共查询到20条相似文献,搜索用时 0 毫秒
1.
Endocytosis of cadherin from intracellular junctions is the driving force for cadherin adhesive dimer disassembly
下载免费PDF全文

The adhesion receptor E-cadherin maintains cell-cell junctions by continuously forming short-lived adhesive dimers. Here mixed culture cross-linking and coimmunoprecipitation assays were used to determine the dynamics of adhesive dimer assembly. We showed that the amount of these dimers increased dramatically minutes after the inhibition of endocytosis by ATP depletion or by hypertonic sucrose. This increase was accompanied by the efficient recruitment of E-cadherin into adherens junctions. After 10 min, when the adhesive dimer amount had reached a plateau, the assembly of new dimers stalled completely. These cells, in a striking difference from the control, became unable to disintegrate both their intercellular contacts and adhesive dimers in response to calcium depletion. The same effects, but after a slightly longer time course, were obtained using acidic media, another potent approach inhibiting endocytosis. These data suggest that endocytosis is the main pathway for the dissociation of E-cadherin adhesive dimers. Its inhibition blocks the replenishment of the monomeric cadherin pool, thereby inhibiting new dimer formation. This suggestion has been corroborated by immunoelectron microscopy, which revealed cadherin-enriched coated pit-like structures in close association with adherens junctions. 相似文献
2.
In the course of a freeze-cleave study on intercellular junctions in the regenerating rat liver, we observed an unusual array of intramembranous particles located in regions of contact between endothelial cells lining the hepatic sinusoids. These arrays were characterized by an accumulation of particles which resembled a zonula occludens in their linear deployment but differed in that the contact regions were composed of individual particles which remained separated from each other by regular particle-free intervals. 相似文献
3.
We investigated changes in cadherin structure at the cell surface that regulate its adhesive activity. Colo 205 cells are nonadhesive cells with a full but inactive complement of E-cadherin-catenin complexes at the cell surface, but they can be triggered to adhere and form monolayers. We were able to distinguish the inactive and active states of E-cadherin at the cell surface by using a special set of monoclonal antibodies (mAbs). Another set of mAbs binds E-cadherin and strongly activates adhesion. In other epithelial cell types these activating mAbs inhibit growth factor-induced down-regulation of adhesion and epithelial morphogenesis, indicating that these phenomena are also controlled by E-cadherin activity at the cell surface. Both types of mAbs recognize conformational epitopes at different interfaces between extracellular cadherin repeat domains (ECs), especially near calcium-binding sites. Activation also induces p120-catenin dephosphorylation, as well as changes in the cadherin cytoplasmic domain. Moreover, phospho-site mutations indicate that dephosphorylation of specific Ser/Thr residues in the N-terminal domain of p120-catenin mediate adhesion activation. Thus physiological regulation of the adhesive state of E-cadherin involves physical and/or conformational changes in the EC interface regions of the ectodomain at the cell surface that are mediated by catenin-associated changes across the membrane. 相似文献
4.
5.
Junctions formed by skeletal muscles where they adhere to tendons, called myotendinous junctions, are sites of tight adhesion and where forces generated by the cell are placed on the substratum. In this regard, myotendinous junctions and focal contacts of fibroblasts in vitro are analogues. Talin is a protein located at focal contacts that may be involved in force transmission from actin filaments to the plasma membrane. This study investigates whether talin is also found at myotendinous junctions. Protein separations on SDS polyacrylamide gels and immunolabeling procedures show that talin is present in skeletal muscle. Immunofluorescence microscopy using anti-talin indicates that talin is found concentrated at myotendinous junctions and in lesser amounts in periodic bands over nonjunctional regions. Electron microscopic immunolabeling shows talin is a component of the digitlike processes of muscle cells that extend into tendons at myotendinous junctions. These findings indicate that there may be similarities in the molecular composition of focal contacts and myotendinous junctions in addition to functional analogies. 相似文献
6.
James G. Tidball 《Experimental cell research》1992,199(2):206-212
Myofibrils are linked to the cell membrane at myotendinous junctions located at the ends of muscle fibers, and at costameres, sites positioned periodically along lateral surfaces of muscle cells. Both of these sites are enriched in proteins that link active components of myofibrils to the cell membrane. Costameres are also enriched in desmin intermediate filaments that link passive components of myofibrils to the lateral surfaces of muscle cells. In this study, the possibility that desmin is also found between the terminal Z-disk of myofibrils and the myotendinous junction membrane is examined by immunocytochemistry and by KI-extraction procedures. Data presented show that desmin is located in the filamentous core of cellular processes at myotendinous junctions at sites 30 nm or more from the membrane. This core lies deep to subsarcolemmal material previously shown to contain talin, vinculin, and dystrophin. The distance from desmin to the membrane suggests desmin does not interact directly with membrane proteins at the junction. Immunoblots and indirect immunofluorescence of junctional regions of muscle compared to nonjunctional regions show no apparent enrichment of desmin at junctional sites, although vinculin, another costameric and junctional component, is significantly enriched at junctional regions. These findings show that passive elements of myofibrils may be continuous from myotendinous junctions of muscle origin to insertion via desmin filaments located between terminal Z-disks and the junctional membrane. This can provide a system in parallel to that involving thin filaments, vinculin, and talin for linking myofibrils to the cell membrane at myotendinous junctions. 相似文献
7.
