首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzyme nicotinamide mononucleotide (NMN) adenylyltransferase (NMNAT) (EC 2.7.7.1) catalyzes the transfer of the adenylyl moiety of ATP to NMN to form NAD(+). On the basis of a remarkable structural similarity with previously described Saccharomyces cerevisiae NMNAT (yNMNAT-1), the YGR010-encoded protein was identified as a second isoform of yeast NMNAT (yNMNAT-2). The YGR010 gene was isolated, cloned into a T7-based vector, and successfully expressed in Escherichia coli BL21 cells, yielding high level of NMN adenylyltransferase activity. The purification procedure reported in this paper, consisting of two chromatographic steps, allowed the isolation of 3mg of electrophoretically homogeneous yNMNAT-2 from 1 liter of E. coli culture. Under SDS/PAGE, the recombinant protein resulted in a single polypeptide of 46 kDa, in agreement with the molecular mass of the hypothetical protein encoded by YGR010 gene. The N-terminal sequence of the purified recombinant yNMNAT-2 exactly corresponds to the predicted sequence. Molecular and kinetic properties of recombinant yNMNAT-2 are reported and compared with those already known for yNMNAT-1.  相似文献   

2.
NMN adenylyltransferase (NAD pyrophosphorylase; NMNAT) reversibly catalyzes the synthesis of NAD from ATP and NMN. In this paper, we describe a rapid and sensitive high-performance liquid chromatographic assay for NMNAT, which uses a 20-mm-long C18 reversed-phase (RP) column. The activity was measured by separating in less than 3 min the substrates (NMN and ATP) from the product (NAD) with 0.1 M potassium phosphate, pH 6.0, at a 2 ml/min flow-rate and 22°C. NAD was directly quantitated from its ultraviolet absorbance. Amounts of NAD as small as 25 pmol could be measured. The activity value closely agreed with that determined by the spectrophotometric assay. This method was successfully applied to the determination of NMNAT activity in human placental and bull testis extracts, as well as in rat pheochromocytoma (PC12) cells.  相似文献   

3.
NAD analogs modified at the ribose adenylyl moiety, named N-2'-MeAD and Na-2'-MeAD, were synthesized as ligands of pyridine nucleotide (NMN/NaMN) adenylyltransferase (NMNAT). Both dinucleotides resulted selective inhibitors against human NMNAT-3 isoenzyme.  相似文献   

4.
NAD analogs modified at the ribose adenylyl moiety, named N-2′-MeAD and Na-2′-MeAD, were synthesized as ligands of pyridine nucleotide (NMN/NaMN) adenylyltransferase (NMNAT). Both dinucleotides resulted selective inhibitors against human NMNAT-3 isoenzyme.  相似文献   

5.
The enzyme nicotinamide mononucleotide (NMN) adenylyltransferase (EC 2.7.7.1) catalyzes the transfer of the adenylyl moiety of ATP to NMN to form NAD. A new purification procedure for NMN adenylyltransferase from Saccharomyces cerevisiae provided sufficient amounts of enzyme for tryptic fragmentation. Through data-base search a full matching was found between the sequence of tryptic fragments and the sequence of a hypothetical protein encoded by the S. cerevisiae YLR328W open reading frame (GenBank accession number U20618). The YLR328W gene was isolated, cloned into a T7-based vector and successfully expressed in Escherichia coli BL21 cells, yielding a high level of NMN adenylyltransferase activity. The purification of recombinant protein, by a two-step chromatographic procedure, resulted in a single polypeptide of 48 kDa under SDS-PAGE, in agreement with the molecular mass of the hypothetical protein encoded by YLR328W ORF. The N-terminal sequence of the purified recombinant NMN adenylyltransferase exactly corresponds to the predicted sequence. Molecular and kinetic properties of recombinant NMN adenylyltransferase are reported and compared with those already known for the enzyme obtained from different sources.  相似文献   

