首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 710 毫秒
1.
Romanovsky, Andrej A., and Clark M. Blatteis. Heatstroke: opioid-mediated mechanisms. J. Appl.Physiol. 81(6): 2565-2570, 1996.In our previousstudy in guinea pigs, intensive and prolonged intraperitoneal heating(IPH) caused heat stroke characterized by high mortality andaccompanied by two paradoxical phenomena: ear skin vasoconstriction ata high body temperature (Tb)(hyperthermia-induced vasoconstriction) and a post-IPHTb fall at an ambient temperature (Ta) below thermoneutrality(hyperthermia-induced hypothermia). In this study, we tested thehypothesis that the mechanisms of the two phenomena involve endogenousopioid agonists. Experiments were conducted in 24 unanesthetized,lightly restrained guinea pigs, each chronically implanted with anintraperitoneal thermode and intrahypothalamic thermocouple. Thethermoregulatory effects of a wide-spectrum opioid-receptor antagonist,naltrexone (NTX; 50 or 0 µmol/kg sc), were studied in IPH-inducedheat stroke and under normal conditions. IPH was accomplished byperfusing (50 ml/min; 80 min) water (45°C) through the thermode.Ta was maintained at ~24°C.Skin vasodilation occurred at the onset of IPH but later changed tovasoconstriction despite high Tband continuing IPH. IPH-induced hyperthermia (1.8 ± 0.1°C) was followed by a post-IPH Tb fall (5.1 ± 0.7°C; calculated for the survivors only). The 48-h mortality ratewas 50%. NTX prevented the hyperthermia-induced vasoconstriction andattenuated the hyperthermia-induced hypothermia (1.8 ± 0.4°C). None of the NTX-treated animals died. The effects of NTX onTb regulation under normalconditions were minor. These results indicate that the phenomena ofboth hyperthermia-induced vasoconstriction and hyperthermia-inducedhypothermia are opioid dependent. The latter is speculated to reflectopioid-mediated inhibition of metabolism; the former is thought toresult from opioid-induced hemodynamic alterations. Because bothphenomena did not occur in the NTX-treated survivors, the skinvasoconstriction at high Tb andthe posthyperthermia Tb fall maybe viewed as markers of the severity of heat stroke. It is suggestedthat opioid antagonists may have therapeutic potential in heat-induceddisorders.

  相似文献   

2.
The body temperature (T b) of Cape ground squirrels (Xerus inauris, Sciuridae) living in their natural environment during winter has not yet been investigated. In this study we measured abdominal T b of eight free-ranging Cape ground squirrels over 27 consecutive days during the austral winter. Mean daily T b was relatively stable at 37.0 ± 0.2°C (range 33.4 to 40.2°C) despite a marked variation in globe temperature (T g) (range −7 to 37°C). Lactating females (n = 2) consistently had a significantly higher mean T b (0.7°C) than non-lactating females (n = 3) and males. There was a pronounced nychthemeral rhythm with a mean active phase T b of 38.1 ± 0.1°C and a mean inactive phase T b of 36.3 ± 0.3°C for non-lactating individuals. Mean daily amplitude of T b rhythm was 3.8 ± 0.2°C. T b during the active phase closely followed T g and mean active phase T b was significantly correlated with mean active phase T g (r 2 = 0.3–0.9; P < 0.01). There was no evidence for daily torpor or pronounced hypothermia during the inactive phase, and mean minimum inactive phase T b was 35.7 ± 0.3°C for non-lactating individuals. Several alternatives (including nocturnal huddling, an aseasonal breeding pattern and abundant winter food resources) as to why Cape ground squirrels do not employ nocturnal hypothermia are discussed.  相似文献   

