首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mtl is a member of the Rho family of small GTPases in Drosophila. It was shown that Mtl is involved in planar cell polarity (PCP) establishment, together with other members of the same family like Cdc42, Rac1, Rac2 and RhoA. However, while Rac1, Rac2 and RhoA function downstream of Dsh in Fz/PCP signaling and upstream of a JNK cassette, Mtl and Cdc42 do not. To determine the functional context of Mtl during PCP establishment in the Drosophila eye, we performed a loss-of-function screen to search for dominant modifiers of a sev>Mtl rough eye phenotype. In addition, genetic interaction assays with candidate genes were also carried out. Our results show that Mtl interacts genetically with members and effectors of Egfr signaling, with components and/or regulators of other signal transduction pathways, and with genes involved in cell adhesion and cytoskeleton organization. One of these genes is hibris (hbs), which encodes a member of the immunoglobulin superfamily in Drosophila. Phenotypic analyses and genetic interaction assays suggest that it may have a role during PCP establishment, interacting with both Egfr and Fz/PCP signaling during this process. Taken together, our results indicate that Mtl is functionally related to the Egfr pathway regulating ommatidial rotation during PCP establishment in the eye, being a positive regulator of this pathway. Since Egfr signaling is linked to cytoskeletal and cell junctional elements, it is likely that Mtl may be regulating cytoskeleton dynamics and thus cell adhesion during ommatidial rotation in the context of that pathway.  相似文献   

2.
《Fly》2013,7(2):88-101
Mtl is a member of the Rho family of small GTPases in Drosophila. It was shown that Mtl is involved in planar cell polarity (PCP) establishment, together with other members of the same family like Cdc42, Rac1, Rac2 and RhoA. However, while Rac1, Rac2 and RhoA function downstream of Dsh in Fz/PCP signaling and upstream of a JNK cassette, Mtl and Cdc42 do not. To determine the functional context of Mtl during PCP establishment in the Drosophila eye, we performed a loss-of-function screen to search for dominant modifiers of a sev>Mtl rough eye phenotype. In addition, genetic interaction assays with candidate genes were also carried out. Our results show that Mtl interacts genetically with members and effectors of Egfr signaling, with components and/or regulators of other signal transduction pathways, and with genes involved in cell adhesion and cytoskeleton organization. One of these genes is hibris (hbs), which encodes a member of the immunoglobulin superfamily in Drosophila. Phenotypic analyses and genetic interaction assays suggest that it may have a role during PCP establishment, interacting with both Egfr and Fz/PCP signaling during this process. Taken together, our results indicate that Mtl is functionally related to the Egfr pathway regulating ommatidial rotation during PCP establishment in the eye, being a positive regulator of this pathway. Since Egfr signaling is linked to cytoskeletal and cell junctional elements, it is likely that Mtl may be regulating cytoskeleton dynamics and thus cell adhesion during ommatidial rotation in the context of that pathway.  相似文献   

3.
4.
Ras plays an essential role in activation of Raf kinase which is directly responsible for activation of the MEK-ERK kinase pathway. A direct protein-protein interaction between Ras and the N-terminal regulatory domain of Raf is critical for Raf activation. However, association with Ras is not sufficient to activate Raf in vitro, indicating that Ras must activate some other biochemical events leading to activation of Raf. We have observed that RasV12Y32F and RasV12T35S mutants fail to activate Raf, yet retain the ability to interact with Raf. In this report, we showed that RasV12Y32F and RasV12T35S can cooperate with members of the Rho family GTPases to activate Raf while alone the Rho family GTPase is not effective in Raf activation. A dominant negative mutant of Rac or RhoA can block Raf activation by Ras. The effect of Rac or Cdc42 can be substituted by the Pak kinase, which is a direct downstream target of Rac/Cdc42. Furthermore, expression of a kinase inactive mutant of Pak or the N-terminal inhibitory domain of Pak1 can block the effect of Rac or Cdc42. In contrast, Pak appears to play no direct role in relaying the signal from RhoA to Raf, indicating that RhoA utilizes a different mechanism than Rac/Cdc42. Membrane-associated but not cytoplasmic Raf can be activated by Rac or RhoA. Our data support a model by which the Rho family small GTPases play an important role to mediate the activation of Raf by Ras. Ras, at least, has two distinct functions in Raf activation, recruitment of Raf to the plasma membrane by direct binding and stimulation of Raf activating kinases via the Rho family GTPases.  相似文献   