6.
Nicotinamide mononucleotide adenylyltransferase (NMNAT) catalyzes the formation of NAD by means of nucleophilic attack by 5'-phosphoryl of NMN on the α-phosphoryl group of ATP. Humans possess three NMNAT isozymes (NMNAT1, NMNAT2, and NMNAT3) that differ in size and sequence, gene expression pattern, subcellular localization, oligomeric state and catalytic properties. Of these, NMNAT2, the least abundant isozyme, is the only one whose much-needed crystal structure has not been solved as yet. To fill this gap, we used the crystal structures of human NMNAT1 and NMNAT3 as templates for homology-based structural modeling of NMNAT2, and the resulting raw structure was then refined by molecular dynamics simulations in a water box to obtain a model of the final folded structure. We investigated the importance of NMNAT2's central domain, which we postulated to be dispensable for catalytic activity, instead representing an isozyme-specific control domain within the overall architecture of NMNAT2. Indeed, we experimentally confirmed that removal of different-length fragments from this central domain did not compromise the enzyme's catalytic activity or the overall tridimensional structure of the active site.  相似文献   

7.
Di Martino C  Pallotta ML 《Planta》2011,234(4):657-670
Current studies in plants suggest that the content of the coenzyme NAD is variable and potentially important in determining cell fate. In cases that implicate NAD consumption, re-synthesis must occur to maintain dinucleotide pools. Despite information on the pathways involved in NAD synthesis in plants, the existence of a mitochondrial nicotinamide mononucleotide adenylyltransferase (NMNAT) activity which catalyses NAD synthesis from nicotinamide mononucleotide (NMN) and ATP has not been reported. To verify the latter assumed pathway, experiments with purified and bioenergetically active mitochondria prepared from tubers of Jerusalem artichoke (Helianthus tuberosus L.) were performed. To determine whether NAD biosynthesis might occur, NMN was added to Jerusalem artichoke mitochondria (JAM) and NAD biosynthesis was tested by means of HPLC and spectroscopically. Our results indicate that JAM contain a specific NMNAT inhibited by Na-pyrophosphate, AMP and ADP-ribose. The dependence of NAD synthesis rate on NMN concentration shows saturation kinetics with K m and V max values of 82 ± 1.05 μM and 4.20 ± 0.20 nmol min−1 mg−1 protein, respectively. The enzyme’s pH and temperature dependence were also investigated. Fractionation studies revealed that mitochondrial NMNAT activity was present in the soluble matrix fraction. The NAD pool needed constant replenishment that might be modulated by environmental inputs. Thus, the mitochondrion in heterotrophic plant tissues ensures NAD biosynthesis by NMNAT activity and helps to orchestrate NAD metabolic network in implementing the survival strategy of cells.  相似文献   

8.
Adenine nucleotide exchange between the intra- and extramitochondrial compartments of mitochondria isolated from the muscle tissue of Ascaris lumbricoides was investigated. The exchange was specific for ATP and ADP, AMP, adenosine and non-adenine nucleotides were not exchanged at significant rates. All combinations of counter exchange were found to be possible between intra- and extramitochondrial ATP and ADP. Adenine nucleotide exchange in Ascaris muscle mitochondria was inhibited by atractyloside; was strongly temperature dependent; activated by potassium and magnesium and only slightly activated by calcium. The Km for adenine nucleotide exchange in Ascaris mitochondria was 4·1 and 2·85 μm for ATP and ADP respectively. The properties of adenine nucleotide exchange in Ascaris muscle mitochondria are thus similar in general features to the adenine nucleotide translocase system of mammalian mitochondria.  相似文献   

9.
A gene encoding glutamate dehydrogenase (GDH) was found in the genome sequence of a commensal thermophile, Symbiobacterium toebii. The amino acid sequence deduced from the gdh I of S. toebii was well conserved with other thermostable GDHs. The gdh I which encodes GDH consisting of 409 amino acids was cloned and expressed in E. coli DH5 under the control of a highly constitutive expression (HCE) promoter in a pHCE system. The recombinant GDH was expressed without addition of any inducers in a soluble form. The molecular mass of the GDH was estimated to be 263 kDa by Superose 6 HR gel filtration chromatography and 44 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicating that the GDH was composed of hexameric form. The optimal temperature and pH of the purified enzyme were 60 °C and 9.0, respectively, and the purified GDH retained more than 75% of its original activity after an incubation at 70 °C for 30 min. Although NADP(H) was the preferred cofactor, S. toebii GDH was able to utilize either NADP(H) or NAD(H) as coenzyme.  相似文献   