3.
We examined the relationship between body temperature (Tb) of free flying pigeons and ambient water vapor pressure and temperature. Core or near core Tb of pigeons were measured using thermistors inserted into the cloaca and connected to small transmitters mounted on the tail feathers of free flying tippler pigeons (Columba livia). Wet and dry bulb temperatures were measured using modified transmitters mounted onto free-flying pigeons. These allowed calculation of relative humidity and hence water vapor pressure at flight altitudes. Mean Tb during flight was 42.0 ± 1.3 °C (n = 16). Paired comparisons of a subset of this data indicated that average in-flight Tb increased significantly by 1.2 ± 0.7 °C (n = 7) over that of birds at rest (t = −4.22, P < 0.05, n = 7) within the first 15 min of takeoff. In addition, there was a small but significant increase in Tb with increasing ambient air (Ta) when individuals on replicate flights (n = 35) were considered. Inclusion of water vapor pressure into the regression model did not improve the correlation between body temperature and ambient conditions. Flight Tb also increased a small (0.5 °C) but significant amount (t = 2.827, P < 0.05, n = 8) from the beginning to the end of a flight. The small response of Tb to changing flight conditions presumably reflects the efficiency of convection as a heat loss mechanism during sustained regular flight. The increase in Tb on landing that occurred in some birds was a probable consequence of a sudden reduction in convective heat loss. Accepted: 2 February 1999  相似文献   

4.
Two species of the genus Acomys coexist in arid zones of southern Israel. Acomys russatus is distributed in extremely arid areas, while A. cahirinus is common in both Mediterranean and arid regions. Individuals of both species from a rodent community in the Ein Gedi Nature Reserve were implanted with temperature-sensitive transmitters. Body temperature (T b) rhythms were recorded in free-ranging mice at four different seasons of the year. A. cahirinus (30–45 g) showed a nocturnal rhythm of T b throughout the year. In the activity phase during the night T b increased to 38.2°C. During the day T b decreased to 34°C. This species displayed this pattern in summer also when ambient temperatures rose above T b. The T b of A. russatus (45–65 g) varied between 34.8 and 41°C during the hot season, showing a bimodal temperature rhythm with maximal values in the morning and in the evening. Measurements of activity in this species showed inactivity during the hottest period of a summer day. In winter A. russatus showed no clearly detectable diurnal or ultradian rhythm in T b, which remained constant between narrow limits of 35.2 and 36.8°C. Received: 21 December 1998 / Accepted: 15 March 1999  相似文献   

5.
This study compares the thermal ecology of male bearded dragon lizards (Pogona barbata) from south-east Queensland across two seasons: summer (1994–1995) and autumn (1995). Seasonal patterns of body temperature (T b) were explored in terms of changes in the physical properties of the thermal environment and thermoregulatory effort. To quantify thermoregulatory effort, we compared behavioral and physiological variables recorded for observed lizards with those estimated for a thermoconforming lizard. The study lizards' field T bs varied seasonally (summer: grand daily mean (GDM) 34.6 ± 0.6°C, autumn: GDM 27.5 ± 0.3°C) as did maximum and minimum available operative temperatures (summer: GDM T max 42.1 ± 1.7°C, T min 32.2 ± 1.0°C, autumn: GDM T max 31.7 ± 1.2°C, T min 26.4 ± 0.5°C). Interestingly, the range of temperatures that lizards selected in a gradient (selected range) did not change seasonally. However, P. barbata thermoregulated more extensively and more accurately in summer than in autumn; lizards generally displayed behaviors affecting heat load nonrandomly in summer and randomly in autumn, leading to the GDM of the mean deviations of lizards' field T bs from their selected ranges being only 2.1 ± 0.5°C in summer, compared to 4.4 ± 0.5°C in autumn. This seasonal difference was not a consequence of different heat availability in the two seasons, because the seasonally available ranges of operative temperatures rarely precluded lizards from attaining field T bs within their selected range, should that have been the goal. Rather, thermal microhabitat distribution and social behavior appear to have had an important influence on seasonal levels of thermoregulatory effort. Received: 28 April 1997 / Accepted: 29 December 1997  相似文献   

