首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The difference in colour intensity between flowers of sporogenic revertants of the white flowering lines W17 and W28 is caused by an incompletely dominant gene Inl. This gene is not linked to the anthocyanin gene Anl. In the dominant state Inl causes a 50% decrease in colour intensity of selfcoloured red flowers.Chromatographic analysis of anthocyanins of plants homozygous recessive or dominant for Inl showed that the same anthocyanins are produced in both genotypes (cyanidin-3-glucoside and cyanidin-3-diglucoside). Anthocyanin synthesis starts at the same stage of development of the flower in both genotypes. When the bud reaches a length of approximately 45 mm, however, anthocyanin synthesis in the Inl Inl line slows down.No influence of the gene Inl on the concentration of dihydroquercetin-7-glucoside in buds and flowers could be observed, which indicates that the influence of Inl on flower colour development is restricted to the last part of the biosynthesis of anthocyanins, i.e. the conversion of dihydroflavonols into anthocyanins.In addition to Inl having a decreasing effect on flower colour intensity, evidence is produced that the gene Inl also influences the reversion frequency of unstable alleles of the gene Anl.  相似文献   

2.
3.
In this paper we describe the organization and expression of the genes encoding the flavonoid-biosynthetic enzyme dihydroflavonol-4-reductase (DFR) in Petunia hybrida. A nearly full-size DFR cDNA clone (1.5kb), isolated from a corolla-specific cDNA library was compared at the nucleotide level with the pallida gene from Antirrhinum majus and at the amino acid level with enzymes encoded by the pallida gene and the A1 gene from Zea mays.The P. hybrida and A. majus DFR genes transcribed in flowers contain 5 introns, at identical positions; the three introns of the A1 gene from Z. mays coincide with first three introns of the other two species. P. hybrida line V30 harbours three DFR genes (A, B, C) which were mapped by RFLP analysis on three different chromosomes (IV, II and VI respectively).Steady-state levels of DFR mRNA in the line V30 follow the same pattern during development as chalcone synthase (CHS) and chalcone flavanone isomerase (CHI) mRNA. Six mutants that accumulate dihydroflavonols in mature flowers were subjected to Northern blot analysis for the presence of DFR mRNA. Five of these mutants lack detectable levels of DFR mRNA. Four of these five also show drastically reduced levels of activity for the enzyme UDPG: flavonoid-3-O-glucosyltransferase (UFGT), which carries out the next step in flavonoid biosynthesis; these mutants might be considered as containing lesions in regulatory genes, controlling the expression of the structural genes in this part of the flavonoid biosynthetic pathway. Only the an6 mutant shows no detectable DFR mRNA but a wild-type level for UFGT activity. Since both an6 and DFR-A are located on chromosome IV and DFR-A is transcribed in floral tissues, it is postulated that the An6 locus contains the DFR structural gene. The an9 mutant shows a wild-type level of DFR mRNA and a wild-type UFGT activity.  相似文献   

4.
Summary Forty stable an2-n alleles, derived from the unstable system an2-1, have been tested for anthocyanin synthesis. All of them proved to be different from both the An2 and an2 natural alleles. Only two were distinct from the others which according to Duncan's multiple range test formed a group of overlapping populations. Amongst the variants isolated there was a large majority of light-coloured types. Regulation-like effects of the an2-n alleles on the subsequent genes of the anthocyanin pathway have been observed. A hypothesis concerning the nature of the genetic events occurring at the An2 locus is discussed.  相似文献   

