首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three phenolic glycosides 5-O-{[5′′-O-E-(4′′′-O-threo-guaiacylglycerol)-feruloyl]-β-apiofuranosyl-(1→2)-β-xylopyranosyl} gentisic acid, 5-O-[(5′′-O-vanilloyl)-β-apiofuranosyl-(1→2)-β-xylopyranosyl] gentisic acid and 1-O-[E-(4′′′-O-threo-guaiacylglycerol)-feruloyl]-3-O-β-galacturonopyranosyl glycerol were isolated and identified from the roots of Medicago truncatula together with four known 5-O-β-xylopyranosyl gentisic acid, vicenin-2, hovetrichoside C and pterosupin identified for the first time in this species. Structural elucidation was carried out on the basis of UV, mass, 1H and 13C NMR spectral data.  相似文献   

2.
From the fruits of Sambucus canadensis four anthocyanin glycosides have been isolated by successive application of an ion-exchange resin, droplet-counter chromatography and gel filtration. The structure of the novel, major (69.8%) pigment, cyanidin 3-O-[6-O-(E-p-coumaroyl-2-O-(β- -xylopyranosyl)-β- -glucopyranoside]-5-O-β- -glucopyranoside, was determined by means of chemical degradation, chromatography and spectroscopy, especially homo- and heteronuclear two-dimensional NMR techniques. The other anthocyanins were identified as cyanidin 3-sambubioside-5-glucoside (22.7%), cyanidin 3-sambubioside (2.3 %) and cyanidin 3-glucoside (2.1 %).  相似文献   

3.
Three acylated flavonol diglucosides, kaempferol 3-O-β-(6″-O-E-p-coumaroylglucoside)-7-O-β-glucoside; quercetin 3-O-β-(6″-O-E-p-coumaroylglucoside)-7-O-β-glucoside; isorhamnetin 3-O-β-(6″-O-E-p-coumaroylglucoside)-7-O-β-glucoside were isolated from the whole plant aqueous alcohol extract of Lotus polyphyllos. The known 3,7-di-O-glucosides of the aglycones kaempferol, quercetin and isorhamnetin were also characterized. All structures were established on the basis of chemical and spectral evidence.  相似文献   

4.
Five glycosides, 2-(trans-cinnamoyloxy-methyl)-1-butene-4-O-β-d-glucopyranoside (1), 4-(6′-O-trans-cinnamoyl)-(2-hydroxymethyl-4-hydroxy-butenyl-β-d-glucopyranoside (2), 6′′-O-trans-p-coumaroyl-(4-hydroxybenzoyl)-β-d-glucopyranoside (3), 6′-O-(4-methoxy-trans-cinnamoyl) α/β-d-glucopyranose (4) 6′-O-(4′′-methoxy-trans-cinnamoyl)-kaempferol-3-β-d-glucopyranoside (7) along with six known compounds, (+)-isolariciresinol 3a-O-β-d-glucopyranoside (8) (+)-lyoniresinol 3a-O-β-d-glucopyranoside (9), apigenin 7-O-β-d-glucopyranoside (10), quercetin 3-O-β-d-glucopyranoside (11), 6′-O-cinnamoyl-α/β-d-glucopyranose (6) 6’-O-p-coumaroyl-α/β-d-glucopyranose (5) were isolated from the whole plant of Spiraea canescens. Some of these compounds showed potent radical scavenging activity in relevant non-physiological assays. Their structures were determined by NMR spectroscopic and CID mass spectrometric techniques.  相似文献   

5.
Two apiose-containing kaempferol triosides, together with nine known flavonoids were isolated from the leaves of Silphium perfoliatum L. Their structures were elucidated by acid hydrolysis and spectroscopic methods including UV, LSI MS, FAB MS, CI MS, 1H, 13C and 2D-NMR, DEPT, HMQC and HMBC experiments. The two new compounds were identified as kaempferol 3-O-β- -apiofuranoside 7-O-α- -rhamnosyl-(1′→6)-O-β- -galactopyranoside and kaempferol 3-O-β- -apiofuranoside 7-O-α- -rhamnosyl-(1→ 6)-O-β- (2-O-E-caffeoylgalactopyranoside).  相似文献   