6.
 This study evaluates the effect of different levels of insulation on esophageal (T es) and rectal (T re) temperature responses during and following moderate exercise. Seven subjects completed three 18-min bouts of treadmill exercise (75% VO2max, 22°C ambient temperature) followed by 30 min of recovery wearing either: (1) jogging shoes, T-shirt and shorts (athletic clothing); (2) single-knit commercial coveralls worn over the athletic clothing (coveralls); or (3) a Canadian Armed Forces nuclear, bacteriological and chemical warfare protective overgarment with hood, worn over the athletic clothing (NBCW overgarment). T es was similar at the start of exercise for each condition and baseline T re was ∼0.4°C higher than T es. The hourly equivalent rate of increase in T es during the final 5 min of exercise was 1.8°C, 3.0°C and 4.2°C for athletic clothing, coveralls and NBCW overgarment respectively (P<0.05). End-exercise T es was significantly different between conditions [37.7°C (SEM 0.1°C), 38.2°C (SEM 0.2°C and 38.5°C (SEM 0.2°C) for athletic clothing, coveralls and NBCW overgarment respectively)] (P<0.05). No comparable difference in the rate of temperature increase for T re was demonstrated, except that end-exercise T re for the NBCW overgarment condition was significantly greater (0.5°C) than that for the athletic clothing condition. There was a drop in T es during the initial minutes of recovery to sustained plateaus which were significantly (P<0.05) elevated above pre-exercise resting values by 0.6°C, 0.8°C and 1.0°C, for athletic clothing, coveralls, and NBCW overgarment, respectively. Post-exercise T re decreased very gradually from end-exercise values during the 30-min recovery. Only the NBCW overgarment condition T re was significantly elevated (0.3°C) above the athletic clothing condition (P<0.05). In conclusion, T es is far more sensitive in reflecting the heat stress of different levels of insulation during exercise and post-exercise than T re. Physiological mechanisms are discussed as possible explanations for the differences in response. Received: 30 June 1998 / Accepted: 19 February 1999  相似文献   

7.
J. Schmid 《Oecologia》2000,123(2):175-183
Patterns and energetic consequences of spontaneous daily torpor were measured in the gray mouse lemur (Microcebus murinus) under natural conditions of ambient temperature and photoperiod in a dry deciduous forest in western Madagascar. Over a period of two consecutive dry seasons, oxygen consumption (VO2) and body temperature (T b) were measured on ten individuals kept in outdoor enclosures. In all animals, spontaneous daily torpor occurred on a daily basis with torpor bouts lasting from 3.6 to 17.6 h, with a mean torpor bout duration of 9.3 h. On average, body temperatures in torpor were 17.3±4.9°C with a recorded minimum value of 7.8°C. Torpor was not restricted to the mouse lemurs’ diurnal resting phase: entries occurred throughout the night and arousals mainly around midday, coinciding with the daily ambient temperature maximum. Arousal from torpor was a two-phase process with a first passive, exogenous heating where the T b of animals increased from the torpor T b minimum to a mean value of 27.1°C before the second, endogenous heat production commenced to further raise T b to normothermic values. Metabolic rate during torpor (28.6±13.2 ml O2 h–1) was significantly reduced by about 76% compared to resting metabolic rate (132.6±50.5 ml O2 h–1). On average, for all M. murinus individuals measured, hypometabolism during daily torpor reduced daily energy expenditure by about 38%. In conclusion, all these energy-conserving mechanisms of the nocturnal mouse lemurs, with passive exogenous heating during arousal from torpor, low minimum torpor T bs, and extended torpor bouts into the activity phase, comprise an important and highly adapted mechanism to minimize energetic costs in response to unfavorable environmental conditions and may play a crucial role for individual fitness. Received: 8 July 1999 / Accepted: 3 December 1999  相似文献   

8.
Some mammals indigenous to desert environments, such as camels, cope with high heat load by tolerating an increase in body temperature (T b) during the hot day, and by dissipating excess heat during the cooler night hours, i.e., heterothermy. Because diurnal heat storage mechanisms should be favoured by large body size, we investigated whether this response also exists in Asian elephants when exposed to warm environmental conditions of their natural habitat. We compared daily cycles of intestinal T b of 11 adult Asian elephants living under natural ambient temperatures (T a) in Thailand (mean T a ~ 30°C) and in 6 Asian elephants exposed to cooler conditions (mean T a ~ 21°C) in Germany. Elephants in Thailand had mean daily ranges of T b oscillations (1.15°C) that were significantly larger than in animals kept in Germany (0.51°C). This was due to both increased maximum T b during the day and decreased minimum T b at late night. Elephant’s minimum T b lowered daily as T a increased and hence entered the day with a thermal reserve for additional heat storage, very similar to arid-zone ungulates. We conclude that these responses show all characteristics of heterothermy, and that this thermoregulatory strategy is not restricted to desert mammals, but is also employed by Asian elephants.  相似文献   

