首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study is to understand the influence of pH and effect of cosolvent (glucose) on the stabilization of bovine α-lactalbumin by using ultrasonic techniques. Values of density, ultrasonic velocity and viscosity were measured for bovine α-lactalbumin (5 mg/ml) dissolved in phosphate buffer (pH 2, 5, 7, 9 and 12) solutions mixed with and without the cosolvent at 30 °C. These measurements were used to calculate few thermo-acoustical parameters such as adiabatic compressibility, intermolecular free length, acoustic impedance, relaxation time, relative association constant, the partial apparent specific volume and the partial apparent specific adiabatic compressibility for the said systems. The obtained results revealed a strong comparison between the effects of acidic and alkaline pH values on protein denaturation, i.e., the acidic pH are instantaneous and are of less magnitude whereas alkaline pH are slower but sharper. Further the present study supports the fact that the presence of glucose stabilizes α-lactalbumin against denaturation due to pH variation, which may be due to the strengthening of non-covalent interactions and the steric exclusion effect.  相似文献   

2.
Key elements of β-structure folding include hydrophobic core collapse, turn formation, and assembly of backbone hydrogen bonds. In the present folding simulations of several β-hairpins and β-sheets (peptide 1, protein G B1 domain peptide, TRPZIP2, TRPZIP4, 20mer, and 20merDP6D), the folding free-energy landscape as a function of several reaction coordinates corresponding to the three key elements indicates apparent dependence on turn stability and side-chain hydrophobicity, which demonstrates different folding mechanisms of similar β-structures of varied sequences. Turn stability is found to be the key factor in determining the formation order of the three structural elements in the folding of β-structures. Moreover, turn stability and side-chain hydrophobicity both affect the stability of backbone hydrogen bonds. The three-stranded β-sheets fold through a three-state transition in which the formation of one hairpin always takes precedence over the other. The different stabilities of two anti-parallel hairpins in each three-stranded β-sheet are shown to correlate well with the different levels of their hydrophobic interactions.  相似文献   

3.
Bovine β-casein (β-CN) with its C-terminal truncated by chymosin digestion, β-CN-(f1-192), was examined and characterized using circular dichroism (CD) under various temperature conditions. CONTIN/LL analysis of the CD data revealed significant secondary structure disruption in β-CN-(f1-192) relative to its parent protein,β-CN, in the temperature range (5° to 70°C) studied. Near-UV CD spectra indicated significant temperature dependent structural changes. Analytical ultracentrifugation results showed significant reduction but not complete abolishment of self-association in β-CN-(f1-192) compared to whole β-casein at 2°–37°C. Furthermore, binding experiments with the common hydrophobic probe – 8-anilino-1- naphthalene sulfonic acid (ANS) illustrated that β-CN-(f1-192) is nearly incapable of binding to ANS relative to whole β-CN, suggesting a nearly complete open overall tertiary structure brought about by the C-terminal truncation. It has been demonstrated clearly that the tail peptide β-CN-(f193-209) is important in maintaining the hydrophobic core of β-CN but the residual association observed argues for a minor role for other sites as well.  相似文献   

4.
summary. A thermostable -amylase from B. licheniformis (BLA) and a mesophilic amylase from B. amyloliquefaciens (BAA) were covalently coupled to oxidized synthetic sucrose polymers (OSP400 and OSP70) and polyglutaraldehyde (PGA) by reductive alkylation to study the effect of neoglycosylation on the activity, kinetic and thermodynamic stability. The catalytic efficiency of the modified enzymes was comparable to that of the native enzyme. Covalent coupling decreased the rate of inactivation at all the temperatures studied, both in the presence and absence of added Ca2+. The stability of the native enzyme was found to increase upon modification as observed from the increase in t1/2 in the absence of Ca2+ ions by about 1.5–13.7 times (at 85°C) in the case of BLA and 5.7–8.4 times (at 50°C) for BAA. The highest stability was observed for OSP400 modified enzyme with Cm and Tm values of 0.63 M and 7.92°C for BLA and 0.85 M and 5.3°C for BAA, respectively. The order of stability was OSP400 > OSP70 > PGA > Native for both BLA and BAA. The stability of the modified amylases obtained from the present study were superior compared to most of the single and double mutants obtained by site-directed mutagenesis that were constructed so as to enhance the intrinsic stability of these enzymes.This article is dedicated to Dr. P.V. Sundaram.  相似文献   

