首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Epigallocatechin-3-gallate (EGCG) is an important bioactive constituent of green tea extract (GTE) that was widely believed to reduce proliferation of many cancer cell lines. The purpose of this study was to verify the possible pro-apoptotic action of GTE/EGCG in human colon adenocarcinoma COLO 205 cells. The effect of EGCG/GTE treatments on cell viability was studied using methyl thiazolyl tetrazolium (MTT) assay. Cell proliferation was assessed with crystal violet staining, whereas protein expression levels were evaluated by western blotting followed by densitometric analysis. Obtained results were analyzed statistically. Surprisingly, EGCG/GTE dose-dependently up-regulated COLO 205 cells viability and proliferation. Observed effects were mediated by lipid rafts, as cholesterol depletion significantly prevented EGCG/GTE-dependent cell survival. Furthermore, treatment of COLO 205 cells with EGCG/GTE resulted in activation of MEK/ERK1/2, but not Akt1/2/GSK-3β signaling pathway. The presence of MEK inhibitor - PD98059 but not PI3-K inhibitor - LY294002, both reduced EGCG/GTE-induced ERK1/2 activation and the proliferative effect of catechins. Furthermore, EGCG/GTE stimulated secretory clusterin (sClu) expression level, which underwent complex control through lipid rafts/PKC/Wnt/β-catenin system. Our studies demonstrated that EGCG and GTE stimulate cell survival and proliferation of COLO 205 cells in a lipid rafts-dependent manner via at least MEK/ERK1/2 signaling pathway. Furthermore, EGCG/GTE mediated positive effects on viability and mitogenicity of COLO 205, while suppression of β-catenin activity was positively correlated with sClu clusterin expression.  相似文献   

3.
目的:探讨NDRG2在热疗诱导的热应激抗肝癌细胞侵袭中所发挥的作用和机制研究。方法:构建NDRG2过表达和干涉表达的HepG-2细胞稳转细胞株,通过Transwell和Western-blot方法检测了和细胞侵袭力和细胞内NDRG2、MMP-2和MMP-9的表达量变化;构建荷瘤鼠模型,通过HE染色及免疫组化方法检测并对比了热对肿瘤细胞向周围肌肉组织的侵袭抑制作用。结果:给予NDRG2过表达的HepG-2细胞45℃、30min热处理后,细胞内NDRG2的表达明显增高,同时伴随细胞侵袭力、MMP-2和MMP-9的表达明显降低(P0.05)。与对照组相比,45℃的局部热作用能有效抑制肿瘤细胞对周围肌肉组织的侵袭,而干涉细胞内NDRG2的表达则降低了热对肿瘤细胞侵袭的抑制。对其机制的研究中发现,给予对照和NDRG2过表达的HepG-2细胞45℃,30min热刺激后,HSP70在热后6h表达量开始升高,而在两个组之间没有显著差异;对照组的HepG-2细胞在给予热处理后ERK1/2的磷酸化水平降低;NDRG2的过表达不仅降低了细胞中ERK1/2的本底水平,还降低了热作用早期对ERK1/2的诱导;进一步分别应用ERK1/2,p38MAPK和JNK三个激酶的抑制剂作用于NDRG2被敲除的HepG-2细胞,经过热处理后ERK1/2抑制剂组可以明显抑制HepG-2细胞的侵袭。结论:热应激所诱导NDRG2的表达量与肝癌细胞的侵袭力呈现一种负相关性;在热应激抗肝癌细胞侵袭的作用中,是通过影响NDRG2-ERK1/2通路而实现的。  相似文献   