9.
Information regarding passerine heterothermy and torpor is scant, although many species are small and must cope with a fluctuating food supply and presumably would benefit from energy savings afforded by torpor. We studied whether insectivorous Dusky Woodswallows (Artamus cyanopterus; ∼35 g) enter spontaneous torpor (food ad libitum) when held outdoors as a pair in autumn/winter. Woodswallows displayed pronounced and regular daily fluctuations in body temperature (T b) over the entire study period. The mean T b ranged from ∼39°C to 40°C (photophase, day time) and ∼33°C to 36°C (scotophase, night time). However, on 88% of bird nights, nocturnal T b minima fell to < 35°C. The lowest T b observed in air was 29.2°C. However, when a bird fell into water its T b dropped further to ∼22°C; this T b was regulated for several hours and the bird survived. Our observations suggest that heterothermy is a normal part of the daily thermal regime for woodswallows to minimise energy expenditure. Spontaneous nocturnal torpor in captive woodswallows suggests that torpor in the wild may be more pronounced than recorded here because free-living birds are likely challenged by both low food availability and adverse weather.  相似文献   

10.
Body temperature (T b) of seven European hamsters maintained at constant ambient temperature (T a = 8 °C) and constant photoperiod (LD 8:16) was recorded throughout the hibernating season using intraperitoneal temperature-sensitive HF transmitters. The animals spent about 30% of the hibernation season in hypothermia and 70% in inter-bout normothermy. Three types of hypothermia, namely deep hibernation bouts (DHBs), short hibernation bouts (SHBs), and short and shallow hibernation bouts (SSHBs), were distinguished by differences in bout duration and minimal body temperature (T m). A gradual development of SSHBs from the diel minimum of T b during normothermy could be seen in individual hamsters, suggesting a stepwise decrease of the homeostatic setpoint of T b regulation during the early hibernation season. Entry into hibernation followed a 24-h rhythm occurring at preferred times of the day in all three types of hypothermia. DHBs and SHBs were initiated approximately 4 h before SSHBs, indicating a general difference in the physiological initiation of SSHBs on the one hand and DHBs and SHBs on the other. Arousals from SHBs and SSHBs also followed a 24-h rhythm, whereas spontaneous arousals from DHBs were widely scattered across day and night. Statistical analyses of bout length and the interval between arousals revealed evidence for a free-running circadian rhythm underlying the timing of arousals. The results clearly demonstrate that entries into hypothermia are linked to the light/dark-cycle. However, the role of the circadian system in the timing of arousals from DHBs remains unclear. Accepted: 11 December 1996  相似文献   

11.
Field data showing the daily patterns in body temperature (T b) of kangaroos in hot, arid conditions, with and without water, indicate the use of adaptive heterothermy, i.e. large variation in T b. However, daily T b variation was greater in the Eastern Grey Kangaroo (Macropus giganteus), a species of mesic origin, than in the desert-adapted Red Kangaroo (Macropus rufus). The nature of such responses was studied by an examination of their thermal adjustments to dehydration in thermoneutral temperatures (25°C) and at high temperature (45°C) via the use of tame, habituated animals in a climate chamber. At the same level of dehydration M. rufus was less impacted, in that its T b changed less than that for M. giganteus while it evaporated significantly less water. At a T a of 45°C with water restriction T b reached 38.9 ± 0.3°C in M. rufus compared with 40.2 ± 0.4°C for M. giganteus. The ability of M. rufus to reduce dry conductance in the heat while dehydrated was central to its superior thermal control. While M. giganteus showed more heterothermy, i.e. its T b varied more, this seemed due to a lower tolerance of dehydration in concert with a strong thermal challenge. The benefits of heterothermy to M. giganteus were also limited because of thermal (Q10) effects on metabolic heat production and evaporative heat loss. The impacts of T b on heat production were such that low morning T b’s seen in the field may be associated with energy saving, as well as water saving. Kangaroos respond to dehydration and heat similarly to many ungulates, and it is apparent that the accepted notions about adaptive heterothermy in large desert mammals may need revisiting.  相似文献   

