首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Maize seeds were germinated in the dark in the presence of the carotenoid synthesis inhibitor norflurazon and the teveis of abscisic acid, xanthoxin and total carotenoids were measured in the root cap and in the adjacent 1.5 mm segment. In norflurazon-treated roots abscisic acid levels were markedly reduced, but an increase occurred in the levels of xanthoxin, a compound structurally and physiologically similar to abscisic acid. In the cultivar of maize ( Zea mays L. cv. Merit) used for this work, brief illumination of the root is required for gravitropic curving. Following illumination both control and norflurazon-treated roots showed normal gravitropic curvature, however, the rate of curvature was delayed in norflurazon-treated roots. Our data from norflurazon-treated roots are consistent with a role for xanthoxin in maize root gravitropism. The increase in xanthoxin in the presence of an inhibitor of carotenoid synthesis suggests that xanthoxin and abscisic acid originate, at least in part, via different metabolic pathways.  相似文献   

2.
Abstract. The gravitropic curvature of primary maize rootlets was measured as a function of temperature, both in the presence and absence of light. In two different cultivars, light strongly increased the downward curvature of roots developing from horizontally-oriented embryos. At 15–20°C, the bending angle was in the range of 70–80° in the light, and 25–50° in the dark, depending on the cultivar. When the temperature was increased above the 15–20°C range, marked differences were found between the two cultivars in their response to light. In one variety tested, JX180, the effect of light was relatively small at 30–35°C. Gravitropic curvature in another variety, Halamish, depended strongly on light throughout the temperature range tested. In both cultivars, gravitropic curvature was only slightly temperature dependent when germination and growth were in total darkness. In the dark, the extent of gravitropic curvature also depended on whether the kernels were oriented with their embryos facing upwards or downwards. Under continuous light, the gravitropic bending of roots of cultivar Halamish did not show a marked temperature dependence. When the seedlings were subjected to only a 15 min illumination, their gravitropic response was partial, and the dependence on temperature somewhat increased. In cultivar JX180, a combination of temperature and light modulates gravitropism. The gravitropic response of different maize cultivars thus differs considerably in its combined dependence on light and temperature.  相似文献   

3.
Hydrotropism and Its Interaction with Gravitropism in Maize Roots   总被引:7,自引:0,他引:7       下载免费PDF全文
We have partially characterized root hydrotropism and its interaction with gravitropism in maize (Zea mays L.). Roots of Golden Cross Bantam 70, which require light for orthogravitropism, showed positive hydrotropism; bending upward when placed horizontally below a hydrostimulant (moist cheesecloth) in 85% relative humidity (RH) and in total darkness. However, the light-exposed roots of Golden Cross Bantam 70 or roots of a normal maize cultivar, Burpee Snow Cross, showed positive gravitropism under the same conditions; bending downward when placed horizontally below the hydrostimulant in 85% RH. Light-exposed roots of Golden Cross Bantam 70 placed at 70° below the horizontal plane responded positively hydrotropically, but gravitropism overcame the hydrotropism when the roots were placed at 45° below the horizontal. Roots placed vertically with the tip down in 85% RH bent to the side toward the hydrostimulant in both cultivars, and light conditions did not affect the response. Such vertical roots did not respond when the humidity was maintained near saturation. These results suggest that hydrotropic and gravitropic responses interact with one another depending on the intensity of one or both factors. Removal of the approximately 1.5 millimeter root tip blocked both hydrotropic and gravitropic responses in the two cultivars. However, removal of visible root tip mucilage did not affect hydrotropism or gravitropism in either cultivar.  相似文献   

4.
The roles of phytochromes in elongation and gravitropism of roots   总被引:1,自引:0,他引:1  
Gravitropic orientation and the elongation of etiolated hypocotyls are both regulated by red light through the phytochrome family of photoreceptors. The importance of phytochromes A and B (phyA and phyB) in these red light responses has been established through studies using phy mutants. To identify the roles that phytochromes play in gravitropism and elongation of roots, we studied the effects of red light on root elongation and then compared the gravitropic curvature from roots of phytochrome mutants of Arabidopsis (phyA, phyB, phyD and phyAB) with wild type. We found that red light inhibits root elongation approximately 35% in etiolated seedlings and that this response is controlled by phytochromes. Roots from dark- and light-grown double mutants (phyAB) and light-grown phyB seedlings have reduced elongation rates compared with wild type. In addition, roots from these seedlings (dark/light-grown phyAB and light-grown phyB) have reduced rates of gravitropic curvature compared with wild type. These results demonstrate roles for phytochromes in regulating both the elongation and gravitropic curvature of roots.  相似文献   