6.
In order to prepare 3-aminopropyl glycosides of Neu5Ac-α-(2→6′)-lactosamine trisaccharide 1, and its N-glycolyl containing analogue Neu5Gc-α-(2→6′)-lactosamine 2, a series of lactosamine acceptors with two, three, and four free OH groups in the galactose residue was studied in glycosylations with a conventional sialyl donor phenyl [methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio- -glycero-α- and β- -galacto-2-nonulopyranosid]onates (3) and a new donor phenyl [methyl 4,7,8,9-tetra-O-acetyl-5-(N-tert-butoxycarbonylacetamido)-3,5-dideoxy-2-thio- -glycero-α- and β- -galacto-2-nonulopyranosid]onates (4), respectively. The lactosamine 4′,6′-diol acceptor was found to be the most efficient in glycosylation with both 3 and 4, while imide-type donor 4 gave slightly higher yields with all acceptors, and isolation of the reaction products was more convenient. In the trisaccharides, obtained by glycosylation with donor 4, the 5-(N-tert-butoxycarbonylacetamido) moiety in the neuraminic acid could be efficiently transformed into the desired N-glycolyl fragment, indicating that such protected oligosaccharide derivatives are valuable precursors of sialo-oligosaccharides containing N-modified analogues of Neu5Ac.  相似文献   

7.
A platform for screening drugs for their ability to protect neuronal cells against cytotoxicity was developed. Nerve growth factor (NGF) differentiates PC12 cells into nerves, and these differentiated PC12 cells enter apoptosis when challenged with 6-hydroxydopamine (6-OHDA). A screening spectrophotometer was used to assay cytotoxicity in these cells; pretreatment with test samples allowed identification of compounds that protected against this neuronal cytotoxicity. The 95% ethanol extract of Phoenix hanceana Naudin var. formosana Beccari. (PH) showed potential neuroprotective activity in these assays. The PH ethanol extract was further fractionated by sequential partitioning with n-hexane, ethyl acetate (EtOAc), n-butanol (n-BuOH), and water. Subsequent rounds of assaying resulted in the isolation of ten constituents, and their structures were characterized by various spectroscopic techniques and identified by comparison with previous data as: isoorientin (1), isovitexin (2), veronicastroside (3), luteolin-7-O-β-d-glucopyranoside (4), isoquercitrin (5), tricin-7-neohesperidoside (6), tricin-7-O-β-d-gluco-pyranoside (7), (+)-catechin (8), (−)-epicatechin (9), and orientin 7-O-β-d-glucopyranoside (10). Among these compounds, isovitexin (2), luteolin-7-O-β-d-glucopyranoside (4) and (+)-catechin (8) showed significant neuroprotective activity in cell viability (WST-8 reduction), anti-apoptosis (Annexin V-FITC/propidium iodide double-labeled flow cytometry), and cellular ROS scavenging assays (besides isovitexin (2)), as well as a decreased caspase-8 activity in 6-OHDA-induced PC12 cells. Hence, isovitexin (2), luteolin-7-O-β-d-glucopyranoside (4), and (+)-catechin (8) protected PC12 cells from 6-OHDA-induced apoptotic neurotoxicity.  相似文献   

8.
A new flavone glucoside macrophylloside has been isolated from the whole plant of Primula macrophylla and its structure was determined by spectroscopic methods as 2′-hydroxy-7-O-β- -glucopyranosyloxyflavone. Sitosterol glucoside was also isolated for the first time from this plant.  相似文献   

9.
A panel of six complementary monodeoxy and mono-O-methyl congeners of methyl β-d-mannopyranosyl-(1→2)-β-d-mannopyranoside (1) were synthesized by stereoselective glycosylation of monodeoxy and mono-O-methyl monosaccharide acceptors with a 2-O-acetyl-glucosyl trichloroacetimidate donor, followed by a two-step oxidation–reduction sequence at C-2′. The β-manno configurations of the final deprotected congeners 2–7 were confirmed by measurement of 1JC1,H1 heteronuclear and 3J1′,2′ homonuclear coupling constants. These disaccharide derivatives will be used to map the protective epitope recognized by a protective anti-Candida albicans monoclonal antibody C3.1 (IgG3) and to determine its key polar contacts with the binding site.  相似文献   

10.
Suspension cultures of Vitis vinifera were found to produce catechins and stilbenes. When cells were grown in a medium inducing polyphenol synthesis, (−)-epicatechin-3-O-gallate, dimeric procyanidin B-2 3′-O-gallate and two resveratrol diglucosides were isolated, together with a new natural compound that was identified as cis-resveratrol-3,4′-O-β-diglucoside by spectroscopical methods.  相似文献   