12.
The lesser mouse lemur, a small Malagasy primate, is exposed to strong seasonal variations in ambient temperature and food availability in its natural habitat. To face these environmental constraints, this nocturnal primate exhibits biological seasonal rhythms that are photoperiodically driven. To determine the role of daylength on thermoregulatory responses to changes in ambient temperature, evaporative water loss (EWL), body temperature (T b) and oxygen consumption, measured as resting metabolic rate (RMR), were measured in response to ambient temperatures ranging from 5 °C to 35 °C, in eight males exposed to either short (10L:14D) or long (14L:10D) daylengths in controlled captive conditions. In both photoperiods, EWL, T b and RMR were significantly modified by ambient temperatures. Exposure to ambient temperatures below 25 °C was associated with a decrease in T b and an increase in RMR, whereas EWL remained constant. Heat exposure caused an increase in T b and heat loss through evaporative pathways. Thermoregulatory responses to changes in ambient temperature significantly differed according to daylength. Daily variations in T b and EWL were characterized by high values during the night. During the diurnal rest, lower values were found and a phase of heterothermia occurred in the early morning followed by a spontaneous rewarming. The amplitude of T b decrease with or without the occurrence of torpor (T b < 33 °C) was dependent on both ambient temperature and photoperiod. This would support the hypothesis of advanced thermoregulatory processes in mouse lemurs in response to selective environmental pressure, the major external cue being photoperiodic variations. Accepted: 4 August 1998  相似文献   

13.
We evaluated biotic and abiotic predictors of rest-phase hypothermia in wintering blue tits (Cyanistes caeruleus) and also assessed how food availability influences nightly thermoregulation. On any given night, captive blue tits (with unrestricted access to food) remained largely homeothermic, whereas free-ranging birds decreased their body temperature (T b) by about 5°C. This was not an effect of increased stress in the aviary as we found no difference in circulating corticosterone between groups. Nocturnal T b in free-ranging birds varied with ambient temperature, date and time. Conversely, T b in captive birds could not be explained by climatic or temporal factors, but differed slightly between the sexes. We argue that the degree of hypothermia is controlled predominantly by birds’ ability to obtain sufficient energy reserves during the day. However, environmental factors became increasingly important for thermoregulation when resources were limited. Moreover, as birds did not enter hypothermia in captivity when food was abundant, we suggest that this strategy has associated costs and hence is avoided whenever resource levels permit.  相似文献   

14.
Endotherms allocate large amounts of energy and water to the regulation of a precise body temperature (Tb), but can potentially reduce thermoregulatory costs by allowing Tb to deviate from normothermic levels. Many data on heterothermy at low air temperatures (Ta) exist for caprimulgids, whereas data on thermoregulation at high Ta are largely absent, despite members of this taxon frequently roosting and nesting in sites exposed to high operative temperatures. We investigated thermoregulation in free‐ranging rufous‐cheeked nightjars Caprimulgus rufigena and freckled nightjars Caprimulgus tristigma in the southern African arid zone. Individuals of both species showed labile Tb fluctuating around a single modal Tb (Tb‐mod). Average Tb‐mod was 39.7°C for rufous‐cheeked nightjars and 39.0°C for freckled nightjars. In both species, diurnal Tb increased with increasing Ta. At Ta ≥ 38°C, rufous‐cheeked nightjar mean Tb increased to 42°C, equivalent to 2.3°C above Tb‐mod. Under similar conditions, freckled nightjar Tb was on average only 1.1°C above Tb‐mod, with a mean Tb of 40.0°C. Freckled nightjars are one of the most heterothermic caprimulgids investigated to date, but our data suggest that during hot conditions this species maintains Tb within a narrow range above Tb‐mod, possibly reflecting an evolutionary tradeoff between decreased thermal sensitivity to lower Tb but increased sensitivity to high Tb. These findings reveal how general thermoregulatory patterns at similar Ta can vary even among closely related species.  相似文献   