4.
The expression of heat shock proteins (HSPs) is known to be increased via activation of heat shock factor 1 (HSF1), and excess expression of HSPs exerts feedback inhibition of HSF1. However, the molecular mechanism to modulate such relationships between HSPs and HSF1 is not clear. In the present study, we show that stable transfection of either Hsp25 or inducible Hsp70 (Hsp70i) increased expression of endogenous HSPs such as HSP25 and HSP70i through HSF1 activation. However, these phenomena were abolished when the dominant negative Hsf1 mutant was transfected to HSP25 or HSP70i overexpressed cells. Moreover, the increased HSF1 activity by either HSP25 or HSP70i was found to result from dephosphorylation of HSF1 on serine 307 that increased the stability of HSF1. Either HSP25 or HSP70i inhibited ERK1/2 phosphorylation because of increased MKP1 phosphorylation by direct interaction of these HSPs with MKP1. Treatment of HOS and NCI-H358 cells, which showed high expressions of endogenous HSF1, with small interfering RNA (siRNA) of either HSP27 (siHSP27)or HSP70i (siHSP70i) inhibited both HSP27 and HSP70i proteins; this was because of increased ERK1/2 phosphorylation and serine phosphorylation of HSF1. The results, therefore, suggested that when the HSF1 protein level was high in cancer cells, excess expression of HSP27 or HSP70i strongly facilitates the expression of HSP proteins through HSF1 activation, resulting in severe radio- or chemoresistance.  相似文献   

5.
6.
To define the mechanism of arsenite-induced tumor promotion, we examined the role of reactive oxygen species (ROS) in the signaling pathways of cells exposed to arsenite. Arsenite treatment resulted in the persistent activation of p70(s6k) and extracellular signal-regulated kinase 1/2 (ERK1/2) which was accompanied by an increase in intracellular ROS production. The predominant produced appeared to be H(2)O(2), because the arsenite-induced increase in dichlorofluorescein (DCF) fluorescence was completely abolished by pretreatment with catalase but not with heat-inactivated catalase. Elimination of H(2)O(2) by catalase or N-acetyl-L-cysteine inhibited the arsenite-induced activation of p70(s6k) and ERK1/2, indicating the possible role of H(2)O(2) in the arsenite activation of the p70(s6k) and the ERK1/2 signaling pathways. A specific inhibitor of p70(s6k), rapamycin, and calcium chelators significantly blocked the activation of p70(s6k) induced by arsenite. While the phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and LY294002 completely abrogated arsenite activation of p70(s6k), ERK1/2 activation by arsenite was not affected by these inhibitors, indicating that H(2)O(2) might act as an upstream molecule of PI3K as well as ERK1/2. Consistent with these results, none of the inhibitors impaired H(2)O(2) production by arsenite. DNA binding activity of AP-1, downstream of ERK1/2, was also inhibited by catalase, N-acetyl-L-cysteine, and the MEK inhibitor PD98059, which significantly blocked arsenite activation of ERK1/2. Taken together, these studies provide insight into mechanisms of arsenite-induced tumor promotion and suggest that H(2)O(2) plays a critical role in tumor promotion by arsenite through activation of the ERK1/2 and p70(s6k) signaling pathways.  相似文献   

7.
In this study, we examined the effect of concurrent low concentrations of sodium arsenite and mild heat shock temperatures on hsp30 and hsp70 gene expression in Xenopus A6 kidney epithelial cells. RNA blot hybridization and immunoblot analysis revealed that exposure of A6 cells to 1–10 µM sodium arsenite at a mild heat shock temperature of 30 °C enhanced hsp30 and hsp70 gene expression to a much greater extent than found with either stress individually. In cells treated simultaneously with 10 µM sodium arsenite and different heat shock temperatures, enhanced accumulation of HSP30 and HSP70 protein was first detected at 26 °C with larger responses at 28 and 30 °C. HSF1 activity was involved in combined stress-induced hsp gene expression since the HSF1 activation inhibitor, KNK437, inhibited HSP30 and HSP70 accumulation. Immunocytochemical analysis revealed that HSP30 was present in a granular pattern primarily in the cytoplasm in cells treated simultaneously with both stresses. Finally, prior exposure of A6 cells to concurrent sodium arsenite (10 µM) and heat shock (30 °C) treatment conferred thermotolerance since it protected them against a subsequent thermal challenge (37 °C). Acquired thermotolerance was not observed with cells treated with the two mild stresses individually.  相似文献   