5.
Abstract

Ribosylation of 3-methylguanine la was investigated by enzymatic and chemical methods. Compound la did not act as a substrate for purine nucleoside phosphorylase. N-2-Protected 3-methylguanines 4 and 6 underwent exclusive N-7 glycosylation by fusion and chloromercury methods to give 5 and 7. Fully acetylated 7-α-D-ribofuranoside 5 was also obtained by thermal transglycosylation of the corresponding 9-α-D-ribofuranoside 9. The reverse isomerization 59 did not occur. The differences in the relative stability towards acidic hydrolysis between 7- and 9-(α-D-ribofuranosyl)-3-methylguanines are distinctly higher than those described so far for the other 7-9 isomeric nucleosides.  相似文献   

6.
α-Catenin plays a crucial role in cadherin-mediated adhesion by binding to β-catenin, F-actin, and vinculin, and its dysfunction is linked to a variety of cancers and developmental disorders. As a mechanotransducer in the cadherin complex at intercellular adhesions, mechanical and force-sensing properties of α-catenin are critical to its proper function. Biochemical data suggest that α-catenin adopts an autoinhibitory conformation, in the absence of junctional tension, and biophysical studies have shown that α-catenin is activated in a tension-dependent manner that in turn results in the recruitment of vinculin to strengthen the cadherin complex/F-actin linkage. However, the molecular switch mechanism from autoinhibited to the activated state remains unknown for α-catenin. Here, based on the results of an aggregate of 3 μs of molecular dynamics simulations, we have identified a dynamic salt-bridge network within the core M region of α-catenin that may be the structural determinant of the stability of the autoinhibitory conformation. According to our constant-force steered molecular dynamics simulations, the reorientation of the MII/MIII subdomains under force may constitute an initial step along the transition pathway. The simulations also suggest that the vinculin-binding domain (subdomain MI) is intrinsically much less stable than the other two subdomains in the M region (MII and MIII). Our findings reveal several key insights toward a complete understanding of the multistaged, force-induced conformational transition of α-catenin to the activated conformation.  相似文献   

7.
8.
Protein molecules require both flexibility and rigidity for functioning. The fast and accurate prediction of protein rigidity/flexibility is one of the important problems in protein science. We have determined flexible regions for four homologous pairs from thermophilic and mesophilic organisms by two methods: the fast FoldUnfold which uses amino acid sequence and the time consuming MDFirst which uses three-dimensional structures. We demonstrate that both methods allow determining flexible regions in protein structure. For three of the four thermophile–mesophile pairs of proteins, FoldUnfold predicts practically the same flexible regions which have been found by the MD/First method. As expected, molecular dynamics simulations show that thermophilic proteins are more rigid in comparison to their mesophilic homologues. Analysis of rigid clusters and their decomposition provides new insights into protein stability. It has been found that the local networks of salt bridges and hydrogen bonds in thermophiles render their structure more stable with respect to fluctuations of individual contacts. Such network includes salt bridge triads Agr-Glu-Lys and Arg-Glu-Arg, or salt bridges (such as Arg-Glu) connected with hydrogen bonds. This ionic network connects alpha helices and rigidifies the structure. Mesophiles can be characterized by stand alone salt bridges and hydrogen bonds or small ionic clusters. Such difference in the network of salt bridges results in different flexibility of homologous proteins. Combining both approaches allows characterizing structural features in atomic detail that determine the rigidity/flexibility of a protein structure. This article is a part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.  相似文献   