15.
The use of hypothermia as a means to save energy is well documented in birds. This energy‐saving strategy is widely considered to occur exclusively at night in diurnally active species. However, recent studies suggest that facultative hypothermia may also occur during the day. Here, we document the use of daytime hypothermia in foraging Black‐capped Chickadees Poecile atricapillus wintering in eastern Canada. We measured the body temperature (Tb) of 126 individuals (plus 48 repeated measures) during a single winter and related values to ambient temperature (Ta) at the time of capture. We also tested whether daytime hypothermia was correlated with the size of body reserves (residuals of mass on structural size and fat score) and levels of metabolic performance (basal metabolic rate and maximum thermogenic capacity). We found that Tb of individual birds was lower when captured at low Ta, reaching values as low as 35.5 °C in actively foraging individuals. Tb was unrelated to metabolic performance or measures of body reserves. Therefore, daytime hypothermia does not result from individuals being unable to maintain Tb during cold spells or to a lack of body reserves. Our data also demonstrated a high level of individual variation in the depth of hypothermia, the causes of which remain to be explored.  相似文献   

16.
Animals typically respond to stressful stimuli such as handling by increasing core body temperature. However, small birds in cold environments have been found to decrease body temperature (Tb) when handled over longer periods, although there are no data extending beyond the actual handling event in such birds. We therefore measured both the initial Tb decrease during ringing and standardized Tb sampling, and subsequent recovery of Tb after this handling protocol in wild Great Tits Parus major roosting in nestboxes in winter. Birds reduced their Tb by 2.3 °C during c. 4 min of handling. When birds were returned to their nestboxes after handling, Tb decreased by a further 1.9 °C over c. 2 min, reaching a Tb of 34.6 °C before taking 20 min to rewarm to 2.5 °C above their initial Tb. The Tb reduction during handling could be a consequence of increased heat loss rate from disrupted plumage insulation, whereas Tb reduction after handling might reflect reduced heat production. These are important factors to consider when handling small birds in the cold.  相似文献   

17.
Data on thermal energetics for vespertilionid bats are under-represented in the literature relative to their abundance, as are data for bats of very small body mass. Therefore, we studied torpor use and thermal energetics in one of the smallest (4 g) Australian vespertilionids, Vespadelus vulturnus. We used open-flow respirometry to quantify temporal patterns of torpor use, upper and lower critical temperatures (T uc and T lc) of the thermoneutral zone (TNZ), basal metabolic rate (BMR), resting metabolic rate (RMR), torpid metabolic rate (TMR), and wet thermal conductance (C wet) over a range of ambient temperatures (T a). We also measured body temperature (T b) during torpor and normothermia. Bats showed a high proclivity for torpor and typically aroused only for brief periods. The TNZ ranged from 27.6°C to 33.3°C. Within the TNZ T b was 33.3±0.4°C and BMR was 1.02±0.29 mlO2 g−1 h−1 (5.60±1.65 mW g−1) at a mean body mass of 4.0±0.69 g, which is 55 % of that predicted for a 4 g bat. Minimum TMR of torpid bats was 0.014±0.006 mlO2 g−1 h−1 (0.079±0.032 mW g−1) at T a=4.6±0.4°C and T b=7.5±1.9. T lc and C wet of normothermic bats were both lower than that predicted for a 4 g bat, which indicates that V. vulturnus is adapted to minimising heat loss at low T a. Our findings support the hypothesis that vespertilionid bats have evolved energy-conserving physiological traits, such as low BMR and proclivity for torpor.  相似文献   