8.
Constitutive activation of the ERK pathway is associated with the neoplastic phenotype of a relatively large number of human tumor cells. Blockade of the ERK pathway by treatment with PD98059, a specific inhibitor of mitogen-activated protein (MAP) kinase/ERK kinase (MEK), completely suppressed the growth of tumor cells in which the pathway is constitutively activated (RPMI-SE and HT1080 cells). Consistent with its prominent antiproliferative effect, PD98059 induced a remarkable G(1) cell cycle arrest, followed by a modest apoptotic response, in these tumor cells. Selective up-regulation of p27(Kip1) was observed after PD98059 treatment of RPMI-SE and HT1080 cells. Overexpression in RPMI-SE cells of either a kinase-negative form of MEK1 or wild-type MAP kinase phosphatase-3 also induced up-regulation of p27(Kip1). The up-regulation of p27(Kip1) correlated with increased association of p27(Kip1) with cyclin E-cyclin-dependent kinase (CDK) 2 complexes, a concomitant inhibition of cyclin E-CDK2 kinase activity, and a consequent decrease in the phosphorylation state of retinoblastoma protein, which would culminate in the marked G(1) cell cycle arrest observed in these tumor cells. These results suggest that the complete growth suppression that follows specific blockade of the ERK pathway in tumor cells in which the pathway is constitutively activated is mediated by up-regulation of p27(Kip1).  相似文献   

9.
Adiponectin, an abundant adipose tissue-derived protein, exerts protective effect against cardiovascular disease. Adiponectin receptors (AdipoR1 and AdipoR2) mediate the beneficial effects of adiponectin on the cardiovascular system. However, the alteration of AdipoRs in cardiac remodeling is not fully elucidated. Here, we investigated the effect of angiotensin II (AngII) on cardiac AdipoRs expression and explored the possible molecular mechanism. AngII infusion into rats induced cardiac hypertrophy, reduced AdipoR1 but not AdipoR2 expression, and attenuated the phosphorylations of adenosine monophosphate-activated protein kinase and acetyl coenzyme A carboxylase, and those effects were all reversed by losartan, an AngII type 1 (AT1) receptor blocker. AngII reduced expression of AdipoR1 mRNA and protein in cultured neonatal rat cardiomyocytes, which was abolished by losartan, but not by PD123319, an AT2 receptor antagonist. The antioxidants including reactive oxygen species (ROS) scavenger NAC, NADPH oxidase inhibitor apocynin, Nox2 inhibitor peptide gp91 ds-tat, and mitochondrial electron transport chain complex I inhibitor rotenone attenuated AngII-induced production of ROS and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. AngII-reduced AdipoR1 expression was reversed by pretreatment with NAC, apocynin, gp91 ds-tat, rotenone, and an ERK1/2 inhibitor PD98059. Chromatin immunoprecipitation assay demonstrated that AngII provoked the recruitment of c-Myc onto the promoter region of AdipoR1, which was attenuated by PD98059. Moreover, AngII-induced DNA binding activity of c-Myc was inhibited by losartan, NAC, apocynin, gp91 ds-tat, rotenone, and PD98059. c-Myc small interfering RNA abolished the inhibitory effect of AngII on AdipoR1 expression. Our results suggest that AngII inhibits cardiac AdipoR1 expression in vivo and in vitro and AT1 receptor/ROS/ERK1/2/c-Myc pathway is required for the downregulation of AdipoR1 induced by AngII.  相似文献   

