首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lew RR 《Plant physiology》1989,91(1):213-216
Calcium ionophoresis into coenocytic cells of Neurospora crassa activates the plasma membrane proton pump as measured by current-voltage analysis. This is direct evidence that intracellular calcium regulates the activity of a key transport enzyme found in higher plants and fungi.  相似文献   

2.
ATP synthase is conceived as a rotatory engine with two reversible drives, the proton-transporting membrane portion, F0, and the catalytic peripheral portion, F1. They are mounted on a central shaft (subunit gamma) and held together by an eccentric bearing. It is established that the hydrolysis of three molecules of ATP in F1 drives the shaft over a full circle in three steps of 120 degrees each. Proton flow through F0 probably generates a 12-stepped rotation of the shaft so that four proton-translocating steps of 30 degrees each drive the synthesis of one molecule of ATP. We addressed the elasticity of the transmission between F0 and F1 in a model where the four smaller steps in F0 load a torsional spring which is only released under liberation of ATP from F1. The kinetic model of an elastic ATP synthase described a wealth of published data on the synthesis/hydrolysis of ATP by F0F1 and on proton conduction by F0 as function of the pH and the protonmotive force. The pK values of the proton-carrying group interacting with the acidic and basic sides of the membrane were estimated as 5.3-6.4 and 8.0-8.3, respectively.  相似文献   

3.
Golgi-apparatus membranes, isolated from mouse liver, pump protons inwards, when supplied with NADH or ATP. The acidification of Golgi-apparatus cisternae and vesicles was detected with neutral red, a permeant dye, as a difference in absorbance at 550 nm minus that at 600 nm. The maximum rates detected with NADH and ATP were between 0.0006-0.0009 and 0.0030-0.0050 delta OD units/mg of protein/min, respectively, at pH 7.5. The outside buffer used was a bovine serum albumin suspension. The acidification of Golgi apparatus was inhibited from 45 to 100% by ionophores and from 22 to 100% by uncouplers. The results implicate both ATP and a redox system coupled to NADH oxidation in the acidification of Golgi-apparatus membranes.  相似文献   

4.
Summary The rate of ATP hydrolysis in ATP-preloaded plasma membrane vesicles derived from the luminal membrane of renal cortical tubules, and the rate of H+ secretion out of the same vesicles were investigated. Both were inhibited at low temperature, by the action of filipin, an antibiotic that complexes with cholesterol in plasma membranes, and by the action of blockers of mitochondrial Fo hydrogen channels, dicyclohexylcarbodiimide and Dio-9. Valinomycin in the presence of K+ showed a stimulatory effect, the protonophor carbonyl-cyanid-p-trifluormethoxy-phenylhydrazone stimulated the intravesicular ATP hydrolysis and apparently abolished acidification of the extravesccular medium. Lowering of the pH of the extravesicular medium retarded ATP hydrolysis, while readjustment of extra- and intravesicular pH accelerated ATP hydrolysis again. These findings strongly support the assumption that an ATP-driven proton pump is located in the luminal membrane of renal cortical tubules.  相似文献   

5.
Summary Sudden respiratory blockade has been used to study rapid changes of the resting membrane potential, of intracellular adenosine 5-triphosphate (ATP) levels, and of pyridine nucleotide reduction inNeurospora crassa. Membrane depolarization occurs with a first-order rate constant of 0.167 sec–1, following a lag period of about 4 sec, at 24°C (ambient temperature). This depolarization is several-fold too slow to be directly linked to electron transfer, as judged from the rate of pyridine nucleotide reduction, but has essentially the same rate constant as the decay of ATP. The latter process, however, shows no lag period after the respiratory inhibitor is introduced. Plots of membrane potential versus the intracellular ATP concentration yield saturation curves which are readily fitted by a Michaelis equation, to which is added a constant term representing the diffusion component of membrane potential. Parameters obtained from such fits indicate the maximal voltage which the pump can develop at high ATP levels to be 300 to 350 mV, with an apparentK 1/2 of 2.0mm. The data strongly suggest that an electrogenic ion pump in the plasma membrane ofNeurospora is fueled by ATP; comparison of the measured membrane potentials with the energy available from hydrolysis of ATP indicates that two ions could be pumped for each molecule of ATP split.  相似文献   