11.
Three new nervogenic acid glycosides, 1-O-α-l-rhamnopyranosyl 3,5-bis(3-methyl-but-2-enyl)-4-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl]-benzoate, 3,5-bis(3-methyl-but-2-enyl)-4-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl]-benzoic acid, and bis{3,5-bis(3-methyl-but-2-enyl)-4-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl]-benzoyl} 1,2-O-β-d-glucopyranose, which we named condobulbosides A–C, were isolated from a methanol extract of the leaves of Liparis condylobulbon together with an apigenin C-glycoside, schaftoside. Their structures were established on the basis of spectral techniques, namely, UV, IR, HR-MS spectroscopy, both 1D and 2D NMR experiments, and chemical reactions.  相似文献   

12.
Three main saponins were isolated from the seeds of Albizzia lucida. Their structures were established by spectral analyses and chemical and enzymatic transformations as 3-O-[β- -xylopyranosyl(1→2)-α- -arabinopyranosyl (1→6)] [β- -glucopyranosyl (1→2)] β- -glucopyranosyl echinocystic acid; 3-O-[α- -arabinopyranosyl (1→6)][β- -glucopyranosyl (1→2)]-β- -glucopyranosyl echinocystic acid and 3-O-[β- -xylopyranosyl (1→2)-β- -fucopyranosyl (1→6)-2-acetamido-2-deoxy-β- -glucopyranosyl echinocystic acid, characterized as its methyl ester.  相似文献   

13.
Roots of Anisotome pilifera yielded typical Apiaceae compounds 6,7-dimethoxy-coumarin 1 and falcarindiol 2, plus the irregular diterpenes anisotomenoic acid 3 and anisotomene alcohol 4. The new germacrane derivative 8-O-senecioyl-6β,8α,11-trihydroxygermacra-1(10)E,4E-diene 5 was also isolated and the structure established by means of high resolution mass spectrometry and 1-D and 2-D NMR spectroscopy. Distribution and chemosystematic significance of 6,8-dihydroxygermacra-1(10)E,4E-dienes and 6,8,11-trihydroxygermacra-1(10)E,4E-dienes are discussed. Additionally, leaves of A. pilifera yielded chlorogenic acid 6 and high amounts of luteolin 7-O-α- -rhamnosyl(1→6)-β- -glucoside 7.  相似文献   

14.
The synthesis of a versatile -rhamnose monosaccharide synthon is described. This synthon is used in the synthesis of a disaccharide containing the rare sugar, 6-deoxy- -glucose, linked to the 3-C-hydroxymethyl group of methyl 2,3-O-isopropylidene 3-C-(hydroxymethyl)-β- -erythrofuranoside.  相似文献   

15.
Four xanthone O-glycosides, polygalaxanthones IV–VII were isolated from the roots of Polygala tenuifolia Willd., together with eight known compounds. The structures of the four xanthone O-glycosides were established as 6-O-[α- -rhamnopyranosyl-(1→2)-β- -glucopyranosyl]-1-hydroxy-3,7-dimethoxyxanthone (polygalaxanthone IV), 6-O-[α- -rhamnopyranosyl-(1→2)-β- -glucopyranosyl]-1,3-dihydroxy-7-methoxyxanthone (polygalaxanthone V), 6-O-(β- -glucopyranosyl)-1,2,3,7-tetramethoxyxanthone (polygalaxanthone VI), and 3-O-[α- -rhamnopyranosyl-(1→2)-β- -glucopyranosyl]-1,6-dihydroxy-2,7-dimethoxyxanthone (polygalaxanthone VII), respectively, on the basis of analysis of spectroscopic evidence.  相似文献   

16.
Enzymatic synthesis of 3-O-methyl-4-O-β- -galactopyranosyl- -glucose (3-O-methyl-lactose) has been attempted using both galactosyltransferase and galactosidase activities. The transferase-catalysed reaction produces exclusively the desired product in β-1,4-glycosidic linkage whereas the galactosidase-catalysed reactions predominantly form a 1,6-linked disaccharide. With galactosidase, in order to change the regioselectivity, blocking of the 6-position of 3-O-methyl- -glucose and anomeric modification of the acceptor structure were investigated. Although acetylation of the 6-position of 3-O-methyl glucose catalysed by lipase was successful, the synthesis of the desired disaccharide did not occur.  相似文献   