5.
The transforming growth factor beta (TGFbeta) plays an important role in cell growth and differentiation. However, the intracellular signaling pathways through which TGFbeta inhibits skeletal myogenesis remain largely undefined. By measuring GTP-loading of Rho GTPases and the organization of the F-actin cytoskeleton and the plasma membrane, we analyzed the effect of TGFbeta addition on the activity of three GTPases, Rac1, Cdc42Hs and RhoA. We report that TGFbeta activates Rac1 and Cdc42Hs in skeletal muscle cells, two GTPases previously described to inhibit skeletal muscle cell differentiation whereas it inactivates RhoA, a positive regulator of myogenesis. We further show that TGFbeta activates the C-jun N-terminal kinases (JNK) pathway in myoblastic cells through Rac1 and Cdc42Hs GTPases. We propose that the activation of Rho family proteins Rac1 and Cdc42Hs which subsequently regulate JNK activity participates in the inhibition of myogenesis by TGFbeta.  相似文献   

6.
Netrins are chemotropic guidance cues that attract or repel growing axons during development. DCC (deleted in colorectal cancer), a transmembrane protein that is a receptor for netrin-1, is implicated in mediating both responses. However, the mechanism by which this is achieved remains unclear. Here we report that Rho GTPases are required for embryonic spinal commissural axon outgrowth induced by netrin-1. Using N1E-115 neuroblastoma cells, we found that both Rac1 and Cdc42 activities are required for DCC-induced neurite outgrowth. In contrast, down-regulation of RhoA and its effector Rho kinase stimulates the ability of DCC to induce neurite outgrowth. In Swiss 3T3 fibroblasts, DCC was found to trigger actin reorganization through activation of Rac1 but not Cdc42 or RhoA. We detected that stimulation of DCC receptors with netrin-1 resulted in a 4-fold increase in Rac1 activation. These results implicate the small GTPases Rac1, Cdc42, and RhoA as essential components that participate in signaling the response of axons to netrin-1 during neural development.  相似文献   

7.
Epithelial intercellular junctions regulate cell-cell contact and mucosal barrier function. Both tight junctions (TJs) and adherens junctions (AJs) are regulated in part by their affiliation with the F-actin cytoskeleton. The cytoskeleton in turn is influenced by Rho family small GTPases such as RhoA, Rac1, and Cdc42, all of which constitute eukaryotic targets for several pathogenic organisms. With a tetracycline-repressible system to achieve regulated expression in Madin-Darby canine kidney (MDCK) epithelial cells, we used dominant-negative (DN) and constitutively active (CA) forms of RhoA, Rac1, and Cdc42 as tools to evaluate the precise contribution of each GTPase to epithelial structure and barrier function. All mutant GTPases induced time-dependent disruptions in epithelial gate function and distinct morphological alterations in apical and basal F-actin pools. TJ proteins occludin, ZO-1, claudin-1, claudin-2, and junctional adhesion molecule (JAM)-1 were dramatically redistributed in the presence of CA RhoA or CA Cdc42, whereas only claudins-1 and -2 were redistributed in response to CA Rac1. DN Rac1 expression also induced selective redistribution of claudins-1 and -2 in addition to JAM-1, whereas DN Cdc42 influenced only claudin-2 and DN RhoA had no effect. AJ protein localization was unaffected by any mutant GTPase, but DN Rac1 induced a reduction in E-cadherin detergent solubility. All CA GTPases increased the detergent solubility of claudins-1 and -2, but CA RhoA alone reduced claudin-2 and ZO-1 partitioning to detergent-insoluble membrane rafts. We conclude that Rho family GTPases regulate epithelial intercellular junctions via distinct morphological and biochemical mechanisms and that perturbations in barrier function reflect any imbalance in active/resting GTPase levels rather than simply loss or gain of GTPase activity. epithelium; tight junctions; paracellular permeability; Madin-Darby canine kidney cells  相似文献   