6.
7.
We have recently described a mutant of Chinese hamster ovary cells, termed G.7.1, that contains a temperature-sensitive, conditionally lethal mutation resulting in defective vacuolar acidification (Marnell, M. H., Mathis, L. S., Stookey, M., Shia, S.-P., Stone, D.K., and Draper, R. K. (1984) J. Cell Biol. 99, 1907-1916). To further characterize the lesion, clathrin-coated vesicles were partially purified from wild type and G.7.1 cells, and the thermolabilities of vanadate and oligomycin-insensitive, N-ethylmaleimide-sensitive, H+-ATPase activity, 32Pi-ATPase exchange activity, and proton pumping were compared. All three parameters of H+ pump activity were markedly diminished by preincubation at 44 degrees C for vesicles harvested from the G.7.1 cells, but not for those from wild type cells. Phosphatidylserine did not protect against heat inactivation in vesicle fractions prepared from G.7.1 cells. The results suggest that the mutation responsible for defective acidification in G.7.1 cells is expressed at the level of the proton pump of organelles present in our clathrin-coated vesicle-enriched preparation.  相似文献   

8.
Plants and fungi possess an outwardly directed plasma membrane proton pump that may regulate intracellular pH. We provide the first demonstration that amoebae of the slime mould Dictyostelium discoideum also possess a similar proton pump. It can be assayed either as an ATPase activity in highly purified plasma membranes or as a proton pump, after solubilization and reconstruction into liposomes. The pump is inhibited by vanadate, diethylstilbestrol (DES) and miconazole but not by azide or ouabain. The proton pump described here may represent the target for the action of DES and miconazole, both of which have previously been shown to induce stalk cell formation during the in vitro development of Dictyostelium.  相似文献   

9.
Ca2+ transport across the membrane of vesicles derived from Azotobacter vinelandii was studied in the absence of respiration or functioning ATPase. Two facilitated diffusion systems were found. One, an electroneutral Ca2+/2H+ antiporter, responded to an artificially imposed deltapH, was heat-labile, and was insensitive to low concentrations of ruthenium red and lanthanides. The second, an electrogenic transporter, responded to an electrical membrane potential, was heat-stable, was inhibited by ruthenium red, lanthanides, monovalent cations, and certain anions. In vivo, when coupled to the protonmotive force, the systems would provide for the cell: (i) a mechanism to keep intracellular Ca2+ concentration low (Ca2+/2H+ antiporter); (ii) a mechanism for Ca2+ entry (electrogenic transporter).  相似文献   

10.
Abstract The present work deals with the characterization of an ATP-dependent proton translocation monitored by the ΔpH probe acridine orange. The ATP-dependent proton translocation has an optimum activity at pH 6.5 and is substrate specific for ATP. It is stimulated by Cl, HCO3 and Br, but is insensitive to several monovalent cations. Divalent cations (Mg2+ or Mn2+) are required for proton translocation, while in the presence of Ca2+ no uptake is observed. NO3, NO2 and citrate strongly inhibit proton uptake. On the contrary, F, SO42−, malate, pyruvate, succinate, oxalate and acetate have no inhibitory effect. Proton uptake is stimulated by valinomycin and unaffected by molybdate. Two thiols, dithioerythritol and dithiothreitol, are able partially to prevent the FCCP-abolished proton uptake or partially restore the ATP-dependent proton translocation in FCCP-collapsed vesicles. It is suggested that pea stem microsomes possess an electrogenic ATPase, acting as a proton pump, which, on the basis of its characteristics, can be tentatively associated with membranes of tonoplast origin.  相似文献   