5.
In Petunia hybrida cv. Violet 30 cell suspensions the phenylpropanoid pathway can be induced to produce lignin and anthocyanins. Orthovanadate addition leads to lignin accumulation, subculturing the cells using small inoculum sizes (<2 g fresh weight l-1) gives rise to both anthocyanin and lignin production. Orthovanadate has a negative effect on cell growth. By replacing the medium, one day after orthovanadate addition, by medium without elicitor, we were able to restore growth without disturbing the lignin accumulation. The activity of phenylalanine ammonia-lyase (PAL) increased immediately after orthovanadate addition; this increase stopped upon medium replacement without affecting the lignin production. Reduction of the NAA concentration from 2 mg l-1 to 0.1 mg l-1, subsequent to the elicitation by orthovanadate or dilution stress, gave rise to a further increase in the production of lignin and anthocyanins respectively. Decreasing the NAA concentration without a prior elicitation, didn't have any effect on either PAL activity or product formation.Abbreviations 2,4-D 2,4 dichlorophenoxyacetic acid - BSA bovine serum albumine - FW fresh weight - NAA naphthaleneacetic acid - PAL phenylalanine ammonia-lyase - PPP phenyl propanoid pathway  相似文献   

6.
Cunninghamella elegans degraded tributyltin (TBT) at 20 mg l–1 when grown in Sabouraud medium. Above this concentration, growth was inhibited. After 7 d 70% TBT (added at 10 mg l–1) was converted to less toxic derivatives: dibutyltin and monobutyltin. TBT metabolism was totally blocked by cytochrome P-450 inhibitors, metyrapone and proadifen. Only in medium with 1-aminobenzotriazole, was dibutyltin (0.42 mg l–1) found after 7 d of culturing. It is postulated that the significant resistance of C. elegans to TBT is associated with the capacity of the fungus to metabolise TBT.  相似文献   

7.
Summary Four genes controlling anthocyanin methylation in flowers of Petunia hybrida have been described. Three of them, Mt2, Mf1 and Mf2, caused a dosage effect on anthocyanin methyltransferase activity and degree of methylation of anthocyanins. Antiserum raised against partially purified Mf2-enzyme precipitated three of the four anthocyanin methyltransferases. In two subspecies of one of the ancestral species of P. hybrida: Petunia integrifolia, different anthocyanin methyltransferases were found as determined by immunoprecipitation. The methyltransferase isozymes showed no differences in subcellular or tissue location, and had no physiologically important difference in time course of activity during bud development. The methylation-system in Petunia is discussed with regard to anthocyanin methylation in other plant species.  相似文献   

8.
Hexachlorobenzene (HCB) differs markedly from other chlorinated benzenes (CBs) as an inducer of cytochrome P-450 (P-450) isozymes as determined by radioimmunoassay and immunoblotting. At > 99% pure, HCB induced both the phenobarbital-inducible forms, cytochromes P-450b + e (70X), and the 3-methylcholanthrene-inducible forms, cytochromes P-450c (58X) and P-450d (8X), in rat liver microsomes. The concentration of P-450d was considerably greater than that of P-450c in HCB-induced rat liver. In contrast to HCB, all lower chlorinated benzenes tested were PB-type inducers. Hexachlorobenzene increased the amounts of translatable messenger RNAs (mRNAs) for P-450b, P-450c, and P-450d in rat liver polysomes, suggesting that it increases the synthesis of these proteins. Evidence that HCB interacted with the putative Ah receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was equivocal. Western blots of liver microsomes from Ahresponsive C57BL/6J (B6) and nonresponsive DBA/2J (D2) mice demonstrated that HCB produced a large increase in P3-450 and a very small increase in P1-450 in the responsive strain. The increase in P1-450 was not observed after HCB administration to nonresponsive mice, but a small increase in P3-450 was noted. These findings suggested that HCB may act through the Ah receptor. However, HCB was at best a very weak competitor for specific binding of [3H]-TCDD to the putative receptor in rat or mouse hepatic cytosol in vitro, producing decreases in binding of [3H]-TCDD only at very high concentrations (10?6 to 10?5 M).  相似文献   