8.
9.
Integrin-mediated adhesion is a critical regulator of cell migration. Here we demonstrate that integrin-mediated adhesion to high fibronectin concentrations induces a stop signal for cell migration by inhibiting cell polarization and protrusion. On fibronectin, the stop signal is generated through alpha 5 beta 1 integrin-mediated signaling to the Rho family of GTPases. Specifically, Cdc42 and Rac1 activation exhibits a biphasic dependence on fibronectin concentration that parallels optimum cell polarization and protrusion. In contrast, RhoA activity increases with increasing substratum concentration. We find that cross talk between Cdc42 and Rac1 is required for substratum-stimulated protrusion, whereas RhoA activity is inhibitory. We also show that Cdc42 activity is inhibited by Rac1 activation, suggesting that Rac1 activity may down-regulate Cdc42 activity and promote the formation of stabilized rather than transient protrusion. Furthermore, expression of RhoA down-regulates Cdc42 and Rac1 activity, providing a mechanism whereby RhoA may inhibit cell polarization and protrusion. These findings implicate adhesion-dependent signaling as a mechanism to stop cell migration by regulating cell polarity and protrusion via the Rho family of GTPases.  相似文献   

10.
Rho GTPases对肿瘤血管生成相关分子的作用   总被引:10,自引:1,他引:9  
探讨RhoGTPases的 3个主要分子RhoA、Rac1和Cdc4 2对肿瘤血管生成相关分子的作用 .构建负显性RhoA、Rac1和Cdc4 2的真核表达质粒 ,在Lipofectamine2 0 0 0 介导下转染胃癌细胞AGS ,应用ELISA检测细胞培养上清中VEGF的含量 ,应用Western印迹检测肿瘤血管生成相关分子HIF 1α、P5 3和PTEN的表达水平 .成功地构建了负显性RhoA、Rac1和Cdc4 2的真核表达质粒 ,转染胃癌细胞AGS并经G4 18筛选出单克隆 .ELISA表明转染细胞培养上清中VEGF的含量可被明显抑制 ;Western印迹表明 ,负显性RhoGTPases在蛋白水平上可下调HIF 1α表达水平 ,上调P5 3的表达水平 .结果表明 ,Rho家族的 3个主要分子可能通过调节血管生成相关分子的表达来促进肿瘤血管生成 .  相似文献   

11.
Type I phosphatidylinositol 4-phosphate 5-kinase (PIP5K) catalyzes the formation of the phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP(2)), which is implicated in many cellular processes. The Rho GTPases, RhoA and Rac1, have been shown previously to activate PIP5K and to bind PIP5K. Three type I PIP5K isoforms (Ialpha,Ibeta, and Igamma) have been identified; however, it is unclear whether these isoforms are differentially or even sequentially regulated by Rho GTPases. Here we show that RhoA and Rac1, as well as Cdc42, but not the Ras-like GTPases, RalA and Rap1A, markedly stimulate PIP(2) synthesis by all three PIP5K isoforms expressed in human embryonic kidney 293 cells, both in vitro and in vivo. RhoA-stimulated PIP(2) synthesis by the PIP5K isoforms was mediated by the RhoA effector, Rho-kinase. Stimulation of PIP5K isoforms by Rac1 and Cdc42 was apparently independent of and additive with RhoA- and Rho-kinase, as shown by studies with C3 transferase and Rho-kinase mutants. RhoA, and to a lesser extent Rac1, but not Cdc42, interacted in a nucleotide-independent form with all three PIP5K isoforms. Binding of PIP5K isoforms to GTP-bound, but not GDP-bound, RhoA could be displaced by Rho-kinase, suggesting a direct and constitutive PIP5K-Rho GTPase binding, which, however, does not trigger PIP5K activation. In summary, our findings indicate that synthesis of PIP(2) by the three PIP5K isoforms is controlled by RhoA, acting via Rho-kinase, as well as Rac1 and Cdc42, implicating that regulation of PIP(2) synthesis has a central position in signaling by these three Rho GTPases.  相似文献   