11.
Summary The addition of glucose to a suspension of Ehrlich ascites tumor cells results in rapid acidification of the extracellular medium due to lactic acid production. The nature of the H+ efflux mechanism has been studied by measuring the time course of the acidification, the rate of proton efflux, the direction and relative magnitude of the H+ concentration gradient, and the voltage across the membrane. Using the pH-sensitive dye acridine orange, we have established that after addition of 10mm glucose an outward-directed H+ concentration gradient develops. As the rate of glycolysis slows, the continued extrusion of H+ reverses the direction of the H+ concentration gradient. Changes in absorbance of the voltagesensitive dye diethyloxadicarbocyanine iodide (DOCC), and changes in the distribution of the lipid permeant cation tetraphenyl phosphonium, showed a dramatic and persistent hyperpolarization of the membrane voltage after glucose addition. The hyperpolarization was prevented by the protonophore tetrachlorosalicylanalide (TCS) and by valinomycin, but not by the neutral-exchange ionophore nigericin. Inhibitors of lactate efflux were found to reduce the rate of acidification after glucose addition but they had no effect on the magnitude of the resulting hyperpolarization. On the basis of these and other data we suggest that an active electrogenic pump mechanism for H+ efflux may be activated by glucose and that this mechanism operates independently of the lactate carrier system.  相似文献   

12.
A sucrose gradient fraction was used to characterize the tonoplast ATPase from storage tissue of the sugarcane plant ( Saccharum sp. var. H57–5175). Marker enzyme analyses and characterization of low-density vesicles isolated on a sucrose gradient were consistent with a highly enriched tonoplast fraction. ATPase and proton transport activities were both substantially inhibited by nitrate (80%), but very little by vanadate (10%), indicating a high titer of tonoplast compared to plasma-membrane vesicles in the fraction. Sensitivity toward other inhibitors, as well as ion effects, correlated closely among ATPase and proton translocation activities. Although the vesicles in this fraction showed good proton translocating activity there was no indication that ATP stimulated sucrose uptake in this tonoplast population.  相似文献   

13.
Lysosomes are cytoplasmatic organelles, delimitated by a single lipoprotein membrane, that contain several enzymes mostly belonging to the hydrolases in that they function mainly for intracellular digestion. Lysosomal internal pH is characteristically acidic and it is maintained around pH 4.5 by a proton pump, an ATPase, that uses energy from ATP hydrolysis to translocate H+ ions into lysosomes. In the presence of Al3+ the proton pump activity is markedly reduced compromising acidic vesicles functionality. Among different species utilized, Al2(SO4)3 and AlF3 were the most effective. Aluminum effect was not observed when the delta pH was produced artificially by nigericin.  相似文献   

14.
Trans membrane potential or ionic current changes may play a role in signal transduction and differentiation in the cellular slime mold dictyostelium discoideum. Therefore, the contribution of electrogenic ion pumps to the membrane potential of D. discoideum cells was investigated. the (negative) peak-value of the rapid potential transient, seen upon microelectrode impalement, was used to detect membrane potential changes upon changes in the external pH in the range of 5.5 to 8.0. The membrane potential was close to the Nernstian potential for protons over the pH range 5.5 to 7.5. The acid-induced changes in membrane potential were consistent with outward-proton pumping. The maximal membrane potential was at pH 7.5. Furthermore, the proton pump inhibitors diethylstilbestrol, miconazole and zearalenone directly depolarize the membrane. Cyanide and temperature decrease cause membrane depolarization as well. During recovery from cyanide poisoning a H+ efflux is present. From these measurements we conclude that the membrane potential of d. discoideum cells is mainly generated by an electrogenic proton pump. Measurements in cells with different extracellular potassium and H+ concentrations suggest a role for potassium in the function of the electrogenic proton pump. These results provide a framework for future research towards a possible role for the proton pump in signal transduction and differentiation.  相似文献   