10.
Oxidative stress is known to be involved in growth control of vascular smooth muscle cells (VSMCs). We and others have demonstrated that angiotensin II (Ang II) has an important role in vascular remodeling. Several reports suggested that VSMC growth induced by Ang II was elicited by oxidative stress. Gax, growth arrest-specific homeobox is a homeobox gene expressed in the cardiovascular system. Over expression of Gax is demonstrated to inhibit VSMC growth. We previously reported that Ang II down-regulated Gax expression. To address the regulatory mechanism of Gax, we investigated the significance of oxidative stress in Ang II-induced suppression of Gax expression. We further examined the involvement of mitogen-activated protein kinases (MAPKs), which is crucial for cell growth and has shown to be activated by oxidative stress, on the regulation of Gax expression by Ang II. Ang II markedly augmented intracellular H2O2 production which was decreased by pretreatment with N-acetylcystein (NAC), an anti-oxidant. Ang II and H2O2 decreased Gax expression dose-dependently and these effects were blocked by administration of both NAC and pyrrolidine dithiocarbamate (PDTC), another anti-oxidant. Ang II and H2O2 induced marked activation of extracellular signal-responsive kinase1/2 (ERK1/2), which was blocked by NAC. Ang II and H2O2 also activated p38MAPK, and they were blocked by pre-treatment with NAC. However, the level of activated p38MAPK was quite low in comparison with ERK1/2. Ang II- or H2O2 -induced Gax down-regulation was significantly inhibited by PD98059, an ERK1/2 inhibitor but not SB203580, a p38MAPK inhibitor. The present results demonstrated the significance of regulation of Gax expression by redox-sensitive ERK1/2 activation.  相似文献   

11.
We previously reported that overexpression of HSP25 delayed cell growth, increased the level of p21(waf), reduced the levels of cyclin D1, cyclin A and cdc2, and induced radioresistance in L929 cells. In this study, we demonstrated that HSP25 induced-radioresistance was abolished by transfection with plasmids containing antisense hsp25 cDNA. Extracellular regulated kinase (ERK) and MAP kinase/ERK kinase (MEK) expressions as well as their activation (phospho-forms) were inhibited by hsp25 overexpression. Furthermore, when control vector transfected cells were treated with PD98059, MEK inhibitor, they became resistant to radiation, suggesting that inhibition of ERK1/2 activities was essential for radioresistance in L929 cells. To confirm the relationship between ERK1/2 and hsp25-mediated radioresistance, ERK1 or ERK2 cDNA was transiently transfected into the hsp25 overexpressed cells and their radioresistance was examined. HSP25-mediated radioresistance was abolished by overexpression of ERK2, but not by overexpression of ERK1. Alteration of cell cycle distribution and cell cycle related protein expressions (cyclin D, cyclin A and cdc2) by hsp25 overexpression were also recovered by ERK2 cDNA transfection. Increase in Bcl-2 protein by hsp25 gene transfection was also reduced by subsequent ERK2 cDNA-transfection. Taken together, these results suggest that downregulation of ERK2 is essential for the inhibition of radiation-induced cell death in HSP25 overexpressed cells.  相似文献   