9.
Bacteriophage λ replication complex, containing the phage-encoded O initiator protein protected from proteases by other elements of this complex, is a stable structure that can be inherited by one of the two daughter λ DNA copies after a replication round in Escherichia coli. In normal growth conditions in bacteria bearing a plasmid derived from bacteriophage λ, such a complex may be stable for many cell generations. However, it was found that this stable structure is disassembled under certain conditions, namely, after heat shock. Therefore, we asked whether other environmental stresses may cause disassembly of the λ replication complex. We found that UV irradiation of the host cells prevented formation of the stable λ replication complex (though not preventing phage replication), while the same UV doses did not affect the stability of the replication complex assembled prior to the irradiation. These results indicate that the stable λ replication complex, although sensitive to heat shock, is resistant to some other environmental stresses and that formation of at least two types of λ replication complexes is possible. Both stable and unstable λ replication complexes are functional because replication of λ DNA under conditions preventing formation of the stable complex proceeds efficiently. Received: 18 January 2000 / Accepted: 2 March 2000  相似文献   

10.
《Biophysical journal》2021,120(21):4874-4890
During HIV-1 assembly, the viral Gag polyprotein specifically selects the dimeric RNA genome for packaging into new virions. The 5′ untranslated region (5′UTR) of the dimeric genome may adopt a conformation that is optimal for recognition by Gag. Further conformational rearrangement of the 5′UTR, promoted by the nucleocapsid (NC) domain of Gag, is predicted during virus maturation. Two 5′UTR dimer conformations, the kissing dimer (KD) and the extended dimer (ED), have been identified in vitro, which differ in the extent of intermolecular basepairing. Whether 5′UTRs from different HIV-1 strains with distinct sequences have access to the same dimer conformations has not been determined. Here, we applied fluorescence cross-correlation spectroscopy and single-molecule Förster resonance energy transfer imaging to demonstrate that 5′UTRs from two different HIV-1 subtypes form (KDs) with divergent stabilities. We further show that both 5′UTRs convert to a stable dimer in the presence of the viral NC protein, adopting a conformation consistent with extensive intermolecular contacts. These results support a unified model in which the genomes of diverse HIV-1 strains adopt an ED conformation.  相似文献   

11.
Recombinant plasmids containing genes for the green fluorescent protein (GFP) from Aequorea victoriaand the photoprotein obelin from Obelia longissimalinked in-frame by inserts differing in nucleotides sequences were constructed. The expression of the chimeric genes in Escherichia colicells resulted in synthesis of the GFP–obelin hybrid proteins. These proteins were purified to homogeneity and subjected to limited trypsinolysis. It was shown that the resistance of GFP–obelin hybrid proteins to trypsin depends on the nature of their constituent modules and the amino acid sequences of linkers between the modules. The kinetics of accumulation of full-length hybrid proteins during the growth of bacterial cells does not depend on the structure of the peptide linkers. Most of the full-length product accumulates in cells in the form of inclusion bodies resistant to endogenous proteases. The soluble fraction of the protein undergoes considerable proteolysis regardless of the linker structure.  相似文献   

12.
α-Crystallin functions as a molecular chaperone and maintains transparency of eye lens by protecting other lens-proteins. Non-enzymatic glycation of α-crystallin by methylglyoxal, plays a crucial role on its chaperone function and structural stability. Our studies showed that methylglyoxal modification even in lower concentration caused significant decrease in chaperone function of α-crystallin as reflected both in thermal aggregation assay and enzyme refolding assay. Thermal denaturation studies showed drastic reduction of denaturation temperature with increase in the degree of modification. Thermodynamic stability studies by urea denaturation assay reflected a decrease of transition midpoint. Quantitatively we found that ΔG° of native α-crystallin decreased from 21.6 kJ/mol to 10.4 kJ/mol due to 72 h modification by 10 mM methylglyoxal. The surface hydrophobicity of α-crystallin after MG modification, was found to be decreased. Circular dichroism spectroscopy revealed conversion of β-sheet structure to random coil structure. Significant cross-linking was also observed due to methylglyoxal modification of human α-crystallin.  相似文献   

