首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mouse alpha-lactalbumin gene has been replaced with the human gene by two consecutive rounds of gene targeting in hypoxanthine phosphoribosyltransferase (HPRT)-deficient feeder-independent murine embryonic stem (ES) cells. One mouse alpha-lactalbumin allele was first replaced by an HPRT minigene which was in turn replaced by human alpha-lactalbumin. The end result is a clean exchange of defined DNA fragments with no other DNA remaining at the target locus. Targeted ES cells at each stage remained capable of contributing efficiently to the germ line of chimeric animals. Double replacement using HPRT-deficient ES cells and the HPRT selection system is therefore a powerful and flexible method of targeting specific alterations to animal genes. A typical strategy for future use would be to generate a null mutation which could then be used to produce multiple second-step alterations at the same locus.  相似文献   

2.
Human artificial chromosomes (HACs) are alternative vectors that promise to overcome problematic transgene expression often occurring with conventional vectors in mammalian cells and bodies. We have successfully generated HACs by multimerization of a cloned long alphoid stretch in a human cell line, HT1080. Furthermore, we developed technologies for cloning large genomic regions into HACs by means of co-transfection of clones with the alphoid array and clones encoding the genomic region of interest. The purpose of this study was to investigate the mitotic and meiotic stability of such HACs in mouse cells and bodies. We transferred a circular HAC containing the guanosine triphosphate cyclohydrolase I gene (GCH1-HAC) and a linear HAC containing the human globin gene cluster (globin-HAC) from HT1080 cells into mouse embryonic stem (ES) cells by microcell-mediated chromosome transfer. The HACs were stably maintained in mouse ES cells for 3 months. GCH1-HACs in every ES cell line and globin-HACs in most ES cell lines maintained their structures without detectable rearrangement or acquisition of mouse genomic DNA except one globin-HAC in an ES cell line rearranged and acquired mouse-type centromeric sequences and long telomeres. Creation of chimeric mice using ES cells containing HAC and subsequent crossing showed that both the globin-HAC that had rearranged and acquired mouse type centromeric sequences/long telomeres and GCH1-HACs were retained in tissues of mice and transmitted to progeny. These results indicate that human artificial chromosomes constructed using the bottom-up strategy based on alphoid DNA are stable in mouse bodies and are transmissible.  相似文献   

3.
We have characterized the expression of the human zeta (zeta) gene, which encodes an embryonic alpha-like globin, in transgenic mice. We find that a 777 base pair fragment spanning erythroid specific hypersensitive site II (HSII) from the distal 5. region of the human beta globin gene cluster potentiates expression of the zeta globin gene. In the absence of the HSII fragment, no zeta expression is observed. Expression of the human zeta gene in mice parallels expression of a murine embryonic alpha-like globin gene (x). Thus, expression of the human zeta gene in mice requires linkage to an erythroid-specific enhancer sequence, but the presence of the enhancer does not affect the developmental regulation of the transgene. Our results indicate that the factors involved in switching from embryonic to adult alpha globin gene expression during development are evolutionarily conserved, and suggest that the transgenic mouse is an in vivo system in which the requirements for the developmental switch in alpha globin gene expression can be analyzed in detail.  相似文献   

4.
5.
Forsyth S  Horvath A  Coughlin P 《Genomics》2003,81(3):336-345
The major human plasma protease inhibitors, alpha(1)-antitrypsin and alpha(1)-antichymotrypsin, are each encoded by a single gene, whereas in the mouse they are represented by clusters of 5 and 14 genes, respectively. Although there is a high degree of overall sequence similarity within these groupings, the reactive-center loop (RCL) domain, which determines target protease specificity, is markedly divergent. The literature dealing with members of these mouse serine protease inhibitor (serpin) clusters has been complicated by inconsistent nomenclature. Furthermore, some investigators, unaware of the complexity of the family, have failed to distinguish between closely related genes when measuring expression levels or functional activity. We have reviewed the literature dealing with the mouse equivalents of human alpha(1)-antitrypsin and alpha(1)-antichymotrypsin and made use of the recently completed mouse genome sequence to propose a systematic nomenclature. We have also examined the extended mouse clade "a" serpin cluster at chromosome 12F1 and compared it with the syntenic region at human chromosome 14q32. In summarizing the literature and suggesting a standardized nomenclature, we aim to provide a logical structure on which future research may be based.  相似文献   