12.
13.
Summary Retinoic acid is known to cause the myeloid differentiation and G1/0 cell cycle arrest of HL-60 cells in a process that requires mitogen-activated protein/extracellular signal regulated kinase (MEK)-dependent extracellular signal regulated kinase (ERK)2 activation. It has also been shown that ectopic expression of cFMS, a platelet-derived growth factor (PDGF)-family transmembrane tyrosine kinase receptor, enhances retinoic acid-induced differentiation and G1/0 arrest. The mechanism of how the retinoic acid and cFMS signaling pathways intersect is not known. The present data show that the ectopic expression of cFMS results in the differential loss of sensitivity of retinoic acid-induced differentiation or G1/0 arrest to inhibition of ERK2 activation. PD98059 was used to inhibit MEK and consequently ERK2. In wild-type HL-60 cells, PD98059 blocked retinoic acid-induced differentiation; but in cFMS stable transfectants, PD98059 only attenuated the induced differentiation, with the resulting response resembling that of retinoic acid-treated wild-type HL-60. In wild-type HL-60, PD98059 greatly attenuated the retinoic acid-induced G1/0 arrest allied with retinoblastoma (RB) hypophosphorylation; but in cFMS stable transfectants, PD98059 had no inhibitory effect on RB hypophosphorylation and G1/0 arrest. This differential sensitivity to PD98059 and uncoupling of retinoic acid-induced differentiation and G1/0 arrest in cFMS transfectants is associated with changes in mitogen-activated protein kinase signaling molecules. The cFMS transfectants had more activated ERK2 than did the wild-type cells, which surprisingly was not attributable to enhanced mitogen-activated protein-kinase-kinase-kinase (RAF) phosphorylation. Retinoic acid increased the amount of activated ERK2 and phosphorylated RAF in both cell lines. But PD98059 eliminated detectable ERK2 activation, as well as inhibited RAF phosphorylation, in untreated and retinoic acid-treated wild-type HL-60 and cFMS transfectants, consistent with MEK or ERK feedback-regulation of RAF, in all four cases. Since PD98059 blocks the cFMS-conferred enhancement of the retinoic acid-induced differentiation, but not growth arrest, the data indicate that cFMS-enhanced differentiation acts primarily through MEK and ERK2, but cFMS-enhanced G1/0 arrest allied with RB hypophosphorylation depends on another cFMS signal route, which by itself can effect G1/0 arrest without activated ERK2. Ectopic expression of cFMS and differential sensitivity to ERK2 inhibition thus reveal that retinoic acid-induced HL-60 cell differentiation and G1/0 arrest are differentially dependent on ERK2 and can be uncoupled. A significant unanticipated finding was that retinoic acid caused a MEK-dependent increase in the amount of phosphorylated RAF. This increase may help sustain prolonged ERK2 activation.  相似文献   

14.
15.
We previously showed that prostaglandin D(2) (PGD(2)) stimulates activation of protein kinase C (PKC). We investigated whether PGD(2) stimulates the induction of heat shock protein (HSP) 27 and HSP70 in osteoblast-like MC3T3-E1 cells and the mechanism underlying the induction. PGD(2) increased the levels of HSP27 while having little effect on HSP70 levels. PGD(2) stimulated the accumulation of HSP27 dose dependently in the range between 10 nM and 10 microM. PGD(2) induced an increase in the levels of mRNA for HSP27. The PGD(2)-stimulated accumulation of HSP27 was reduced by staurosporine or calphostin C, inhibitors of PKC. PGD(2) induced the phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase. The HSP27 accumulation induced by PGD(2) was significantly suppressed by PD98059, an inhibitor of the upstream kinase of p44/p42 MAP kinase, or SB203580, an inhibitor of p38 MAP kinase. Calphostin C suppressed the PGD(2)-induced phosphorylation of p44/p42 MAP kinase and p38 MAP kinase. PD98059 or SB203580 suppressed the PGD(2)-increased levels of mRNA for HSP27. These results strongly suggest that PGD(2) stimulates HSP27 induction through p44/p42 MAP kinase activation and p38 MAP kinase activation in osteoblasts and that PKC acts at a point upstream from both the MAP kinases.  相似文献   