17.
β-Echinenone is a major carotenoid in the gonad of sea urchins and may play an important role in reproduction and embryonic development. We reinvestigated β-echinenone occurrence in the gonad, viscera, test, and spine of the sea urchin Pseudocentrotus depressus. It was found that β-echinenone fraction consisted of all-E- and 9′Z-β-echinenone. The highest abundance of 9′Z-β-echinenone (76.0–78.2% of the total β-echinenone fraction) was observed in the ovary and testis of the sea urchin. In both females and males, all-E-β-echinenone predominated in the viscera (63.6–75.9%), unlike the 9′Z-β-echinenone, and it was also present in the test and spine (41.3–64.9%). It should be made clear that the work suggests that the Z-carotenoid may have a specific function in the sea urchin, possibly related to reproduction.  相似文献   

18.
An α- -fucosidase from porcine liver produced α- -Fuc-(1→2)-β- -Gal-(1→4)- -GlcNAc (2′-O-α- -fucosyl-N-acetyllactosamine, 1) together with its isomers α- -Fuc-(1→3)-β- -Gal-(1→4)- -GlcNAc (2) and α- -Fuc-(1→6)-β- -Gal-(1→4)- -GlcNAc (3) through a transglycosylation reaction from p-nitrophenyl α- -fucopyranoside and β- -Gal-(1→4)- -GlcNAc. The enzyme formed the trisaccharides 13 in 13% overall yield based on the donor, and in the ratio of 40:37:23. In contrast, transglycosylation by Alcaligenes sp. α- -fucosidase led to the regioselective synthesis of trisaccharides containing a (1→3)-linked α- -fucosyl residue. When β- -Gal-(1→4)- -GlcNAc and lactose were acceptors, the enzyme formed regioselectively compound 2 and α- -Fuc-(1→3)-β- -Gal-(1→4)- -Glc (3′-O-α- -fucosyllactose, 4), respectively, in 54 and 34% yields, based on the donor.  相似文献   

19.
Thomsen–Friedenreich antigen (T antigen) disaccharide, β- -galactose-(1→3)-α-N-acetyl- -galactosamine (β- -Gal-(1→3)-α- -GalNAc), containing glycolipid mimicry was synthesized using the transglycosylation activity of endo-α-N-acetylgalactosaminidase from Bacillus sp. This enzyme could transfer the disaccharide from a p-nitrophenyl substrate to water-soluble 1-alkanols and other alcohols at a transfer ratio of 70% or more. Although the transfer ratios were lower for water-insoluble than water-soluble alcohols, they were shown to increase by adding sodium cholate to the reaction mixtures. The enzyme also transferred the disaccharide directly from asialofetuin to 1-alkanols. The anomeric bond between the disaccharide and 1-alkanols of the transglycosylation product is in the α configuration as determined by sequential digestion of jack bean β-galactosidase and Acremonium α-N-acetylgalactosaminidase. Since the transglycosylation product, β- -Gal-(1→3)-α- -GalNAc-(1→O)-hexyl, efficiently inhibits the binding of anti-T antigen monoclonal antibody to asialofetuin, it has potential as an agent for blocking T antigen-mediated cancer metastasis.  相似文献   

20.
Six phenolic compounds isolated from Curculigo orchioides, including 2,6-dimethoxy benzoic acid (1), curculigoside A (2), curculigoside B (3), curculigine A (4), curculigine D (5) and 3,3′,5,5′-tetramethoxy-7,9′:7′,9-diepoxylignan-4,4′-di-O-β-d-glucopyranoside (6), together with the ethanol extract of Curculigo orchioides were evaluated for their activity on osteoblasts in neonatal rat calvaria cultures and multinucleated osteoclasts derived from rat marrow cells so as to characterize the antiosteoporotic components of this plant and explore the relationship of chemical structure with antiosteoporotic activity. The proliferation of osteoblast was assayed by MTT methods. The activity of ALP (alkaline phosphatase) and TRAP (tartrate-resistant acid phosphatase) was measured by p-nitrophenyl sodium phosphate assay. The TRAP stain was used to identify osteoclast in morphology. The resorption pit area on the bone slices formed by osteoclast was measured by computer image processing. The ethanol extract exhibited stimulatory effect on both the osteoblast proliferation and the ALP activity. Six compounds all increased the osteoblast proliferation, and compounds (1), (2) and (4) also slightly increased the osteoblastic ALP activity. Compounds (1), (2), (3), (6) and the ethanol extract decreased area of bone resorption pit, osteoclastic formation and TRAP activity. These results indicated that phenolic compounds are antiosteoporotic chemical constituents from Curculigo orchioides, and their activities are related with chemical structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号