-blocking reagents, leupeptin, E-64, and demands thiol compounds for its ultimate activity. Z-Phe-Ala-CHN2 is a potent inhibitor of the enzyme (K 2nd=1280 M−1s−1) in contrast to Z-Phe-Phe-CHN2 (K 2nd=264 M−1s−1). pH optimum in the reaction of hydrolysis of Pxy-Hb is 4.0–6.0,K M(app.) =10−5 M. Cathepsin B splits azocasein: pH optimum 5.0–6.0,K M(app.)=2.2·10−5 M, but inclusion of urea in the incubation medium depresses the azocaseinolytic activity of the enzyme 1.5-fold. It does not split Lys-NNap, Arg-NMec and is not inhibited by bestatin. The specific activity of brain cathepsin B with Z-Arg-Arg-NNapOMe at pH 6.0 is 10-fold higher than with Bz-Arg-NNap, Z-Gly-Gly-Arg-NNap is a poor substrate. With Z-Arg-Arg-NMec and Bz-Phe-Val-Arg-NMec the specific acitivity is 80 and 35%, respectively of that with Z-Phe-Arg-NMec. Special Issue dedicated to Dr. Eugene Kreps.  相似文献   

15.
This is the first report describing the purification and enzymatic properties of a native invertase (β-D-fructosidase) in Thermotogales. The invertase of the hydrogen-producing thermophilic bacterium Thermotoga neapolitana DSM 4359 (hereby named Tni) was a monomer of about 47 kDa having an amino acid sequence quite different from other invertases studied up to now. Its properties and substrates specificity let us classify this protein as a solute-binding protein with invertase activity. Tni was specific for the fructose moiety and the enzyme released fructose from sucrose and raffinose and the fructose polymer inulin was hydrolyzed in an endo-type fashion. Tni had an optimum temperature of 85°C at pH 6.0. At temperatures of 80–85°C, the enzyme retained at least 50% of its initial activity during a 6 h preincubation period. Tni had a K m and k cat /K m values (at 85°C and pH 6.0) of about 14 mM and 5.2 × 108 M−1 s−1, respectively. Dedicated to the memory of Prof. R. A. Nicolaus, founder of the Institute (1968).  相似文献   

16.
A recombinant putative β-galactosidase from Thermoplasma acidophilum was purified as a single 57 kDa band of 82 U mg−1. The molecular mass of the native enzyme was 114 kDa as a dimer. Maximum activity was observed at pH 6.0 and 90°C. The enzyme was unstable below pH 6.0: at pH 6 its half-life at 75°C was 28 days but at pH 4.5 was only 13 h. Catalytic efficiencies decreased as p-nitrophenyl(pNP)-β-d-fucopyranoside (1067) > pNP-β-d-glucopyranoside (381) > pNP-β-d-galactopyranoside (18) > pNP-β-d-mannopyranoside (11 s−1 mM−1), indicating that the enzyme was a β-glycosidase.  相似文献   

17.
The putative raffinose synthase gene from rice was cloned and expressed in Escherichia coli. The enzyme displayed an optimum activity at 45°C and pH 7.0, and a sulfhydryl group was required for its activity. The enzyme was specific for galactinol and p-nitrophenyl-α-d-galactoside as galactosyl donors, and sucrose, lactose, 4−β-galactobiose, N-acetyl-d-lactosamine, trehalose and lacto-N-biose were recognized as galactosyl acceptors.  相似文献   

18.
The culture-medium composition was optimised, on a shake-flask scale, for simultaneous production of high activities of endoglucanase and β-glucosidase by Thermoascus aurantiacus using statistical factorial designs. The optimised medium containing 40.2 g l−1 Solka Floc as the carbon source and 9 g l−1 soymeal as the organic nitrogen source yielded 1130 nkat ml−1 endoglucanase and 116 nkat ml−1β-glucosidase activities after 264 h as shake cultures. In addition, good levels of β-xylanase (3479 nkat ml−1) and low levels of filter-paper cellulase, β-xylosidase, α-l-arabinofuranosidase, β-mannanase, β-mannosidase, α-galactosidase and β-galactosidase were detected. Batch fermentation in a 5-l laboratory fermentor using the optimised medium allowed the production of 940 nkat ml−1 endoglucanase and 102 nkat ml−1β-glucosidase in 192 h. Endoglucanase and β-glucosidase showed optimum activity at pH 4.5 and pH 5, respectively, and they displayed optimum activity at 75 °C. Endoglucanase and β-glucosidase showed good stability at pH values 4–8 and 4–7, respectively, after a prolonged incubation (48 h at 50 °C). Endoglucanase had half-lives of 98 h at 70 °C and 4.1 h at 75 °C, while β-glucosidase had half-lives of 23.5 h at 70 °C and 1.7 h at 75 °C. Alkali-treated bagasse, steam-treated wheat straw, Solka floc and Sigmacell 50 were 66, 48.5, 33.5 and 14.4% hydrolysed by a crude enzyme complex of T. aurantiacus in 50 h. Received: 12 November 1999 / Accepted: 14 November 1999  相似文献   

19.
Lactobacillus casei CRL705 produces a class IIb bacteriocin, lactocin 705, which relies on the complementary action of two components, Lac705α and Lac705β. These peptides exert a bactericidal effect on the indicator strain Lactobacillus plantarum CRL691, with an optimal Lac705α/Lac705β peptide ratio of 1 to 4. Electron microscopy studies showed that treated CRL691 cells have their cell wall severely damaged, with mesosome-like membranous formations protruding into their cytoplasm. Although less pronounced, a similar effect was also observed with the Lac705β peptide alone. Furthermore, Lac705β increased the inhibitory action of a diluted supernatant of L. casei CRL705, while Lac705α protected CRL691 cells from inhibition. Both peptides were required to dissipate the proton motive force (Δψ and ΔpH) of CRL691 cells. These data suggested that of the two components of lactocin 705, the Lac705α peptide is responsible for receptor recognition, and the Lac705β peptide is the active component on the cell membrane of CRL691 cells. Received: 12 April 2002 / Accepted: 24 May 2002  相似文献   

20.
Nitrile hydratases (NHase), which catalyze the hydration of nitriles to amides, have an unusual Fe3+ or Co3+ center with two modified Cys ligands: cysteine sulfininate (Cys-SO2 ) and either cysteine sulfenic acid or cysteine sulfenate [Cys-SO(H)]. Two catalytic mechanisms have been proposed. One is that the sulfenyl oxygen activates a water molecule, enabling nucleophilic attack on the nitrile carbon. The other is that the Ser ligand ionizes the strictly conserved Tyr, activating a water molecule. Here, we characterized mutants of Fe-type NHase from Rhodococcus erythropolis N771, replacing the Ser and Tyr residues, αS113A and βY72F. The αS113A mutation partially affected catalytic activity and did not change the pH profiles of the kinetic parameters. UV–vis absorption spectra indicated that the electronic state of the Fe center was altered by the αS113A mutation, but the changes could be prevented by a competitive inhibitor, n-butyric acid. The overall structure of the αS113A mutant was similar to that of the wild type, but significant changes were observed around the catalytic cavity. Like the UV–vis spectra, the changes were compensated by the substrate or product. The Ser ligand is important for the structure around the catalytic cavity, but is not essential for catalysis. The βY72F mutant exhibited no activity. The structure of the βY72F mutant was highly conserved but was found to be the inactivated state, with αCys114-SO(H) oxidized to Cys-SO2 , suggesting that βTyr72 affected the electronic state of the Fe center. The catalytic mechanism is discussed on the basis of the results obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号