9.
Expression of anthocyanin biosynthesis pathway genes in red and white grapes   总被引:26,自引:0,他引:26  
The expression of seven genes from the anthocyanin biosynthesis pathway was determined in different tissues of Shiraz grapevines. All of the tissues contained proanthocyanidins, but only the berry skin accumulated anthocyanins. In most tissues, all of the flavonoid genes except UDP glucose-flavonoid 3-o-glucosyl transferase (UFGT) were expressed, but UFGT expression was only detected in berry skin. Similar patterns of expression were observed in the skin of other red grapes. In white grapes, UFGT expression was not detected. White grape cultivars appear to lack anthocyanins because they lack UFGT, although they also had decreased expression of other flavonoid pathway genes.  相似文献   

10.
Cytochrome P-450 monooxygenases are membrane-bound enzymes involved in a wide range of biosynthetic pathways in plants. An efficient PCR strategy for isolating cytochrome P-450 cDNA clones from plant cDNA libraries is described. A set of degenerate primers for PCR amplification was designed to recognize nucleotide sequences specifying the highly conserved haembinding region of cytochrome P-450 proteins. Using this primer set and a non-specific primer, complementary to either the poly(A) tail of the cDNA clones or a phage vector sequence, we isolated 16 different cytochrome P-450 cDNA sequences from a cDNA library of Catharanthus roseus.  相似文献   

11.
The plant pathogen Nectria haematococca can demethylate pisatin, a phytoalexin from pea. Demethylation is apparently necessary for virulence on pea and is catalyzed by a microsomal cytochrome P-450 monooxygenase system. The cytochrome P-450 and NADPH-cytochrome P-450 reductase of this system were solubilized with sodium cholate and partially purified by chromatography on blue A-agarose and -aminohexyl-agarose. The reductase was further purified by chromatography on 2,5-ADP-agarose to a specific activity of about 16 moles cytochrome c reduced per min per mg protein. Upon sodium dodecyl sulfatepolyacrylamide gel electrophoresis, the reductase fraction contained one major band of molecular weight 84,000. The partially purified cytochrome P-450 fraction contained a number of minor bands and three major bands of molecular weights 52,000, 56,000 and 58,000. This fraction lost all demethylase activity during concentration after -aminohexyl-agarose chromatography, so it could not be purified further. The purified reductase could reconstitute demethylase activity of cytochrome P-450 fractions and appeared to be rate-limiting for demethylase activity in microsomal extracts.  相似文献   

12.
The expression of cytochrome P-450 and cytochrome P-450 reductase (CPR) genes in the conterminous biotransformation of corticosteroids and PAHs was studied in Cunninghamella elegans 1785/21Gp. We had previously used this strain as a microbial eucaryotic model for studying the relationship between mammalian steroid hydroxylation and the metabolization of PAHs. We reported that cytochrome P-450 reductase is involved in the biotransformaton of cortexolone and phenanthrene. RT-PCR and Northern blotting analyses indicated that the cytochrome P-450 and CPR genes appear to be inducible by both steroids and PAHs. The expression of the cytochrome P-450 gene was increased ninefold and the expression of the CPR gene increased 6.4-fold in cultures with cortexolone and/or phenanthrene in comparison with controls. We conclude that the increase in cytochrome P-450 gene expression was accompanied by an increase in cytochrome P-450 enzymatic activity levels.  相似文献   

13.
Alkaloids, which are naturally occurring amines, are biosynthesized and accumulated in plant tissues such as roots, leaves, and stems. Many alkaloids have pharmacological effects on humans and animals. Cytochrome P450 (P450 or CYP) monooxygenases are known to play key roles in the biosynthesis of alkaloids in higher plants. A cDNA clone encoding a P450 protein consisting of 502 amino acids was isolated from Petunia hybrida. The deduced amino acid sequence of the cDNA clone showed a high level of similarity with the other P450 species in the CYP71D family; hence, this novel P450 was named CYP71D14. Among plant P450 species, CYP71D14 had 45.7% similarity in its amino acid sequence to CYP71D12, which is involved in the biosynthesis of the indole alkaloids vinblastine and vincristine. Expression of CYP71D14 mRNA in Petunia plants was examined by Northern blot analysis by using a full-length cDNA of CYP71D14 as a probe. CYP71D14 mRNA was expressed most abundantly in the roots. The nucleotide sequence of CYP71D14 has been submitted to the DDBJ, EMBL, and GenBank nucleotide databases under the accession number AB028462. An erratum to this article can be found at  相似文献   