5.
Light stimulates gravitropic bending (downward growth) in roots of many cultivars of corn (Zea mays). In this work, using the cultivar Merit, we show that light stimulates protein synthesis in the root cap, with protein levels increasing 1.3 to 1.6 times that recorded for tissues maintained in continuous dark. Light enhances protein levels both in intact caps (attached to the root) and in caps in culture. Protein synthesis is optimal in cultured caps when 1 nanomolar indole-3-acetic acid is included in the culture medium. If cap tissue is illuminated and subsequently returned to the dark, in the 2-hour period following illumination protein levels decline to that observed in dark controls. It is proposed that light-stimulated protein synthesis mediates in part downward bending in roots of these cultivars of corn.  相似文献   

6.
In many cultivars of maize (Zea mays L.) red light affects root development via the photomorphogenetic pigment phytochrome. The site of perception for the light is the root cap. In the maize cultivar Merit, we investigated phytochrome-mediated events in the cap. We established that the message encoded by the phyA1 gene was most abundant in dark-grown tissue and was asymmetrically distributed in the root cap, with greatest expression in the cells which make up the central columella core of the cap. Phytochrome message was negatively autoregulated in a specific region within the root cap. This autoregulation was sensitive to very-low-fluence red light, and thus was characterized as a phytochrome-mediated, very-low-fluence event. The kinetics of message reaccumulation in the dark were also examined and compared to the kinetics of the light requirement for root gravitropism in this cultivar. Similarly, the degree of autoregulation present in two other maize cultivars with different light requirements for gravitropic sensitivity was investigated. It appears that the Merit cultivar expresses a condition of hypersensitivity to phytochromemediated light regulation in root tissues. We conclude that phytochrome regulates many activities within the cap, but the degree to which these activities share common phytochrome-mediated steps in not known.  相似文献   

7.
Protein phosphatase 2A (PP2A), a heterotrimeric serine/threonine-specific protein phosphatase, comprises a catalytic C subunit and two distinct regulatory subunits, A and B. The RCN1 gene encodes one of three A regulatory subunits in Arabidopsis thaliana. A T-DNA insertion mutation at this locus impairs root curling, seedling organ elongation and apical hypocotyl hook formation. We have used in vivo and in vitro assays to gauge the impact of the rcn1 mutation on PP2A activity in seedlings. PP2A activity is decreased in extracts from rcn1 mutant seedlings, and this decrease is not due to a reduction in catalytic subunit expression. Roots of mutant seedlings exhibit increased sensitivity to the phosphatase inhibitors okadaic acid and cantharidin in organ elongation assays. Shoots of dark-grown, but not light-grown seedlings also show increased inhibitor sensitivity. Furthermore, cantharidin treatment of wild-type seedlings mimics the rcn1 defect in root curling, root waving and hypocotyl hook formation assays. In roots of wild-type seedlings, RCN1 mRNA is expressed at high levels in root tips, and accumulates to lower levels in the pericycle and lateral root primordia. In shoots, RCN1 is expressed in the apical hook and the basal, rapidly elongating cells in etiolated hypocotyls, and in the shoot meristem and leaf primordia of light-grown seedlings. Our results show that the wild-type RCN1-encoded A subunit functions as a positive regulator of the PP2A holoenzyme, increasing activity towards substrates involved in organ elongation and differential cell elongation responses such as root curling.  相似文献   

8.
In certain cultivars of corn (Zea mays var. Merit), light stimulates gravitropic bending of the root by influencing events in the root cap. In this paper, we report on changes in root cap proteins which occur as a result of the light treatment and single out specific proteins as potentially having a role in mediating the gravitropic response. For this work, we have used root caps maintained aseptically in culture media supplemented with auxin. If auxin is deleted from the culture medium, the protein profiles observed following illumination differ from that seen in caps provided light while in auxin-supplemented media. We also report that several of the proteins for which synthesis is stimulated by light appear to turn over rapidly, usually within 0.5 hour of formation.  相似文献   