13.
Eukaryotic mRNAs that prematurely terminate translation are recognized and degraded by nonsense mediated decay (NMD). This degradation pathway is well studied in animal and yeast cells. The data available imply that NMD also takes place in plants. However, the molecular mechanism of recognition and degradation of plant RNAs containing premature terminator codon (PTC) is not known. Here we report that in plant cells this mechanism involves the recognition of the sizes of the 3'-untranslated regions (3'UTR). Plant 3'UTRs longer than 300 nucleotides induce mRNA instability. Contrary to mammalian and yeast cells, this destabilization does not depend on the presence of any specific sequences downstream of the terminator codon. Unlike nuclear-produced mRNAs, plant virus vector long 3'UTR-containing RNAs, which are synthesized directly in the cytoplasm, are stable and translated efficiently. This shows that RNAs produced in the cytoplasm by viral RNA-dependent RNA polymerase are able to avoid the proposed mechanism.  相似文献   

14.
The observation of two-state unfolding for many small single-domain proteins by denaturants has led to speculation that protein sequences may have evolved to limit the population of partially folded states that could be detrimental to fitness. How such strong cooperativity arises from a multitude of individual interactions is not well understood. Here, we investigate the stability and folding cooperativity of the C-terminal domain of the ribosomal protein L9 in the pressure-temperature plane using site-specific NMR. In contrast to apparent cooperative unfolding detected with denaturant-induced and thermal-induced unfolding experiments and stopped-flow refolding studies at ambient pressure, NMR-detected pressure unfolding revealed significant deviation from two-state behavior, with a core region that was selectively destabilized by increasing temperature. Comparison of pressure-dependent NMR signals from both the folded and unfolded states revealed the population of at least one invisible excited state at atmospheric pressure. The core destabilizing cavity-creating I98A mutation apparently increased the cooperativity of the loss of folded-state peak intensity while also increasing the population of this invisible excited state present at atmospheric pressure. These observations highlight how local stability is subtly modulated by sequence to tune protein conformational landscapes and illustrate the ability of pressure- and temperature-dependent studies to reveal otherwise hidden states.  相似文献   

15.
As reported in the literature [Mozhaev et al. (1988), Eur. J. Biochem. 173, 147–154], when a series of modifiers, especially the cyclic anhydrides of pyromellitic and mellitic acids, are introduced into each lysine located in the -chymotrypsin (CT) surface, a substantial hydrophilization of the enzyme surface can occur and remarkable stabilization effects of modified enzymes can be obtained. In this paper, four models are applied to calculate the solvation energy of native and the modified CT based on their tertiary structures, which can be built by the CVFF force field. Analyzing the relationship between the solvation energy and the thermal stability in detail, we find that the results of three solvation energy models (Ooi model, WE-1 model, and WE-2 model) can be used to illustrate the relative stability among these enzymes qualitatively. The present study should be of practical value as well as of some theoretical interest.  相似文献   

16.
Summary B. subtilis strains carrying plasmids pBDA 318, pUBA 10, pUBA 11 and pUBA 20 were cultivated for up to 50 generations without antibiotic selection and then screened for the presence of the plasmid and -amylase gene. The plasmid pUBA 11 proved stable for industrial production, the other plasmids showed structural and segregational instability.  相似文献   

17.
Abstract

2′-Deoxy-2′-S-hexyluridine derivative was synthesized from 2,2′-anhydrouridine and 1-hexanethiol and incorporated into an oligodeoxyribonucleotide. The thermal stability of the duplexes formed by the 2′-S-hexyl modified ODN with either the complementary DNA or RNA strand was decreased compared to the unmodified counterparts.  相似文献   