6.
The central region of mouse Chromosome (Chr) 8, containing the myodystrophy (myd) locus, is syntenic with human Chr 4q28-qter. The human neuromuscular disorder facioscapulohumeral muscular dystrophy (FSHD) maps to Chr 4q35, and myd has been proposed as a mouse homolog of FSHD. We have employed a comparative mapping approach to investigate this relationship further by extending the mouse genetic map of this region. We have ordered 12 genes in a single cross, 8 of which have human homologs on 4q28-qter. The results confirm a general relationship between the most distal genes on human 4q and the most proximal genes in the mouse 8 syntenic region. Despite chromosomal rearrangements of syntenic groups in this region, conservation of gene order is maintained between the group of genes in the human telomeric region of 4q35 and MMU8. Furthermore, this conserved telomeric HSA4q35 syntenic group maps proximal to the myd mutation and is flanked by genes with homologs on HSA8p22. At the proximal boundary of the MMU8 linkage group we have identified a single 300-kb YAC containing the genes Frgl and Pcml, which have human homologs on 4q35 and 8p22, respectively. Thus, this YAC spans an evolutionary chromosomal breakpoint. As well as providing clues about chromosomal evolution, this map of the FSHD syntenic mouse region should prove invaluable in the isolation of candidate genes for this disease. Received: 20 January 1998 / Accepted: 10 April 1998  相似文献   

7.
8.
9.
Allelic variation in the mouse beta globin gene complex (Hbb) produces structurally different beta globins in different mouse strains. Like humans, mice with HbbS alleles produce a single beta globin with one reactive cysteine (beta Cys93). In contrast, mice with HbbD alleles produce two structurally different beta globins, each containing an additional cysteine (beta Cys13). beta Cys93 forms mixed disulfides with glutathione and plays a pivotal role in the activities of hemoglobin, glutathione, and nitric oxide. Similar roles for mouse beta Cys13 have not been described. We used capillary electrophoresis to compare reduced glutathione (GSH), glutathione disulfide (GSSG), and S-glutathionyl hemoglobin levels in erythrocytes from inbred C57BL/6J (homozygous HbbS/S) and 129S1/SvImJ (homozygous HbbD/D) mice and their homozygous and heterozygous B6129S/F2J hybrid offspring. S-glutathionyl hemoglobin was nearly undetectable in inbred or hybrid mice with only monocysteinyl beta globins (HbbS/S) but represented up to 10% of total hemoglobin in mice with polycysteinyl beta globins (HbbS/D or HbbD/D). The stepwise increase in beta globin sulfhydryl group concentration in HbbS/S, HbbS/D, and HbbD/D F2 mice was associated with increasing hemoglobin-bound glutathione and decreasing free glutathione (GSH + GSSG) concentrations. Total erythrocyte glutathione (GSH + GSSG + hemoglobin-bound) was not significantly different between groups. In vitro studies showed that beta Cys13 in mouse HbbD beta globins was more susceptible to disulfide exchange with GSSG than beta Cys93. We conclude that reactive beta globin sulfhydryl group concentration is genetically determined in mice, and that polycysteinyl beta globins markedly influence intraerythrocyte glutathione distribution between free and hemoglobin-bound compartments. Although Hbb heterozygosity and polycysteinyl beta globins are common in wild mouse populations, all common human beta globins contain only one reactive cysteine, and homozygosity is the norm. These fundamental differences in mouse and human beta globin genetics have important implications for the study of mouse biology and for the use of some mouse strains as models for humans.  相似文献   

10.
R Anand  J Lindstrom 《Genomics》1992,13(4):962-967
We have determined the chromosomal location of seven human neuronal nicotinic acetylcholine receptor subunit genes by genomic Southern analysis of hamster/human somatic cell hybrid DNAs. The beta 2 subunit gene was localized to human chromosome 1, the alpha 2 and beta 3 subunit genes were localized to human chromosome 8, the alpha 3, alpha 5, and beta 4 subunit genes were localized to human chromosome 15, and the alpha 4 subunit gene was localized to human chromosome 20. Mapping of the beta 2 subunit gene to chromosome 1 establishes a syntenic group with the amylase gene locus on human chromosome 1 and mouse chromosome 3, while mapping of the alpha 3 subunit gene to chromosome 15 confirms the existence of a syntenic group with the mannose phosphate isomerase gene locus on human chromosome 15 and mouse chromosome 9.  相似文献   

11.
We have ligated two cosmids through an oligonucleotide linker to produce a single fragment spanning 70 kb of the human alpha-globin cluster, in which the alpha-like globin genes (zeta 2, alpha 2 and alpha 1), their regulatory element (HS-40) and erythroid-specific DNase I hypersensitive sites accurately retain their normal genomic organization. The zeta (embryonic) and alpha (embryonic, fetal and adult) globin genes were expressed in all 17 transgenic embryos. Similarly, all fetal and adult mice from seven transgenic lines that contained one or more copies of the fragment, produced up to 66% of the level of endogenous mouse alpha-globin mRNA. However, as for smaller constructs containing these elements, human alpha-globin expression was not copy number dependent and decreased by 1.5-9.0 fold during development. These findings suggest that either it is not possible to obtain full regulation of human alpha-globin expression in transgenic mice or, more likely, that additional alpha-globin regulatory elements lie beyond the 70 kb segment of DNA analysed.  相似文献   