10.
NAD(P)-dependent glucose-1-dehydrogenase (GDH) has been used for glucose determination and NAD(P)H production in bioreactors. Thermostable glucose dehydrogenase exhibits potential advantage for its application in biological processes. The function of the putative GDH gene (ST1704, 360-encoding amino acids) annotated from the total genome analysis of a thermoacidophilic archeaon Sulfolobus tokodaii strain 7 was investigated to develop more effective application of GDH. The gene encoding S. tokodaii GDH was cloned and the activity was expressed in Escherichia coli, which did not originally possess GDH. This shows that the gene (ST1704) codes the sequence of GDH. The enzyme was effectively purified from the recombinant E. coli with three steps containing a heat treatment and two successive chromatographies. The native enzyme (molecular mass: 160 kDa) is composed of a tetrameric structure with a type of subunit (41 kDa). The enzyme utilized both NAD and NADP as the coenzyme. The maximum activity for glucose oxidation in the presence of NAD was observed around pH 9 and 75 °C in the presence of 20 mM Mg2+. The enzyme showed broad substrate specificity: several monosaccarides such as 6-deoxy- -glucose, 2-amino-2-deoxy- -glucose and -xylose were oxidized as well as -glucose as the electron donor. -Mannose, -ribose and glucose-6-phosphate were inert as the donor. The enzyme showed high thermostability: remarkable loss of activity was not observed up to 80 °C by incubation for 15 min at pH 8.0. In addition, the enzyme was stable in a wide pH range of 5.0–10.5 by incubation at 37 °C. From the steady-state kinetic analysis, the enzyme reaction of -glucose oxidation proceeds via a sequential ordered Bi–Bi mechanism: NAD and -glucose bind to the enzyme in this order and then -glucono-1,5-lactone and NADH are released from the enzyme in this order. The amino acid sequence alignment showed that S. tokodaii GDH exhibited high homology with the Sulfolobus solfataricus hypothetical glucose dehydrogenase and a Thermoplasma acidophilum one.  相似文献   

11.
Nicotinamide/nicotinate mononucleotide (NMN/ NaMN)adenylyltransferase (NMNAT) is an indispensable enzyme in the biosynthesis of NAD(+) and NADP(+). Human NMNAT displays unique dual substrate specificity toward both NMN and NaMN, thus flexible in participating in both de novo and salvage pathways of NAD synthesis. Human NMNAT also catalyzes the rate-limiting step of the metabolic conversion of the anticancer agent tiazofurin to its active form tiazofurin adenine dinucleotide (TAD). The tiazofurin resistance is mainly associated with the low NMNAT activity in the cell. We have solved the crystal structures of human NMNAT in complex with NAD, deamido-NAD, and a non-hydrolyzable TAD analogue beta-CH(2)-TAD. These complex structures delineate the broad substrate specificity of the enzyme toward both NMN and NaMN and reveal the structural mechanism for adenylation of tiazofurin nucleotide. The crystal structure of human NMNAT also shows that it forms a barrel-like hexamer with the predicted nuclear localization signal sequence located on the outside surface of the barrel, supporting its functional role of interacting with the nuclear transporting proteins. The results from the analytical ultracentrifugation studies are consistent with the formation of a hexamer in solution under certain conditions.  相似文献   