Identification of a cadherin cell adhesion recognition sequence 总被引:23,自引:1,他引:23
The molecular mechanisms by which the cadherins interact with one another to promote cell adhesion have not been elucidated. In particular, the amino acid sequences of the cadherin cell adhesion recognition sites have not been determined. Here we demonstrate that synthetic peptides containing the sequence HAV, which is common to all of the cadherins, inhibit two processes (compaction of eight-cell-stage mouse embryos and rat neurite outgrowth on astrocytes) that are known to be mediated by cadherins. The data suggest that the tripeptide HAV is a component of a cadherin cell adhesion recognition sequence. 相似文献
8.
《The Journal of cell biology》1996,135(3):767-779
Molecular mechanisms linking pre- and postsynaptic membranes at the interneuronal synapses are little known. We tested the cadherin adhesion system for its localization in synapses of mouse and chick brains. We found that two classes of cadherin-associated proteins, alpha N- and beta-catenin, are broadly distributed in adult brains, colocalizing with a synaptic marker, synaptophysin. At the ultrastructural level, these proteins were localized in synaptic junctions of various types, forming a symmetrical adhesion structure. These structures sharply bordered the transmitter release sites associated with synaptic vesicles, although their segregation was less clear in certain types of synapses. N-cadherin was also localized at a similar site of synaptic junctions but in restricted brain nuclei. In developing synapses, the catenin-bearing contacts dominated their junctional structures. These findings demonstrate that interneuronal synaptic junctions comprise two subdomains, transmitter release zone and catenin-based adherens junction. The catenins localized in these junctions are likely associated with certain cadherin molecules including N-cadherin, and the cadherin/ catenin complex may play a critical role in the formation or maintenance of synaptic junctions. 相似文献
9.
Haidari M Zhang W Chen Z Ganjehei L Mortazavi A Warier N Vanderslice P Dixon RA 《Experimental cell research》2012,318(14):1673-1684
Vascular endothelial cadherin (VE-cad) tyrosine (Tyr) phosphorylation has been implicated in the disruption of adherens junctions (AJs) induced by inflammatory reactions. The impacts of statins on integrity of AJs and VE-cad Tyr phosphorylation have not been explored. The effects of atorvastatin on IL-1β and monocyte-induced VE-cad Tyr phosphorylation in human umbilical vein endothelial cells (ECs) were studied. In ECs treated with interleukin (IL)-1β for 30 min, VE-cad Tyr phosphorylation, dissociation of the VE-cad/β-catenin complex and transendothelial migration (TEM) of monocytes were increased. These processes were mediated by activation of HRas and RhoA that leads to phosphorylation of myosin light chain (MLC). Atorvastatin inhibited IL-1β-induced Tyr phosphorylation of VE-cad by inhibiting RhoA and by dephosphorylating MLC. The attenuating effect of atorvastatin on VE-cad Tyr phosphorylation was reversed when RhoA was activated or MLC phosphatase was inhibited. Furthermore, inhibiting farnesyl transferase or geranylgeranyl transferase reproduced the inhibitory effects of atorvastatin on VE-cad Tyr phosphorylation. In addition, atorvastatin inhibited monocyte-induced VE-cad Tyr phosphorylation in ECs and attenuated IL-1β-induced TEM of monocytes. Our study introduces a novel pleiotropic effect of atorvastatin and suggests that statins protect the integrity of AJs in ECs by inhibiting RhoA-mediated Tyr phosphorylation of VE-cad. 相似文献
10.