18.
Zinc and calcium ions play important roles in the biosynthesis and storage of insulin. Insulin biosynthesis occurs within the β-cells of the pancreas via preproinsulin and proinsulin precursors. In the golgi apparatus, proinsulin is sequestered within Zn2+- and Ca2+-rich storage/secretory vesicles and assembled into a Zn2+ and Ca2+ containing hexameric species, (Zn2+)2(Ca2+)(Proin)6. In the vesicle, (Zn2+)2(Ca2+)(Proin)6 is converted to the insulin hexamer, (Zn2+)2(Ca2+)(In)6, by excision of the C-peptide through the action of proteolytic enzymes. The conversion of (Zn2+)2(Ca2+)(Proin)6to (Zn2+)2(Ca2+)(In)6 significantly lowers the solubility of the hexamer, causing crystallization within the vesicle. The (Zn2+)2(Ca2+)(In)6 hexamer is an allosteric protein that undergoes ligand-mediated interconversion among three global conformation states designated T6, T3R3 and R6. Two classes of allosteric sites have been identified; hydrophobic pockets (3 in T3R3 and 6 in R6) that bind phenolic ligands, and anion sites (1 in T3R3 and 2 in R6) that bind monovalent anions. The allosteric states differ widely with respect to the physical and chemical stability of the insulin subunits. Fusion of the vesicle with the plasma membrane results in the expulsion of the insulin crystals into the intercellular fluid. Dissolution of the crystals, dissociation of the hexamers to monomer and transport of monomers to the liver and other tissues then occurs via the blood stream. Insulin action then follows binding to the insulin receptors. The role of Zn2+ in the assembly, structure, allosteric properties, and dynamic behavior of the insulin hexamer will be discussed in relation to biological function.  相似文献   

19.
Delineating the kinetic and thermodynamic factors which contribute to the stability of transmembrane β-barrels is critical to gain an in-depth understanding of membrane protein behavior. Human mitochondrial voltage-dependent anion channel isoform 2 (hVDAC-2), one of the key anti-apoptotic eukaryotic β-barrel proteins, is of paramount importance, owing to its indispensable role in cell survival. We demonstrate here that the stability of hVDAC-2 bears a strong kinetic contribution that is dependent on the absolute micellar concentration used for barrel folding. The refolding efficiency and ensuing stability is sensitive to the lipid-to-protein (LPR) ratio, and displays a non-linear relationship, with both low and high micellar amounts being detrimental to hVDAC-2 structure. Unfolding and aggregation process are sequential events and show strong temperature dependence. We demonstrate that an optimal lipid-to-protein ratio of 2600∶1 – 13000∶1 offers the highest protection against thermal denaturation. Activation energies derived only for lower LPRs are ∼17 kcal mol−1 for full-length hVDAC-2 and ∼23 kcal mol−1 for the Cys-less mutant, suggesting that the nine cysteine residues of hVDAC-2 impart additional malleability to the barrel scaffold. Our studies reveal that cysteine residues play a key role in the kinetic stability of the protein, determine barrel rigidity and thereby give rise to strong micellar association of hVDAC-2. Non-linearity of the Arrhenius plot at high LPRs coupled with observation of protein aggregation upon thermal denaturation indicates that contributions from both kinetic and thermodynamic components stabilize the 19-stranded β-barrel. Lipid-protein interaction and the linked kinetic contribution to free energy of the folded protein are together expected to play a key role in hVDAC-2 recycling and the functional switch at the onset of apoptosis.  相似文献   

20.
The [Het-s] prion of the fungus Podospora anserina represents a good model system for studying the structure-function relationship in amyloid proteins because a high resolution solid-state NMR structure of the amyloid prion form of the HET-s prion forming domain (PFD) is available. The HET-s PFD adopts a specific β-solenoid fold with two rungs of β-strands delimiting a triangular hydrophobic core. A C-terminal loop folds back onto the rigid core region and forms a more dynamic semi-hydrophobic pocket extending the hydrophobic core. Herein, an alanine scanning mutagenesis of the HET-s PFD was conducted. Different structural elements identified in the prion fold such as the triangular hydrophobic core, the salt bridges, the asparagines ladders and the C-terminal loop were altered and the effect of these mutations on prion function, fibril structure and stability was assayed. Prion activity and structure were found to be very robust; only a few key mutations were able to corrupt structure and function. While some mutations strongly destabilize the fold, many substitutions in fact increase stability of the fold. This increase in structural stability did not influence prion formation propensity in vivo. However, if an Ala replacement did alter the structure of the core or did influence the shape of the denaturation curve, the corresponding variant showed a decreased prion efficacy. It is also the finding that in addition to the structural elements of the rigid core region, the aromatic residues in the C-terminal semi-hydrophobic pocket are critical for prion propagation. Mutations in the latter region either positively or negatively affected prion formation. We thus identify a region that modulates prion formation although it is not part of the rigid cross-β core, an observation that might be relevant to other amyloid models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号