首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of muscarinic type 3 receptor knockout (M3KO) on the cholinergic regulation of insulin secretion and phospholipase C (PLC) activation was determined. Islets isolated from control, wild-type mice or heterozygotes responded with comparable insulin secretory responses to 15 mM glucose. This response was markedly amplified by the inclusion of 10 microM carbachol. While 15 mM glucose-induced release remained similar to wild-type and heterozygote responses in M3KO mice, the stimulatory impact of carbachol was abolished. Stimulation with 15 mM glucose plus 50 microM carbachol increased fractional efflux rates of myo-[2-3H]inositol from control wild-type and heterozygote islets but not from M3KO islets. Fed plasma insulin levels of M3KO mice were reduced 68% when compared to values obtained from combined wild-type and heterozygote animals. These studies support the conclusion that the M3 receptor in islets is coupled to PLC activation and insulin secretion and that cholinergic stimulation of the islets may play an important role in the regulation of plasma insulin levels.  相似文献   

2.
Exposure of rat pancreatic islets to 20 mM leucine for 24 h reduced insulin release in response to glucose (16.7 and 22.2 mM). Insulin release was normal when the same islets were stimulated with leucine (40 mM) or glyburide (1 microM). To investigate the mechanisms responsible for the different effect of these secretagogues, we studied several steps of glucose-induced insulin secretion. Glucose utilization and oxidation rates in leucine-precultured islets were similar to those of control islets. Also, the ATP-sensitive K(+) channel-independent pathway of glucose-stimulated insulin release, studied in the presence of 30 mM K(+) and 250 microM diazoxide, was normal. In contrast, the ATP-to-ADP ratio after stimulation with 22.2 mM glucose was reduced in leucine-exposed islets with respect to control islets. The decrease of the ATP-to-ADP ratio was due to an increase of ADP levels. In conclusion, prolonged exposure of pancreatic islets to high leucine levels selectively impairs glucose-induced insulin release. This secretory abnormality is associated with (and might be due to) a reduced ATP-to-ADP ratio. The abnormal plasma amino acid levels often present in obesity and diabetes may, therefore, affect pancreatic islet insulin secretion in these patients.  相似文献   

3.
Islet responses of two different Mus geni, the laboratory mouse (Mus musculus) and a phylogenetically more ancient species (Mus caroli), were measured and compared with the responses of islets from rats (Rattus norvegicus). A minimal and flat second-phase response to 20 mM glucose was evoked from M. musculus islets, whereas a large rising second-phase response characterized rat islets. M. caroli responses were intermediate between these two extremes; a modest rising second-phase response to 20 mM glucose was observed. Prior, brief stimulation of rat islets with 20 mM glucose results in an amplified insulin secretory response to a subsequent 20 mM glucose challenge. No such potentiation or priming was observed from M. musculus islets. In contrast, M. caroli islets displayed a modest twofold potentiated first-phase response upon subsequent restimulation with 20 mM glucose. Inositol phosphate (IP) accumulation in response to 20 mM glucose stimulation in [(3)H]inositol-prelabeled rat or mouse islets paralleled the insulin secretory responses. The divergence in 20 mM glucose-induced insulin release between these species may be attributable to differences in phospholipase C-mediated IP accumulation in islets.  相似文献   

4.
The acute and chronic effects of 20 mM glucose and 10 microM carbachol on beta-cell responses were investigated. Acute exposure of rat islets to 20 mM glucose increased glucose usage rates and resulted in a large insulin-secretory response during a dynamic perifusion. The secretory, but not the metabolic, effect of 20 mM glucose was abolished by simultaneous exposure to 100 microM diazoxide. Glucose (20 mM) significantly increased inositol phosphate (IP) accumulation, an index of phospholipase C (PLC) activation, from [(3)H]inositol-prelabeled islets. Diazoxide, but not atropine, abolished this effect as well. Unlike 20 mM glucose, 10 microM carbachol (in the presence of 5 mM glucose) increased IP accumulation but had no effect on insulin secretion or glucose (5 mM) metabolism. The IP effect was abolished by 50 microM atropine but not by diazoxide. Chronic 3-h exposure of islets to 20 mM glucose or 10 microM carbachol profoundly reduced both the insulin-secretory and PLC responses to a subsequent 20 mM glucose stimulus. The adverse effects of chronic glucose exposure were abolished by diazoxide but not by atropine. In contrast, the adverse effects of carbachol were abolished by atropine but not by diazoxide. Prior 3 h of exposure to 20 mM glucose or carbachol had no inhibitory effect on glucose metabolism. Significant secretory responses could be evoked from 20 mM glucose- or carbachol-pretreated islets by the inclusion of forskolin. These findings support the concept that an early event in the evolution of beta-cell desensitization is the impaired activation of islet PLC.  相似文献   