12.
Maintenance of intestinal epithelial barrier functions is crucial to prevent systemic contamination by microbes that penetrate from the gut lumen. GTPases of the Rho-family such as RhoA, Rac1, and Cdc42 are known to be critically involved in the regulation of intestinal epithelial barrier functions. However, it is still unclear whether inactivation or activation of these GTPases exerts barrier protection or not. We tested the effects of Rho GTPase activities on intestinal epithelial barrier functions by using the bacterial toxins cytotoxic necrotizing factor 1 (CNF-1), toxin B, C3 transferase (C3 TF), and lethal toxin (LT) in an in vitro model of the intestinal epithelial barrier. Incubation of cell monolayers with CNF-1 for 3 h induced exclusive activation of RhoA whereas Rac1 and Cdc42 activities were unchanged. As revealed by FITC-dextran flux and measurements of transepithelial electrical resistance (TER) intestinal epithelial permeability was significantly increased under these conditions. Inhibition of Rho kinase via Y27632 blocked barrier destabilization of CNF-1 after 3 h. In contrast, after 24 h of incubation with CNF-1 only Rac1 and Cdc42 but not RhoA were activated which resulted in intestinal epithelial barrier stabilization. Toxin B to inactivate RhoA, Rac1, and Cdc42 as well as Rac1 inhibitor LT increased intestinal epithelial permeability. Similar effects were observed after inhibition of RhoA/Rho kinase signaling by C3 TF or Y27632. Taken together, these data demonstrate that both activation and inactivation of RhoA signaling increased paracellular permeability whereas activation of Rac1 and Cdc42 correlated with stabilized barrier functions.  相似文献   

13.
Small rho GTPases regulate antigen presentation in dendritic cells   总被引:2,自引:0,他引:2  
Dendritic cells (DC) are involved in the regulation of innate and adaptive immunity. However, the molecular mechanisms maintaining DC function remain to be elucidated. In this study, we report on the role of small Rho GTPases: Cdc42, Rac1, and RhoA in the regulation of DC adherence, Ag presentation, migration, chemotaxis, and endocytosis. Murine DC were transfected with vaccinia virus-based constructs, encoding dominant-negative or constitutively active (ca) mutant forms of Rho GTPases. We demonstrate that Cdc42 plays a major role in the regulation of DC adhesion, because caCdc42-transfected DC had significant up-regulation of adhesion to extracellular matrix, which was blocked by the Rho GTPase inhibitor toxin B (ToxB). In contrast, caRho-transfected DC only modestly elevated DC adhesion, and caRac had no effect. Additionally, caCdc42 and caRho increased the ability of DC to present OVA peptide to specific T cells. This effect was abrogated by ToxB. Activation of Cdc42 in DC significantly inhibited spontaneous and chemokine-induced DC migration. Furthermore, uptake of dextran 40 by DC was significantly enhanced by Rho GTPase activators cytotoxic necrotizing factor 1 and PMA, and reduced by ToxB. caCdc42 also increased endocytotic activity of DC, whereas dominant-negative Cdc42 blocked it. Thus, Rho GTPases Cdc42, RhoA, and Rac1 regulate DC functions that are critical for DC-mediated immune responses in vivo.  相似文献   

14.
Rho family GTPases are important regulators of the actin cytoskeleton. Activation of these proteins can be promoted by guanine nucleotide exchange factors containing Dbl and Pleckstrin homology domains resulting in membrane insertion of a Rho family member, whereas the inactive GDP-bound form is sequestered primarily in the cytoplasm, bound to the guanosine dissociation inhibitor RhoGDI. Dominant interfering variants of Rac1, but not Cdc42, inhibit beta1 integrin-promoted uptake of Yersinia pseudotuberculosis. Unexpectedly, we found that the Rac1(W56F) guanine nucleotide exchange factors specificity switch mutant blocked invasin-promoted uptake as well as Cdc42-dependent uptake of enteropathogenic Escherichia coli. Fluorescence resonance energy transfer experiments demonstrated that Rac1(W56F) retained the ability to be loaded with GTP, bind a downstream effector, and interact with RhoGDI. Mutational analyses of intragenic suppressors and coexpression studies demonstrated that binding of the Rac1(W56F) mutant to RhoGDI appeared to play a role in the inhibition of uptake. As RhoGDI inhibits RhoA, overactivation of RhoA may account for the uptake interference caused by Rac1(W56F). Consistent with this model, a dominant interfering form of RhoA restored significant uptake in the presence of the Rac1(W56F) mutant but had no effect on another interfering Rac1 form. Furthermore, the cellular GTP-RhoA level was elevated by the presence of Rac1(W56F) mutant protein. These data are consistent with the proposition that Rac1(W56F) blocks invasin-promoted uptake by preventing RhoGDI from inactivating RhoA. We conclude that RhoGDI allows cross-talk between Rho family members that promote potentially antagonistic processes, and disruption of this cross-talk can interfere with invasin-promoted uptake.  相似文献   