14.
Transition of n-hexadecane utilizing cultures of Candida maltosa to oxygen-limited growth caused an up to 6-fold increase of the cellular cytochrome P-450 content. Enhanced cytochrome P-450 formation required protein de novo synthesis and was not due to a change of the apo/holo-enzyme ratio as demonstrated by cycloheximide inhibition and immunological quantitation. The effect of low oxygen concentration (pO2=3–5%) was simulated by selective inhibition of alkane hydroxylation with carbon monoxide (at a pO2 of 70–75%). Enhanced cytochrome P-450 formation occurred even when a constant growth rate was maintained through utilization of a second non-repressive growth substrate. However, the presence of n-alkanes was an essential precondition. It was concluded, that the cytochrome P-450 formation was mainly regulated by the intracellular inducer concentration which depends on the relative rates of alkane transport into the cell and the actual alkane hydroxylating activity of the enzyme system.Abbreviation cyt cytochrome  相似文献   

15.
16.
In the present work, the bacterial mannitol-1-phosphodehydrogenase(mtlD) gene was introduced into eggplant(Solanummelongena L.) by Agrobacteriumtumefaciens-mediated transformation. Several transformants weregenerated and the transgene integration was confirmed by PCR, dot blot andSouthern blot analysis. Transgenic lines of T0 and T1generations were examined for tolerance to NaCl-induced salt stress,polyethylene glycol-mediated drought and chilling stress under bothinvitro and in vivo growth conditions. Aconsiderable proportions of transgenic seeds germinated and seedlings grew wellon 200 mM salt-amended MS basal medium, whereas seeds ofuntransformed control plants failed to germinate. Further, leaf explants fromthe transgenics could grow and showed signs of shoot regeneration onsalt-amended MS regeneration medium, whereas wild type did not respond, and infact the explants showed necrosis and loss of chlorophyll after about one week.The transgenic leaves could also withstand desiccation, and transgenics couldgrow well under chilling stress, and hydroponic conditions with salt stress ascompared to wild type plants. Thus, the transgenic lines were found to betolerant against osmotic stress induced by salt, drought and chilling stress.The morphology of the transgenic plants was normal as controls, but thechlorophyll content was higher in some of the lines. These observations suggestthat mtlD gene can impart abiotic stress tolerance ineggplant.  相似文献   

17.
The cytochrome P-450 family of enzymes is the primary means of foreign compound detoxification in virtually all organisms. Cytochrome P-450s have been strongly implicated in the metabolism of cactus alkaloids, and consequently, the observed patterns of host plant utilization by cactophilic species of Drosophila in the Sonoran Desert. The current study looked for evidence of alkaloid-metabolizing P-450 enzymes in a non-cactophilic species, D. melanogaster. The results of in vitro metabolism assays indicate the presence of a phenobarbital-inducible P-450 in adult D. melanogaster which is capable of metabolizing alkaloids. P-450 quantification data suggest that the enhanced level of metabolism is not the result of an overall increase in total P-450 content. Results from larval viability and adult longevity studies indicate that D. melanogaster's in vitro activity does not produce an enhanced in vivo tolerance of alkaloids.  相似文献   