15.
16.
Interaction of anions and ATP with the coated vesicle proton pump   总被引:5,自引:0,他引:5  
H Arai  S Pink  M Forgac 《Biochemistry》1989,28(7):3075-3082
ATP-driven proton transport in intact clathrin-coated vesicles requires the presence of a permeant anion, such as Cl-, to provide charge compensation during the electrogenic movement of protons. Using the purified (H+)-ATPase from clathrin-coated vesicles in both the detergent-solubilized and reconstituted states, we have studied the direct effects of anions on the activity of this enzyme. Both proton transport and ATP hydrolysis by the purified enzyme are independent of the presence of Cl-. In addition, proton transport does not occur even at high Cl- concentrations unless K+ and valinomycin are present to dissipate the membrane potential generated. These results indicate that the anion channel which provides for Cl- flux in intact coated vesicles is not a component of the purified (H+)-ATPase. Inhibition of ATPase activity is observed in the presence of I-, NO3-, or SO4(2-), with 50% inhibition occurring at 350 mM I-, 50 mM NO3-, or 40 mM SO4(2-). The presence of ATP lowers the concentration of I- required for 50% inhibition from 350 mM to 100 mM and increases the maximal inhibition observed in the presence of NO3- from 65% to 100%. Two separate mechanisms appear to be responsible for anion inhibition of the (H+)-ATPase. Thus, I- and high concentrations of NO3- (in the presence of ATP) cause inhibition by dissociation of the (H+)-ATPase complex, while SO4(2-) and NO3- (in the absence of ATP) cause inhibition without dissociation of the complex, suggesting the existence of an inhibitory anion binding site on the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Boulanger L  Girard N  Strecko J  Gaudreau P 《Peptides》2002,23(6):1187-1194
Receptor binding analysis was performed in the renal medulla from 2-month-old rats, an extrapituitary tissue containing the highest level of GHRH receptor mRNA. At 4 degrees C, in the presence of a cocktail of protease inhibitors, binding of [125I-Tyr(10)]hGHRH (1-44)NH(2) to medullary homogenates was specific, time-dependent, reversible and saturable (K(d): 28 nM; B(max): 30 fmol/mgprot.). In these experimental conditions, no change of binding parameters could be detected in the course of aging. The structure-affinity profile was different in the two tissues and chemical cross-linking revealed the presence of 65-, 55- and 38-kDa 125I-GHRH-labeled complexes in the renal medulla compared to 65-, 47- and 28-kDa radioactive complexes in the anterior pituitary. It is suggested that GHRH binding sites, and possibly the receptor, may be different in the two tissues.  相似文献   

18.
Receptor binding analysis was performed in the renal medulla from 2-month-old rats, an extrapituitary tissue containing the highest level of GHRH receptor mRNA. At 4 degrees C, in the presence of a cocktail of protease inhibitors, binding of [125I-Tyr(10)]hGHRH NH(2) to medullary homogenates was specific, time-dependent, reversible and saturable (K(d): 28 nM; B(max): 30 fmol/mg prot.). In these experimental conditions, no change of binding parameters could be detected in the course of aging. The structure-affinity profile was different in the two tissues and chemical cross-linking revealed the presence of 65-, 55- and 38-kDa 125I-GHRH-labeled complexes in the renal medulla compared to 65-, 47- and 28-kDa radioactive complexes in the anterior pituitary. It is suggested that GHRH binding sites, and possibly the receptor, may be different in the two tissues.  相似文献   

19.
20.
This study is aimed both at characterizing an ATPase activity in rat kidney equivalent to the proton pump described in bovine kidney medulla and at localizing this enzyme along the nephron. Membrane fractions isolated from kidney homogenates by differential and density gradient centrifugations were enriched 7-fold in ATPase activity sensitive to N-ethylmaleimide (NEM). These fractions also displayed ATP-dependent proton transport. ATPase activity and proton transport in vesicles had similar pharmacological properties as both were insensitive to vanadate and ouabain and had similar sensitivities toward NEM (apparent Ki = 20 microM) and N,N'-dicyclohexylcarbodiimide (apparent Ki = 50 microM). Proton transport was dependent on chloride availability as chloride addition to the extravesicular medium stimulated proton transport in a dose-dependent fashion (apparent K 1/2 = 7 mM). NEM-sensitive ATPase activity displaying similar pharmacological properties as proton transport in vesicles was also found in single segments of nephron. It was insensitive to vanadate and ouabain, was inhibited by similar concentrations of NEM (apparent Ki = 15-20 microM) and N,N'-dicyclohexylcarbodiimide (apparent Ki = 30 microM), and is therefore likely to be a proton pump. NEM-sensitive ATPase was localized in all the segments of the rat nephron; its activity was highest in proximal convoluted tubules; intermediate in proximal straight tubules, thick ascending limbs, and cortical collecting tubules; and lowest in outer medullary collecting tubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号