15.
Vav and Vav2 are members of the Dbl family of proteins that act as guanine nucleotide exchange factors (GEFs) for Rho family proteins. Whereas Vav expression is restricted to cells of hematopoietic origin, Vav2 is widely expressed. Although Vav and Vav2 share highly related structural similarities and high sequence identity in their Dbl homology domains, it has been reported that they are active GEFs with distinct substrate specificities toward Rho family members. Whereas Vav displayed GEF activity for Rac1, Cdc42, RhoA, and RhoG, Vav2 was reported to exhibit GEF activity for RhoA, RhoB, and RhoG but not for Rac1 or Cdc42. Consistent with their distinct substrate targets, it was found that constitutively activated versions of Vav and Vav2 caused distinct transformed phenotypes when expressed in NIH 3T3 cells. In contrast to the previous findings, we found that Vav2 can act as a potent GEF for Cdc42, Rac1, and RhoA in vitro. Furthermore, we found that NH(2)-terminally truncated and activated Vav and Vav2 caused indistinguishable transforming actions in NIH 3T3 cells that required Cdc42, Rac1, and RhoA function. In addition, like Vav and Rac1, we found that Vav2 activated the Jun NH(2)-terminal kinase cascade and also caused the formation of lamellipodia and membrane ruffles in NIH 3T3 cells. Finally, Vav2-transformed NIH 3T3 cells showed up-regulated levels of Rac-GTP. We conclude that Vav2 and Vav share overlapping downstream targets and are activators of multiple Rho family proteins. Therefore, Vav2 may mediate the same cellular consequences in nonhematopoietic cells as Vav does in hematopoietic cells.  相似文献   

16.
Integrins and cadherins are transmembrane adhesion receptors that are necessary for cells to interact with the extracellular matrix or adjacent cells, respectively. Integrins and cadherins initiate signaling pathways that modulate the activity of Rho family GTPases. The Rho proteins Cdc42, Rac1, and RhoA regulate the actin cytoskeleton. Cdc42 and Rac1 are primarily involved in the formation of protrusive structures, while RhoA generates myosin-based contractility. Here we examine the differential regulation of RhoA, Cdc42, and Rac1 by integrin and cadherin signaling. Integrin and cadherin signaling leads to a decrease in RhoA activity and activation of Cdc42 and Rac1. When the normal RhoA suppression is antagonized or RhoA signaling is increased, cells exhibited impaired spreading on the matrix protein fibronectin and decreased cell-cell adhesion. Spreading on fibronectin and the formation of cell-cell adhesions is decreased in cells expressing dominant negative forms of Cdc42 or Rac1. These data demonstrate that integrins and cadherins regulate Rho proteins in a comparable manner and lead us to speculate that these changes in Rho protein activity participate in a feedback mechanism that promotes further cell-matrix or cell-cell interaction, respectively.  相似文献   