18.
Summary In previous publications from our laboratory, we reported that a soluble, cytochrome P-450-dependent fatty acid monooxygenase from Bacillus megaterium ATCC 14581 can be induced by phenobarbital and a variety of other barbiturates. The tested barbiturates showed an excellent correlation between increasing lipophilicity and increasing inducer potency (Kim BH, Fulco AJ; Biochem Biophys Res Commun 116: 843–850, 1983). The only exception proved to be mephobarbital (N-methylphenobarbital) which, although more lipophilic than phenobarbital, is not an inducer of fatty acid monooxygenase activity. We have now found that 1-[2-phenylbutyryl]-3-methylurea (PBMU), an acylurea that can be derived from mephobarbital by hydrolytic cleavage of the barbiturate ring, is an excellent inducer of this activity. Paradoxically, the addition of mephobarbital to the bacterial growth medium containing PBMU significantly enhances the apparent potency of the acylurea to induce fatty acid monooxygenase activity as measured in cell-free extracts. When cell-free extracts of cells grown separately in PBMU or mephobarbital are mixed no enhancement of activity is seen. This finding suggests that the effect of mephobarbital is to somehow increase the efficiency of PBMU as an inducer of the P-450-dependent fatty acid monooxygenase rather than to induce an activator of this enzyme or a rate-limiting component of the monooxygenase system. Finally, both mephobarbital and PBMU induce the synthesis of total cytochrome P-450 in B. megaterium although PBMU is a much more potent P-450 inducer. For cytochrome P-450 induction, however, there is no synergistic or even additive effect when mephobarbital and PBMU are used together in the bacterial growth medium.Abbreviations PBMU 1-[2-phenylbutyryl]-3-methylurea - M.P. melting point  相似文献   

19.
A relation between gene dosage and UDP-glucose:flavonoid 3-O-glucosyl-transferase (UFGT) activity was found in homozygous dominant and recessive parental lines and their F1 progeny for both of the genes An1 and An2. In both F2 crosses, progeny plants could be classified as belonging to groups showing either a low or a medium to high UFGT activity. Test crosses showed that heterozygous and homozygous dominant plants were present throughout the medium- to high-active group. The dosage relation in F2 plants is most probably confounded by the segregation of modifiers. Thermal inactivation experiments indicated that structurally different UFGT enzymes are formed in homozygous dominant lines as well as in lines homozygous recessive for either An1 or An2. Lines homozygous recessive for the gene An4 contain a UFGT with a half-life time at 55° C of less than 8 min, whereas UFGTs from lines homozygous dominant for An4 show a half-life time of 25 min or above, with one exception. This relation was confirmed in the F2 progeny; heterozygotes for An4 showed an intermediate half-life time. It is concluded that An4 might be the structural gene for the enzyme; An1 and An2 are both regulatory genes. UFGT activity in flowerbuds of An4/An4 plants seems to be lower than in an4/an4 plants. Anthers of flowers of an4/an4 lines, however, are virtually devoid of UFGT activity.  相似文献   

20.
We have analysed the expression of the 8–10 members of the gene family encoding the flavonoid biosynthetic enzyme chalcone synthase (CHS) from Petunia hybrida. During normal plant development only two members of the gene family (CHS-A and CHS-J) are expressed. Their expression is restricted to floral tissues mainly. About 90% of the total CHS mRNA pool is transcribed from CHS-A, wheares CHS-J delivers about 10% in flower corolla, tube and anthers. Expression of CHS-A and CHS-J during flower development is coordinated and (red) light-dependent. In young seedlings and cell suspension cultures expression of CHS-A and CHS-J can be induced with UV light. In addition to CHS-A and CHS-J, expression of another two CHS genes (CHS-B and CHS-G) is induced in young seedlings by UV light, albeit at a low level. In contrast to CHS genes from Leguminoseae, Petunia CHS genes are not inducible by phytopathogen-derived elicitors. Expression of CHS-A and CHS-J is reduced to a similar extent in a regulatory CHS mutant, Petunia hybrida Red Star, suggesting that both genes are regulated by the same trans-acting factors. Comparison of the promoter sequences of CHS-A and CHS-J reveals some striking homologies, which might represent cis-acting regulatory sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号