12.
A gene encoding a putative ATP-dependent DNA ligase from the aerobic hyperthermophilic archaeon Aeropyrum pernix K1 was cloned and the biochemical characteristics of the resulting recombinant protein were examined. The gene (accession no. APE1094) from A. pernix encoding a 69-kDa protein showed a 39–61% identity with other ATP-dependent DNA ligases from the archaea. Normally DNA ligase is activated by NAD+ or ATP. There has been no report about the other activators for DNA ligase. The recombinant ligase was a monomeric protein and catalyzed strand joining on a singly nicked DNA substrate in the presence of ADP and a divalent cation (Mg2+, Mn2+, Ca2+ and Co2+) at high temperature. The optimum temperature and pH for nick-closing activity were above 70°C and 7.5°C, respectively. The ligase remained stable for 60 min of treatment at 100°C, and the half-life was about 25 min at 110°C. This is the first report of a novel hyperthermostable DNA ligase that can utilize ADP to activate the enzyme.  相似文献   

13.
Nicotinamide/Nicotinate mononucleotide (NMN/NaMN) adenylyltransferase is an indispensable enzyme in both de novo biosynthesis and salvage of NAD+ and NADP+. In prokaryotes, it is absolutely required for cell survival, thus representing an attractive target for the development of new broad-spectrum antibacteria inhibitors. The crystal structures of E. coli NaMN adenylyltransferase (NMNAT) and its complex with deamido-NAD (NaAD) revealed that ligand binding causes large conformational changes in several loop regions around the active site. The enzyme specifically recognizes the deamidated pyridine nucleotide through interactions between nicotinate carboxylate with several protein main chain amides and a positive helix dipole. Comparison of E. coli NMNAT with those from archaeal organisms revealed extensive differences in the active site architecture, enzyme-ligand interaction mode, and bound dinucleotide conformations. The bacterial NaMN adenylyltransferase structures described here provide a foundation for structure-based design of specific inhibitors that may have therapeutic potential.  相似文献   

14.
Nicotinamide mononucleotide adenylyltransferase (NMNAT), a member of the nucleotidyltransferase alpha/beta-phosphodiesterases superfamily, catalyzes a universal step (NMN + ATP = NAD + PP(i)) in NAD biosynthesis. Localized within the nucleus, the activity of the human enzyme is greatly altered in tumor cells, rendering it a promising target for cancer chemotherapy. By using a combination of single isomorphous replacement and density modification techniques, the human NMNAT structure was solved by x-ray crystallography to a 2.5-A resolution, revealing a hexamer that is composed of alpha/beta-topology subunits. The active site topology of the enzyme, analyzed through homology modeling and structural comparison with other NMNATs, yielded convincing evidence for a substrate-induced conformational change. We also observed remarkable structural conservation in the ATP-recognition motifs GXXXPX(T/H)XXH and SXTXXR, which we take to be the universal signature for NMNATs. Structural comparison of human and prokaryotic NMNATs may also lead to the rational design of highly selective antimicrobial drugs.  相似文献   

15.
Synechocystis sp. slr0787 open reading frame encodes a 339 residue polypeptide with a predicted molecular mass of 38.5 kDa. Its deduced amino acid sequence shows extensive homology with known separate sequences of proteins from the thermophilic archaeon Methanococcus jannaschii. The N-terminal domain is highly homologous to the archaeal NMN adenylyltransferase, which catalyzes NAD synthesis from NMN and ATP. The C-terminal domain shares homology with the archaeal ADP-ribose pyrophosphatase, a member of the 'Nudix' hydrolase family. The slr0787 gene has been cloned into a T7-based vector for expression in Escherichia coli cells. The recombinant protein has been purified to homogeneity and demonstrated to possess both NMN adenylyltransferase and ADP-ribose pyrophosphatase activities. Both activities have been characterized and compared to their archaeal counterparts.  相似文献   

16.
A lipase gene lipA and its chaperone gene lipB were cloned from Burkholderia cepacia strain G63. The lipA was composed of 1092 bp, encoding 363 amino acid residues, and the lipB composed of 1035 bp, corresponding to 344 amino acid residues. The significant amino acid similarity with Pseudomonas cepacia lipase revealed that this enzyme could be classified into the lipolytic subfamily I.2. The lipA and lipB genes were cloned into pBBR1Tp vector and conjugated into B. cepacia strains G63 with the help of pRK2013. The recombinant strain was fermented in 10 l bioreactor and the lipase was purified by a combination of ammonium sulfate fractionation, DEAE ion-exchange chromatography and gel filtration. The purified lipase kept stable at a temperature range of 40–70 °C. After incubated at 70 °C, the optimal temperature of this enzyme, for 10 h it remained 86.1% of its activity. The enzyme was also highly tolerant to a series of organic solution. Incubated in 50% methanol solution up to 48 h, the enzyme still kept 98.3% of its activity. The transesterification activity of soybean oil to fatty acid methyl esters (FAMEs) reached 87.8% after 72 h, indicating that it is a potential biocatalyzer for biodiesel production.  相似文献   