9.
淹水对玉米不定根形态结构和ATP酶活性的影响   总被引:26,自引:2,他引:26       下载免费PDF全文
淹水2天后,玉米苗基节内即有不定根原基一进于正常植株。淹水16天后,从基节部长出的不定根数多于正常植株,但淹水导致根系生长和干物质积累大幅度下降。淹水幼苗不定根伸长区内有发达的通气组织形成,使根内部组织孔隙度大幅提高。电镜细胞化学研究表明,经15天淹一,不定根根尖细胞内ATP酶的分布与正常功苗基本相同,酶活性尽管有一定的下降,但仍保持较高水平。根据实验结果,本文重点讨论了不定根的发生及其内部通气组  相似文献   

10.
We tested whether the first response to gravistimulation is an asymmetry in the root tip that results from differential growth of the rootcap itself. The displacement of markers on the rootcap surface of maize (Zea mays L. cv. Merit) roots was quantified from videotaped images using customized software. The method was sensitive enough to detect marker displacements down to 15 microns and root curvature as early as 8 min after gravistimulation. No differential growth of the upper and lower sides of the cap occurred before or during root curvature. Fewer than a third of all gravistimulated roots developed an asymmetrical outline of the root tip after curvature had started, and this asymmetry did not occur in the rootcap itself. Our data support the view that the regions of gravitropic sensing and curvature are spatially separate during all phases of gravitropism in maize roots.  相似文献   

11.
松嫩平原不同株型玉米品种根系分布特征比较研究   总被引:3,自引:1,他引:2  
采用土柱模拟栽培法与大田试验相结合的方法,对松嫩平原不同株型玉米的根系分布特征进行了比较。结果表明,平展型玉米和紧凑型玉米根干重最大值出现的时期不同,二者根干重分别在抽丝后15d和抽丝后30d时达到最大值,成熟时紧凑型玉米根干重比平展型高12.2%,二者根系垂直分布有明显的差异,在20cm以下的根干重比率,平展型玉米在19%以下,而紧凑型玉米高于23%,紧凑型玉米的深层根量较多,在深40~100cm土层内根干重比率比平展型高42.3%,二者的根系水平分布也不同,紧凑型玉米根系水平分布较集中,在距植株0~10cm水平范围内,根系分布比率比平展型玉米高9.6%,紧凑型玉米深层根量较多,水平分布集中,耐密植,是易获得高产的重要原因之一。  相似文献   

12.
The occurrence and distribution of abscisic acid (ABA), xanthoxin (Xa) and the carotenoid violaxanthin (Va) were investigated in root tips of maize (Zea mays L. cv. Merit). In roots grown in the dark, Va and ABA were present in relatively high amounts in the root cap and in low amounts in the adjacent terminal 1.5 mm of the root. Xanthoxin was present in equal concentrations in both regions. In roots exposed to light, the ABA distribution was reversed, with relatively low levels in the root cap and high levels in the adjacent 1.5-mm segment. Light also caused a decrease in Va in both regions of the root and an increase in Xa, especially in the cap. In the maize cultivar used for this work, light is necessary for gravitropic curving. This response occurs within the same time frame as the light-induced ABA redistribution as well as the changes in the levels of Va and Xa. These data are consistent with a role for ABA in root gravitropism and support the proposal that Xa may arise from the turnover of Va.Abbreviations ABA abscisic acid - GC gas chromatography - HPLC high-performance liquid chromatography - GC-MS gas chromatography-mass spectroscopy - Va violaxanthin - Xa xanthoxin  相似文献   

13.
Recent studies indicate that roots of ageotropum seedlings can be used to study the hydrotropic response of roots independent of physiological events related to the gravity response of roots. There is evidence that Ca2+ ions are important in both the gravitropic and hydrotropic response of roots. In this study, we have compared three fully graviresponsive pea cultivars and the ageotropum mutant with regard to: 1) general root anatomy, 2) the effects of unilateral Ca application to both the root cap and DEZ region on root curvature, and 4) effects of unilateral application of EGTA to the DEZ region.  相似文献   