The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha- catenin with vascular endothelial cadherin (VE-cadherin) 总被引:15,自引:4,他引:15
下载免费PDF全文

《The Journal of cell biology》1995,129(1):203-217
In this paper we report that the assembly of interendothelial junctions containing the cell type-specific vascular endothelial cadherin (VE- cadherin or cadherin-5) is a dynamic process which is affected by the functional state of the cells. Immunofluorescence double labeling of endothelial cells (EC) cultures indicated that VE-cadherin, alpha- catenin, and beta-catenin colocalized in areas of cell to cell contact both in sparse and confluent EC monolayers. In contrast, plakoglobin became associated with cell-cell junctions only in tightly confluent cells concomitantly with an increase in its protein and mRNA levels. Furthermore, the amount of plakoglobin coimmunoprecipitated with VE- cadherin, increased in closely packed monolayers. Artificial wounding of confluent EC monolayers resulted in a major reorganization of VE- cadherin, alpha-catenin, beta-catenin, and plakoglobin. All these proteins decreased in intensity at the boundaries of EC migrating into the lesion. In contrast, EC located immediately behind the migrating front retained junctional VE-cadherin, alpha-catenin, and beta-catenin while plakoglobin was absent from these sites. In line with this observation, the amount of plakoglobin coimmunoprecipitated with VE- cadherin decreased in migrating EC. These data suggest that VE- cadherin, alpha-catenin, and beta-catenin are already associated with each other at early stages of intercellular adhesion and become readily organized at nascant cell contacts. Plakoglobin, on the other hand, associates with junctions only when cells approach confluence. When cells migrate, this order is reversed, namely, plakoglobin dissociates first and, then, VE-cadherin, alpha-catenin, and beta-catenin disassemble from the junctions. The late association of plakoglobin with junctions suggests that while VE-cadherin/alpha-catenin/beta- catenin complex can function as an early recognition mechanism between EC, the formation of mature, cytoskeleton-bound junctions requires plakoglobin synthesis and organization. 相似文献
11.
Dhein S 《Peptides》2002,23(9):1701-1709
Gap junction channels are low resistance pathways allowing an action potential to propagate from one cell to the neighboring. Moreover, small molecules (<1000 Da) may pass the channel providing a possibility for metabolic coupling, growth and differentiation control of a cell by its surrounding. Antiarrhythmic peptides can enhance the conductivity of the channels while other peptides, angiotensin or extracellular loop peptides, reduce intercellular communication. On the other hand, peptides like angiotensin II or endothelin-1 can increase expression of certain gap junction channel proteins and, thereby, may affect intercellular coupling chronically. Thus, intercellular communication can be controlled using peptide drugs. 相似文献
12.
Cadherin-actin interactions at adherens junctions 总被引:1,自引:0,他引:1
Yonemura S 《Current opinion in cell biology》2011,23(5):515-522
The adherens junction (AJ) is a major cell-cell junction that mediates cell recognition, adhesion, morphogenesis, and tissue integrity. Although AJs transmit forces generated by actomyosin from one cell to another, AJs have long been considered as an area where signal transduction from cadherin ligation takes place through cell adhesion. Through the efforts to understand embryonic or cellular morphogenesis, dynamic interactions between the AJ and actin filaments have become crucial issues to be addressed since actin association is essential for AJ development, remodeling and function. Here, I provide an overview of cadherin-actin interaction from morphological aspects and of possible molecular mechanisms revealed by recent studies. 相似文献
13.
Gavard J Marthiens V Monnet C Boscher C Lambert M Mège RM 《Journal de la Société de Biologie》2004,198(4):365-374
Juxtacrine cell interactions associated to cadherin-mediated cell-cell adhesion play a major role in the organization and homeostasis of tissues. Here, we review the intracellular molecules and regulations controlling the formation of cell-cell contacts initiated by homophilic interactions of cadherin ectodomain. These regulations involve proteins associated to cadherin cytoplasmic tail, named catenins, their association to the actin cytoskeleton and the stability of these complexes at the cell membrane. The underlying molecular mechanisms, which participate in the formation of dynamic cell-cell contacts, are intensively investigated. 相似文献
14.
Facilitation at crayfish neuromuscular junctions 总被引:1,自引:0,他引:1
George D. Bittner V. Lawrence Sewell 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1976,109(3):287-308
Electrophysical recordings from opener muscle fibers in the crayfishProcambarus clarkii (Fig. 1) show that pre-synaptic facilitation at terminals of the single excitatory axon usually decays in a dual-exponential fashion after a single pulse or after a train of pulses (Figs. 2, 3, 7, 9), as has been reported for frog neuromuscular junctions (Mallart and Martin, 1967) and squid giant synapses (Charlton and Bittner, 1974, 1976). Furthermore, the second component of decay at crayfish synapses is associated with a break in the monotonic decay of the first component, a result which suggests that the decay of facilitation is not due to the simple diffusion of some substance (such as calcium) from specialized release sites.The growth of facilitation at all opener synapses during trains of equalinterval stimuli could not be predicted by assuming that each pulse contributed an equal amount of facilitation which summed linearly with that remaining from all previous stimuli (Figs. 4, 6; Table 2), as reported for synapses in frog and squid. During high frequency stimulation (>40 Hz), those terminals which facilitate dramatically (highF
e synapses) show much greater amounts of facilitation than that predicted by the linear summation model (Figs. 4, 8), whereas other terminals (lowF
e synapses) show much less facilitation than predicted (Fig. 6). The rate of growth of facilitation was often very constant at various stimulus rates in highF
e or mixed type synapses (Figs. 4, 8, 10)-a result not predicted by the linear summation model. Finally, when highF
e synapses were stimulated at different frequencies, the rate of growth of facilitation changed dramatically in a fashion not predictable using linear summation (Mallert and Martin, 1967) or power law (Linder, 1974) models. 相似文献
15.