18.
The relationship between body temperature and the hunting response (intermittent supply of warm blood to cold exposed extremities) was quantified for nine subjects by immersing one hand in 8°C water while their body was either warm, cool or comfortable. Core and skin temperatures were manipulated by exposing the subjects to different ambient temperatures (30, 22, or 15°C), by adjusting their clothing insulation (moderate, light, or none), and by drinking beverages at different temperatures (43, 37 and 0°C). The middle finger temperature (T fi) response was recorded, together with ear canal (T ear), rectal (T re), and mean skin temperature ( sk). The induced mean T ear changes were −0.34 (0.08) and +0.29 (0.03)°C following consumption of the cold and hot beverage, respectively. sk ranged from 26.7 to 34.5°C during the tests. In the warm environment after a hot drink, the initial finger temperature (T fi,base) was 35.3 (0.4)°C, the minimum finger temperature during immersion (T fi,min) was 11.3 (0.5)°C, and 2.6 (0.4) hunting waves occurred in the 30-min immersion period. In the neutral condition (thermoneutral room and beverage) T fi,base was 32.1 (1.0)°C, T fi,min was 9.6 (0.3)°C, and 1.6 (0.2) waves occurred. In the cold environment after a cold drink, these values were 19.3 (0.9)°C, 8.7 (0.2)°C, and 0.8 (0.2) waves, respectively. A colder body induced a decrease in the magnitude and frequency of the hunting response. The total heat transferred from the hand to the water, as estimated by the area under the middle finger temperature curve, was also dependent upon the induced increase or decrease in T ear and sk. We conclude that the characteristics of the hunting temperature response curve of the finger are in part determined by core temperature and sk. Both T fi,min and the maximal finger temperature during immersion were higher when the core temperature was elevated; sk seemed to be an important determinant of the onset time of the cold-induced vasodilation response. Accepted: 29 April 1997  相似文献   

19.
A wet suit may not provide adequate thermal protection when diving in moderately cold water (17–18°C), and any resultant mild hypothermia may impair performance during prolonged diving. We studied heat exchange during a dive to a depth of 5 m in sea water (17–18.5°C) in divers wearing a full wet suit and using closed-circuit oxygen breathing apparatus. Eight fin swimmers dived for 3.1 h and six underwater scooter (UWS) divers propelled themselves through the water for 3.7 h. The measurements taken throughout the dive were the oxygen pressure in the cylinder and skin and rectal temperatures (T re). Each subject also completed a cold score questionnaire. The T re decreased continuously in all subjects. Oxygen consumption in the fin divers (1.40 l · min−1) was higher than that of the UWS divers (1.05 l · min−1). The mean total insulation was 0.087°C · m2 · W−1 in both groups. Mean body insulation was 37% of the total insulation (suit insulation was 63%). The reduction in T re over the 1st hour was related to subcutaneous fat thickness. There was a correlation between cold score and T re at the end of 1 h, but not after that. A full wet suit does not appear to provide adequate thermal protection when diving in moderately cold water. Accepted: 21 January 1997  相似文献   

20.
Little is known about torpor in the tropics or torpor in megachiropteran species. We investigated thermoregulation, energetics and patterns of torpor in the northern blossom-bat Macroglossus minimus (16 g) to test whether physiological variables may explain why its range is limited to tropical regions. Normothermic bats showed a large variation in body temperature (T b) (33 to 37 °C) over a wide range of ambient temperatures (T as) and a relatively low basal metabolic rate (1.29 ml O2 g−1 h−1). Bats entered torpor frequently in the laboratory at T as between 14 and 25 °C. Entry into torpor always occurred when lights were switched on in the morning, independent of T a. MRs during torpor were reduced to about 20–40% of normothermic bats and T bs were regulated at a minimum of 23.1 ± 1.4 °C. The duration of torpor bouts increased with decreasing T a in non-thermoregulating bats, but generally terminated after 8 h in thermoregulating torpid bats. Both the mean minimum T b and MR of torpid M. minimus were higher than that predicted for a 16-g daily heterotherm and the T b was also about 5 °C higher than that of the common blossom-bat Syconycteris australis, which has a more subtropical distribution. These observations suggest that variables associated with torpor are affected by T a and that the restriction to tropical areas in M. minimus to some extent may be due to their ability to enter only very shallow daily torpor. Accepted: 22 September 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号