16.
17.
In this study we examined the function of heat shock protein 70 (HSP70) in the hyperosmolarity-induced apoptotic pathway using hsp70.1-/-mouse embryonic fibroblasts (MEFs). When the cells were exposed to hyperosmotic stress, an absence of HSP70 negatively affected cell viability. Caspase-9 and caspase-3 were rapidly activated, and extensive cleavage occurred in focal adhesion and cytoskeletal molecules in the hsp70.1-/-MEFs. In contrast, hsp70.1+/+ MEFs exhibited no caspase-9 or caspase-3 activation and finally recovered intact cell morphology when cells were shifted back to an isosmotic state. Because HSP70 might be involved in the regulation of mitogen-activated protein kinase (MAPK) activities with regard to various cellular activities, we also monitored MAPK phosphorylation. The absence of HSP70 affected c-Jun N-terminal kinase phosphorylation. However, it had no effect on p38. Sustained phosphorylation of extracellular signal-regulated kinase (ERK) was observed during the hyperosmolarity-induced apoptosis of hsp70.1-/-MEFs. Inhibition of ERK activity by the treatment of PD98059 accelerated the apoptotic pathway. ERK phosphorylation was precisely correlated with shift of mitogen-activated protein kinase phosphatase-3 from the soluble to insoluble fraction. Our results demonstrate that the inhibitory effect of HSP70 on caspase-3 activation is sufficient to inhibit apoptosis and that HSP70 exhibits regulatory functions to c-Jun N-terminal kinase and ERK phosphorylation in hyperosmolarity-induced apoptosis.  相似文献   

18.
Nitric oxide (NO) regulates the expression of p21(Waf1/Cip1) in several cell types. The present study examined the role of both the extracellular signal-regulated kinase (ERK) and p70 S6 kinase (p70(S6k)) in the NO-induced increase in p21 expression that occurred in adventitial fibroblasts during the cell cycle. Both ERK and p70(S6k) were phosphorylated in response to the NO donor S-nitroso-N-acetylpenicillamine (SNAP) and the activation was rapid, transient, and preceded increased p21 expresion under defined conditions where serum was present. Addition of a selective inhibitor of ERK phosphorylation (PD98059) prevented the subsequent phosphorylation of p70(S6k) and the increase in p21 protein. Both cGMP and cAMP activated both ERK and p70(S6k), whereas only selective inhibitors of protein kinase G prevented the activation of the kinases by SNAP. A complex between ERK and p70(S6k) was documented by immunoprecipitation procedures. Rapamycin blocked p70(S6k) phosphorylation induced by NO and also inhibited p53 phosphorylation and p21 expression whereas PD98059 only prevented the NO-induced increase in p21 protein without influencing either p53 activation or p21 mRNA expression. The studies show a unique relationship between NO, ERK, and p70(S6k) and also provide evidence for a novel role of p70(S6k) in the activation of p53.  相似文献   

19.
The functional role of mitogen-activated protein kinase (MAPK) signaling and c-Jun induction in phorbol 12-myristate 13-acetate (PMA)-induced human 12(S)-lipoxygenase gene expression was studied in human epidermoid carcinoma A431 cells. Among the family of MAPK, PMA only increased the activity of extracellular signal-regulated kinase (ERK). Treatment of cells with PD98059, which is an inhibitor of mitogen-activated protein kinase kinase (MEK), decreased the PMA-induced expression of 12(S)-lipoxygenase. Transfection of cells with Ras, Raf and ERK2 dominant negative mutants inhibited the PMA-induced promoter activation of the 12(S)-lipoxygenase gene in all cases. PMA-induced expression of c-Jun was inhibited by pretreatment with PD98059. Following treatment with PMA, the interaction between c-Jun and simian virus 40 promoter factor 1 (Sp1) in cells increased with time. Enhancement of binding between the c-Jun-Sp1 complex and the Sp1 oligonucleotide was observed in cells treated with PMA, suggesting the possible interaction of c-Jun-Sp1 with GC-rich binding sites in the gene promoter. These results indicate that PMA treatment induced ERK activation mainly through the Raf-MEK-ERK signaling pathway following induction of c-Jun expression, and the formation of the c-Jun-Sp1 complex. Finally, PMA activated the promoter activity of the 12(S)-lipoxygenase gene in cells overexpressing protein kinase C (PKC)delta but not PKCalpha, indicating that PKCdelta played the functional role in mediating the gene activation of 12(S)-lipoxygenase induced by PMA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号