14.
We used five cultivars of Zea mays (Bear Hybrid WF9 * 38MS, B73 * Missouri 17, Yellow Dent, Merit, and Great Lakes Hybrid 422) to reinvestigate the specificity of metal ions for inducing root curvature. Of 17 cations tested, 6 (Al3+, Ba2+, Ca2+, Cd2+, Cu2+, Zn2+) induced curvature. Roots curved away from Al3+, Ba2+, and Cd2+. Roots curved away from low (0.1 millimolar) concentrations of Cu2+ but toward higher (1-5 millimolar) concentrations. Roots initially curved away from Zn2+ but the direction of the subsequent curvature was unpredictable. In most cases, roots of all cultivars curved towards calcium. However, in some tests there was no response to calcium or even (especially in the cultivars Merit and B73 * Missouri 17) substantial curvature away from calcium. The results indicate that the induction of root curvature is not specific for calcium. The results are discussed relative to the possible role of calmodulin as a mediator of ion-induced root curvature.  相似文献   

15.
Autonomic Straightening after Gravitropic Curvature of Cress Roots   总被引:2,自引:0,他引:2       下载免费PDF全文
Few studies have documented the response of gravitropically curved organs to a withdrawal of a constant gravitational stimulus. The effects of stimulus withdrawal on gravitropic curvature were studied by following individual roots of cress (Lepidium sativum L.) through reorientation and clinostat rotation. Roots turned to the horizontal curved down 62° and 88° after 1 and 5 h, respectively. Subsequent rotation on a clinostat for 6 h resulted in root straightening through a loss of gravitropic curvature in older regions and through new growth becoming aligned closer to the prestimulus vertical. However, these roots did not return completely to the prestimulus vertical, indicating the retention of some gravitropic response. Clinostat rotation shifted the mean root angle −36° closer to the prestimulus vertical, regardless of the duration of prior horizontal stimulation. Control roots (no horizontal stimulation) were slanted at various angles after clinostat rotation. These findings indicate that gravitropic curvature is not necessarily permanent, and that the root retains some commitment to its equilibrium orientation prior to gravitropic stimulation.  相似文献   

16.
Effects of Chlorpromazine on Gravitropism in Avena Coleoptiles   总被引:1,自引:0,他引:1  
Chlorpromazine (CPZ), an inhibitor of the calcium-activatedform of calmodulin, is readily taken up by the roots of intactoat seedlings but poorly translocated from the roots to thecoleoptile of these plants. However, plants repeatedly rotatedthrough solutions containing low concentrations of CPZ (10–8–10–5M)are infiltrated, and under these conditions, CPZ significantlyinhibits the negative gravitropic response of the coleoptilewithout retarding elongation growth. This effect is observablein ‘decapitated’ (apical 1–2 mm removed) coleoptilesections and in intact whole coleoptiles. If exogenous auxinis supplied to the decapitated sections, both their growth ratesand gravitropic responsiveness are increased and, under theseconditions, CPZ can reduce the gravitropic curvature withoutreducing the overall growth rate. These results are discussedin relation to the possible role of calmodulin-dependent calcium-ionpumps in gravitropism. chlorpromazine, gravitropism, calmodulin, calcium, oat, Avena sativa  相似文献   

17.
Calmodulin, a primary plant calcium receptor, is known to be intimately involved with gravitropic sensing and transduction. Using the calmodulin-binding inhibitors trifluoperazine, W7 and calmidazolium, gravitropic curvature of Arabidopsis thaliana (L.) Heynh, ecotype Landsberg, roots was separable into two phases. Phase I was detected at very low concentrations (0.01 μM) of trifluoperazine and calmidazolium, did not involve growth changes, accounted for about half the total curvature of the root and may represent the specific contribution of the cap to gravity sensing. Phase II commenced around 1.0 μM and involved inhibition of both growth and curvature. The agr-3 mutant exhibited a reduced gravitropic response and was found to lack phase I curvature, suggesting that the mutation alters either use or expression of calmodulin. The sequences of wild-type and agr-3 calmodulin (CaM-1) cDNAs, which are root specific were completely determined and found to be identical. Upon gravitropic stimulation, wild-type Arabidopsis seedlings increased calmodulin mRNA levels by threefold in 0.5 h. On the other hand, gravitropic stimulation of agr-3 decreased calmodulin mRNA accumulation. The possible basis of the two phases of curvature is discussed and it is concluded that agr-3 has a lesion located in a general gravity transmission sequence, present in many root cells, which involves calmodulin mRNA accumulation.  相似文献   