5.
Type II diabetes progresses with inadequate insulin secretion and prolonged elevated circulating glucose levels. Also, pancreatic islets isolated for transplantation or tissue engineering can be exposed to glucose over extended timeframe. We hypothesized that isolated pancreatic islets can secrete insulin over a prolonged period of time when incubated in glucose solution and that not all islets release insulin in unison. Insulin secretion kinetics was examined and modeled from single mouse islets in response to chronic glucose exposure (2.8‐20 mM). Results with single islets were compared to those from pools of islets. Kinetic analysis of 58 single islets over 72 h in response to elevated glucose revealed distinct insulin secretion profiles: slow‐, fast‐, and constant‐rate secretors, with slow‐secretors being most prominent (ca., 50%). Variations in the temporal response to glucose therefore exist. During short‐term (<4 h) exposure to elevated glucose few islets are responding with sustained insulin release. The model allowed studying the influence of islet size, revealing no clear effect. At high‐glucose concentrations, when secretion is normalized to islet volume, the tendency is that smaller islets secrete more insulin. At high‐glucose concentrations, insulin secretion from single islets is representative of islet populations, while under low‐glucose conditions pooled islets did not behave as single ones. The characterization of insulin secretion over prolonged periods complements studies on insulin secretion performed over short timeframe. Further investigation of these differences in secretion profiles may resolve open‐ended questions on pre‐diabetic conditions and transplanted islets performance. This study deliberates the importance of size of islets in insulin secretion. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1059–1068, 2018  相似文献   

6.
The effect of tetracaine and lidocaine on insulin secretion and glucose oxidation by islets of ob/ob-mice was measured. Tetracaine, at a concentration of 1 microM to 0.1 mM, did not markedly influence the basal (3 mM glucose) insulin secretion, whereas 0.5-3.5 mM induced a marked increase. At 7 mM glucose, there was a dose-dependent increase with 0.1-2.5 mM tetracaine. Insulin release induced by 20 mM glucose was potentiated by 0.1 mM and 0.5 mM tetracaine, but this effect disappeared at 1 mM tetracaine. The stimulatory effect of 0.5-1 mM tetracaine on basal insulin release was blocked by the secretory inhibitors, adrenaline (1 microM), clonidine (1 microM) and by Ca2+-deficiency, but the stimulation by 3.5 mM tetracaine was not reduced by 1 microM clonidine or Ca2+ deficiency. Atropine (10 microM) did not affect the stimulation by 0.5 mM tetracaine at 3 mM glucose or by 0.25 mM tetracaine at 20 mM glucose. Tetracaine, at 0.1 mM, potentiated the secretory stimulation of 20 mM L-leucine, 20 mM D-mannose, or 1 microM glibenclamide. Mannoheptulose, 10 mM, abolished the combined effects of 0.1 mM tetracaine and 10 mM glucose. Lidocaine, 1-5 mM, stimulated basal insulin release, but 1 microM-1 mM of the drug did not affect glucose-induced (20 mM glucose) insulin release and 5 mM lidocaine inhibited glucose stimulation. The oxidation of 10 mM D-[U-14C]glucose was slightly enhanced by 0.1 and 1 mM tetracaine. The results indicate that tetracaine and lidocaine, at certain concentrations, can induce insulin release and that tetracaine potentiates secretion induced by other secretagogues. It is concluded that these effects may be associated with beta-cell functions related to the adrenergic receptors but probably not to cholinergic receptors.  相似文献   