12.
13.
Recombinase-mediated cassette exchange (RMCE), when applied to mouse embryonic stem (ES) cells, promises to increase the ease with which genetic alterations can be introduced into targeted genomic loci in the mouse. However, existing selection strategies for identifying ES cells in which replacement DNA cassettes from a carrier plasmid have been exchanged correctly into a defined locus are suboptimal. Here, we report the generation in mouse ES cells of a loxed cassette acceptor (LCA) allele within the glucokinase (gk) gene locus. Using the gkLCA as a test allele, we developed a staggered positive-negative selection strategy that facilitates efficient identification of ES cell clones in which a DNA replacement cassette from a carrier plasmid has been exchanged correctly into the gkLCA allele. This selection strategy, by facilitating more efficient production of ES cell clones with various replacement DNA cassettes, should accelerate targeted repetitive introduction of gene modifications into the mouse.  相似文献   

14.
15.
16.
DNAs from cow-hamster and cow-mouse somatic hybrid cells segregating bovine chromosomes have been analyzed by Southern blotting and hybridization with human fibronectin and gamma crystallin probes. Concordancy of retention of these bovine genes was compared to cattle isozyme loci representing previously described syntenic groups. Bovine fibronectin (FNI) and gamma crystallin (CRYG) fragments were concordant with each other and with isocitrate dehydrogenase 1 (IDH1), representing the bovine syntenic group U17. The syntenic relationship of these genes is conserved on human chromosome 2q and also on mouse chromosome 1. In addition, bovine RFLPs were identified with both fibronectin and gamma crystallin probes. These polymorphisms will be used to study recombination between the syntenic loci in pedigreed herds and to mark a segment of the bovine genome that is likely homologous to the Lsh region of mouse chromosome 1, which confers resistance in mice to several intracellular parasites.  相似文献   

17.
18.
In order to study the relationships among mammalian alpha-globin genes, we have determined the sequence of the 3' flanking region of the human alpha 1 globin gene and have made pairwise comparisons between sequenced alpha-globin genes. The flanking regions were examined in detail because sequence matches in these regions could be interpreted with the least complication from the gene duplications and conversions that have occurred frequently in mammalian alpha-like globin gene clusters. We found good matches between the flanking regions of human alpha 1 and rabbit alpha 1, human psi alpha 1 and goat I alpha, human alpha 2 and goat II alpha, and horse alpha 1 and goat II alpha. These matches were used to align the alpha-globin genes in gene clusters from different mammals. This alignment shows that genes at equivalent positions in the gene clusters of different mammals can be functional or nonfunctional, depending on whether they corrected against a functional alpha-globin gene in recent evolutionary history. The number of alpha-globin genes (including pseudogenes) appears to differ among species, although highly divergent pseudogenes may not have been detected in all species examined. Although matching sequences could be found in interspecies comparisons of the flanking regions of alpha- globin genes, these matches are not as extensive as those found in the flanking regions of mammalian beta-like globin genes. This observation suggests that the noncoding sequences in the mammalian alpha-globin gene clusters are evolving at a faster rate than those in the beta-like globin gene clusters. The proposed faster rate of evolution fits with the poor conservation of the genetic linkage map around alpha-globin gene clusters when compared to that of the beta-like globin gene clusters. Analysis of the 3' flanking regions of alpha-globin genes has revealed a conserved sequence approximately 100-150 bp 3' to the polyadenylation site; this sequence may be involved in the expression or regulation of alpha-globin genes.   相似文献   

19.
We have analysed the effect of a 1.4 kb segment of DNA containing the upstream alpha globin regulatory element (HS-40) on human alpha globin gene expression in fetal mice and lines of transgenic mice. High levels of tissue-specific, human alpha mRNA expression were seen in all transgenic animals and in this sense expression was position independent. However, the level of human alpha mRNA expression per integrated gene copy decreased during development and was inversely related to copy number. The limitation in expression with increasing gene copy number was shown to be in cis since homozygotes for the transgene produced twice as much human alpha mRNA as hemizygotes. In many respects HS -40 appears similar to single elements within the previously described beta globin locus control region and in cross breeding experiments we have shown that HS -40 behaves in a similar manner to such elements in transgenic mice.  相似文献   

20.
Located in different chromatin contexts and with different developmental switching mode, human alpha- and beta-globin gene clusters are co-regulated temporally and quantitatively to keep balanced expression. Here, by exchanging their key upstream regulatory elements (UREs) in cluster level, and investigating the expression level of exogenous globin genes in the bacterial artificial chromosome (BAC) mediated transgenic mice, we explored the similarities and differences in the regulatory effects between alpha-upstream regulatory element (alpha-URE) and beta-locus control region (beta-LCR). The results showed that, after exchange, the developmental switching modes of human alpha- and beta-like globin genes had changed, with lost expression of epsilon- and alpha1-genes. Their expression levels also decreased. Our study suggests that the regulation of alpha-URE and beta-LCR on the expression level and developmental switching mode of downstream globin genes is cluster specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号