17.
Hypoxia/reoxygenation-induced changes in endothelial permeability are accompanied by endothelial actin cytoskeletal and adherens junction remodeling, but the mechanisms involved are uncertain. We therefore measured the activities of the Rho GTPases Rac1, RhoA, and Cdc42 during hypoxia/reoxygenation and correlated them with changes in endothelial permeability, remodeling of the actin cytoskeleton and adherens junctions, and production of ROS. Dominant negative forms of Rho GTPases were introduced into cells by adenoviral gene transfer and transfection, and inhibitors of NADPH oxidase, PI3 kinase, and Rho kinase were used to characterize the signaling pathways involved. In some experiments constitutively activated forms of RhoA and Rac1 were also used. We show for the first time that hypoxia/reoxygenation-induced changes in endothelial permeability result from coordinated actions of the Rho GTPases Rac1 and RhoA. Rac1 and RhoA rapidly respond to changes in oxygen tension, and their activity depends on NADPH oxidase- and PI3 kinase-dependent production of ROS. Rac1 acts upstream of RhoA, and its transient inhibition by acute hypoxia leads to activation of RhoA followed by stress fiber formation, dispersion of adherens junctions, and increased endothelial permeability. Reoxygenation strongly activates Rac1 and restores cortical localization of F-actin and VE-cadherin. This effect is a result of Rac1-mediated inhibition of RhoA and can be prevented by activators of RhoA, L63RhoA, and lysophosphatidic acid. Cdc42 activation follows the RhoA pattern of activation but has no effect on actin remodeling, junctional integrity, or endothelial permeability. Our results show that Rho GTPases act as mediators coupling cellular redox state to endothelial function.  相似文献   

18.
Rho GTPases参与调控细胞的多种关键生物学行为,特别是细胞的生长、细胞骨架的形成、转录调节等生物学过程. 在肿瘤的发生发展中Rho GTPases也扮演了重要的角色.本文将回顾Rho GTPases的调控(包括经典及非经典调控方式)及其关键成员(RhoA、Cdc42及Rac1)与临床肿瘤的研究进展,特别是它们参与调控肿瘤的增殖、迁移、侵袭、凋亡等恶性生物学行为,从而为研发靶向Rho GTPases的小分子/基因药物了奠定基础.  相似文献   

19.
BACKGROUND: The ability of a cell to polarize and move is governed by remodeling of the cellular adhesion/cytoskeletal network that is in turn controlled by the Rho family of small GTPases. However, it is not known what signals lie downstream of Rac1 and Cdc42 during peripheral actin and adhesion remodeling that is required for directional migration. RESULTS: We show here that individual members of the Rho family, RhoA, Rac1, and Cdc42, direct the specific intracellular targeting of c-Src tyrosine kinase to focal adhesions, lamellipodia, or filopodia, respectively, and that the adaptor function of c-Src (the combined SH3/SH2 domains coupled to green fluorescent protein) is sufficient for targeting. Furthermore, Src's catalytic activity is absolutely required at these peripheral cell-matrix attachment sites for remodeling that converts RhoA-dependent focal adhesions into smaller focal complexes along Rac1-induced lamellipodia (or Cdc42-induced filopodia). Consequently, cells in which kinase-deficient c-Src occupies peripheral adhesion sites exhibit impaired polarization toward migratory stimuli and reduced motility. Furthermore, phosphorylation of FAK, an Src adhesion substrate, is suppressed under these conditions. CONCLUSIONS: Our findings demonstrate that individual Rho GTPases specify Src's exact peripheral localization and that Rac1- and Cdc42-induced adhesion remodeling and directed cell migration require Src activity at peripheral adhesion sites.  相似文献   

20.
Chlamydiae are gram-negative obligate intracellular pathogens to which access to an intracellular environment is paramount to their survival and replication. To this end, chlamydiae have evolved extremely efficient means of invading nonphagocytic cells. To elucidate the host cell machinery utilized by Chlamydia trachomatis in invasion, we examined the roles of the Rho GTPase family members in the internalization of chlamydial elementary bodies. Upon binding of elementary bodies on the cell surface, actin is rapidly recruited to the sites of internalization. Members of the Rho GTPase family are frequently involved in localized recruitment of actin. Clostridial Toxin B, which is a known enzymatic inhibitor of Rac, Cdc42 and Rho GTPases, significantly reduced chlamydial invasion of HeLa cells. Expression of dominant negative constructs in HeLa cells revealed that chlamydial uptake was dependent on Rac, but not on Cdc42 or RhoA. Rac but not Cdc42 was found to be activated by chlamydial attachment. The effect of dominant negative Rac expression on chlamydial uptake is manifested through the inhibition of actin recruitment to the sites of chlamydial entry. Studies utilizing Green Fluorescent Protein fusion constructs of Rac, Cdc42 and RhoA, showed Rac to be the sole member of the Rho GTPase family recruited to the site of chlamydial entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号