Chen Q Lipkina G Song Q Kramer RH 《Biochemical and biophysical research communications》2004,315(4):850-856
Cadherins are cell adhesion molecules that modulate the epithelial phenotype and regulate tumor invasion. To identify the role of promoter methylation in regulating E-cadherin expression and in the "switching" of cadherins in oral squamous cell carcinoma (SCC), we studied 14 cell lines for cadherin expression. Immunoblotting revealed that only two (HOC-313 and HA-376) showed strong up-regulation of N-cadherin, and neither expressed E-cadherin. These results were confirmed by PCR. Furthermore, analysis of genomic DNA showed that the lack of E-cadherin expression in the two cell lines was not due to gene deletion. In both cell lines, methylation-specific PCR indicated extensive methylation of the 5' CpG island in the E-cadherin promoter. After treatment with a DNA methylation inhibitor (5-Aza-2-deoxycytidine), both immunoblotting and immunofluorescence staining showed that HA-376 cells newly expressed E-cadherin with a parallel decrease in their N-cadherin expression. Multiplex RT-PCR demonstrated that the down-regulation of N-cadherin mRNA was coordinately regulated with E-cadherin expression. Thus, methylation of the 5' CpG island in the E-cadherin promoter induces reciprocal expression of E- and N-cadherins in oral SCC by an unknown mechanism that appears to be mediated at the level of N-cadherin gene expression. These events may play an important role in the regulation of tumor cell mobility and invasion. 相似文献
16.
17.
18.
Structural changes at the myogenic cell surface during the formation of myotendinous junctions 总被引:6,自引:0,他引:6
Summary Myotendinous junctions are sites which are morphologically and molecularly specialized for force transmission between intracellular and extracellular structural proteins. In the present investigation, the formation of these specialized junctions is studied in chicken embryos from 9 days following fertilization to 1 day posthatching, using light and electron microscopy. Observations indicate that the first discernible event in myotendinous junction formation is the appearance of basement membrane at the incipient junction at 9–10 days postfertilization, concomitant with the aggregation of fibroblasts at the junctional regions of myogenic cells. Subsequently, subsarcolemmal densities appear at sites opposite basement membrane locations by 13 days postfertilization. Myofibrils insert into subsarcolemmal densities by day 15 and invaginations of the cell membrane are initiated at those insertions. Type I collagen fibers appear at the cell surface at day 17. Junctional structure at day 17 qualitatively resembles that of adult myotendinous junctions. Changes in junctional structure following day 17 are primarily increases in the amount of subsarcolemmal densities, myofibril-membrane associations, and amount of junctional membrane folding. 相似文献
19.
Cadherins are a group of homophilic intercellular adhesion molecules; each member of this family exhibits binding specificity. Here, we attempted to map the sites for the specificities of these molecules by analyzing adhesives selectivities of the cells that express chimeric and point-mutated E- and P-cadherin. The results showed that the amino-terminal 113 amino acid region is essential to determine the specificities, and within this region we could identify especially important sites in which amino acid substitutions altered the binding specificity of cadherins. We also found that the epitopes for antibodies capable of blocking cadherin action are located in this amino-terminal region. 相似文献
20.
Cadherins are a group of functionally related glycoproteins responsible for the Ca2+-dependent cell-cell adhesion mechanism. They are divided into subclasses, such as E-, P- and N-cadherin, which are distinct in immunological specificities and tissue distribution. Cell aggregation experiments suggest that these molecules have subclass specificities in cell-cell binding and are involved in selective cell adhesions. Analysis of amino acid sequences deduced from the nucleotide sequences of cDNAs encoding cadherins demonstrated that they are integral membrane proteins and share common sequences throughout their entire length; average similarity in the sequences among them is in a range of 50–60%. This result provided evidence that cadherins constitute a gene family which encodes adhesion molecules with different specificities. We also showed that, when cells with little cadherin activity were transfected with cadherin cDNAs, they acquired the cadherin-mediated adhesion properties. 相似文献