17.
A thermostable, alkaline active xylanase was purified to homogeneity from the culture supernatant of an alkaliphilic Bacillus halodurans S7, which was isolated from a soda lake in the Ethiopian Rift Valley. The molecular weight and the pI of this enzyme were estimated to be around 43 kDa and 4.5, respectively. When assayed at 70 °C, it was optimally active at pH 9.0–9.5. The optimum temperature for the activity was 75 °C at pH 9 and 70 °C at pH 10. The enzyme was stable over a broad pH range and showed good thermal stability when incubated at 65 °C in pH 9 buffer. The enzyme activity was strongly inhibited by Mn2+. Partial inhibition was also observed in the presence of 5 mM Cu2+, Co2+ and EDTA. Inhibition by Hg2+ and dithiothreitol was insignificant. The enzyme was free from cellulase activity and degraded xylan in an endo-fashion.  相似文献   

18.
Critical thermal maximum (CTmax) and body water losses were measured in first instar larvae of Gnorimus nobilis, Osmoderma eremita (Trichiinae) and Cetonischema aeruginosa (Cetoniinae) when air temperature was increased gradually (0.5 °C/min) from 20 °C to the critical thermal maximum (CTmax), in dry air (near 0% R.H.).

The CTmax was significantly lower in O. eremita (45.6±0.7 °C) than in G. nobilis (48.5±0.6) and C. aeruginosa (51.4±0.9 °C).

An increase of 10 °C (30–40 °C) induced a 2-fold increase of the water loss in C. aeruginosa and O. eremita (Q10=2.10±0.12 and 2.13±0.20, respectively). In the range from 40 to 45 °C to CTmax a strong increase of the water loss was observed in O. eremita and C. aeruginosa, respectively. Body water losses were significantly lower in C. aeruginosa than in O. eremita and G. nobilis over the range 20 °C—CTmax; no significant difference occurred between G. nobilis and O. eremita.  相似文献   


19.
During axon degeneration, NAD+ levels are largely controlled by two enzymes: nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) and sterile alpha and toll interleukin motif containing protein 1 (SARM1). NMNAT2, which catalyzes the formation of NAD+ from NMN and ATP, is actively degraded leading to decreased NAD+ levels. SARM1 activity further decreases the concentration of NAD+ by catalyzing its hydrolysis to form nicotinamide and a mixture of ADPR and cADPR. Notably, SARM1 knockout mice show decreased neurodegeneration in animal models of axon degeneration, highlighting the therapeutic potential of targeting this novel NAD+ hydrolase. This review discusses recent advances in the SARM1 field, including SARM1 structure, regulation, and catalysis as well as the identification of the first SARM1 inhibitors.  相似文献   

20.
An artificial bifunctional enzyme, xylanase–cellulase, has been prepared by gene fusion. Three chimeric genes were constructed that encoded fusion proteins of different lengths. The fusion proteins exhibited both xylanase (XynX) and cellulase (Cel5Z::Ω) activity when cel5Z::Ω was fused downstream of xynX, but not when xynX was fused downstream of cel5Z::Ω. Activities of bifunctional enzymes decreased when a shorter xylanase peptide was fused. Three fusion enzymes were purified, and the molecular weights of the enzymes were estimated by CMC-SDS-PAGE and XYN-SDS-PAGE to be 149, 129, and 87 kDa, respectively. The fusion enzymes displayed optimum cellulase activity at pH 8.0 and 50 °C and optimum xylanase activity at pH 8.0 and 70 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号