18.
Radin JW 《Plant physiology》1974,53(3):458-463
Activity of nitrate reductase in roots and cotyledons of cotton seedings (Gossypium hirsutum L. cv. Deltapine 16) increased rapidly on germination, reaching a maximum after 1 day of imbibition. Thereafter, activity declined until emergence and greening of the cotyledons, when it again began to increase steadily. Germinating soybean (Glycine max (L.) Merrill cv. Merit) and sunflower (Helianthus annuus L. cv. Peredovic) seedlings did not show the early peak of activity. The early peak depended on nitrate and was sensitive to cycloheximide, but not to actinomycin D or other inhibitors of RNA synthesis. The second, light-dependent increase was sensitive to actinomycin D. In roots, the early peak of activity occurred before any growth. After emergence of the root tip from the seed coat, activity was localized in the terminal 2 millimeters, whether expressed on a fresh weight, protein, or root basis. The difference in activity between the apical (0-2 millimeter) and subapical (2-4 millimeter) segments did not result from differences in nitrate availability, energy supply, or turnover rates of nitrate reductase. Root activity was similar to that of the cotyledons after emergence, in that both were sensitive to actinomycin D.  相似文献   

19.
In search for the cellular and molecular basis for differences in aluminum (Al) resistance between maize (Zea mays) cultivars we applied the patch-clamp technique to protoplasts isolated from the apical root cortex of two maize cultivars differing in Al resistance. Measurements were performed on protoplasts from two apical root zones: The 1- to 2-mm zone (DTZ), described as most Al-sensitive, and the main elongation zone (3-5 mm), the site of Al-induced inhibition of cell elongation. Al stimulated citrate and malate efflux from intact root apices, revealing cultivar differences. In the elongation zone, anion channels were not observed in the absence and presence of Al. Preincubation of intact roots with 90 microM Al for 1 h induced a citrate- and malate-permeable, large conductance anion channel in 80% of the DTZ protoplasts from the resistant cultivar, but only 30% from the sensitive cultivar. When Al was applied to the protoplasts in the whole-cell configuration, anion currents were elicited within 10 min in the resistant cultivar only. La3+ was not able to replace or counteract with Al3+ in the activation of this channel. In the presence of the anion-channel blockers, niflumic acid and 4, 4'-dinitrostilbene-2, 2'disulfonic acid, anion currents as well as exudation rates were strongly inhibited. Application of cycloheximide did not affect the Al response, suggesting that the channel is activated through post-translational modifications. We propose that the Al-activated large anion channel described here contributes to enhanced genotypical Al resistance by facilitating the exudation of organic acid anions from the DTZ of the maize root apex.  相似文献   

20.
We investigated the effect of Ca2+ on ethylene production in 2-cm long apical segments from primary roots of corn ( Zea mays L., B73 × Missouri 17) seedlings. The seedlings were raised under different conditions of Ca2+ availability. Low-Ca and high-Ca seedlings were raised by soaking the grains and watering the seedlings with distilled water or 10 m M CaCl2, respectively. Segments from high-Ca roots produced more than twice as much ethylene as segments from low-Ca roots. Indoleacetic acid (IAA; 1 μ M ) enhanced ethylene production in segments from both low-Ca and high-Ca roots but auxin-induced promotion of ethylene production was consistently higher in segments from high-Ca roots. Addition of I-aminocyclopropane-I-carboxylic acid (ACC) to root segments from low-Ca seedlings doubled total ethylene production and the rate of production remained fairly constant during a 24 h period of monitoring. In segments from high-Ca seedlings ACC also increased total ethylene production but most of the ethylene was produced within the first 6 h. The data suggest that Ca2+ enhances the conversion of ACC to ethylene. The terminal 2 mm of the root tip were found to be especially important to ethylene biosynthesis by apical segments and, experiments using 45Ca2+ as tracer indicated that the apical 2 mm of the root is the region of strongest Ca2+ accumulation. Other cations such as Mn2+, Mg2+, and K+ could largely substitute for Ca2+. The significance of these findings is discussed with respect to recent evidence for gravity-induced Ca2+ redistribution and its relationship to the establishment of asymmetric growth during gravitropic curvature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号