7.
1. When pancreatic islets are preincubated for 20h in the presence of glucose (83.3mM) and thereafter transferred to a glucose-free medium, theophylline (1.4mM) provokes a dramatic stimulation of insulin release. This phenomenon does not occur when the islets are preincubated for either 20h at low glucose concentration (5.6mM) or only 30 min at the high glucose concentration (83.3mM). 2. The insulinotropic action of theophylline cannot be attributed to contamination of the islets with exogenous glucose and is not suppressed by mannoheptulose. 3. The secretory response to theophylline is an immediate phenomenon, but disappears after 60min of exposure to the drug. 4. The release of insulin evoked by theophylline is abolished in calcium-depleted media containing EGTA. Theophylline enhances the net uptake of 45Ca by the islets. 5. Glycogen accumulates in the islets during the preincubation period, as judged by both ultrastructural and biochemical criteria. Theophylline significantly increases the rate of glycogenolysis during the final incubation in the glucose-free medium. 6. The theophylline-induced increase in glycogenolysis coincides with a higher rate of both lactate output and oxidation of endogenous 14C-labelled substrates. 7. These data suggest that stimulation of glycolysis from endogenous stores of glycogen is sufficient to provoke insulin release even in glucose-deprived islets, as if the binding of extracellular glucose to hypothetical plasma-membrane glucoreceptors is not an essential feature of the stimulus-secretion coupling process.  相似文献   

8.
Tacrolimus is widely used for immunosuppressant therapy, including various organ transplantations. One of its main side effects is hyperglycemia due to reduced insulin secretion, but the mechanism remains unknown. We have investigated the metabolic effects of tacrolimus on insulin secretion at a concentration that does not influence insulin content. Twenty-four-hour exposure to 3 nM tacrolimus reduced high glucose (16.7 mM)-induced insulin secretion (control 2.14 +/- 0.08 vs. tacrolimus 1.75 +/- 0.02 ng.islet(-1).30 min(-1), P < 0.01) without affecting insulin content. In dynamic experiments, insulin secretion and NAD(P)H fluorescence during a 20-min period after 10 min of high-glucose exposure were reduced in tacrolimus-treated islets. ATP content and glucose utilization of tacrolimus-treated islets in the presence of 16.7 mM glucose were less than in control (ATP content: control 9.69 +/- 0.99 vs. tacrolimus 6.52 +/- 0.40 pmol/islet, P < 0.01; glucose utilization: control 103.8 +/- 6.9 vs. tacrolimus 74.4 +/- 5.1 pmol.islet(-1).90 min(-1), P < 0.01). However, insulin release from tacrolimus-treated islets was similar to that from control islets in the presence of 16.7 mM alpha-ketoisocaproate, a mitochondrial fuel. Glucokinase activity, which determines glycolytic velocity, was reduced by tacrolimus treatment (control 65.3 +/- 3.4 vs. tacrolimus 49.9 +/- 2.8 pmol.islet(-1).60 min(-1), P < 0.01), whereas hexokinase activity was not affected. These results indicate that glucose-stimulated insulin release is decreased by chronic exposure to tacrolimus due to reduced ATP production and glycolysis derived from reduced glucokinase activity.  相似文献   

9.
Glucose regulates glucokinase activity in cultured islets from rat pancreas   总被引:6,自引:0,他引:6  
In this study, we have used isolated pancreatic islets cultured for 7 days in 3 or 30 mM glucose to explore whether glucokinase is induced or activated by high glucose concentrations and has related enzyme activity to glucose-stimulated insulin release. Islets cultured in low glucose medium or low glucose medium plus 350 ng/ml insulin did not respond to high glucose stimulation. Islets cultured in medium containing high glucose concentrations showed a high rate of basal insulin secretion when perifused with 5 mM glucose, and the insulin release was greatly augmented in a biphasic secretion profile when the glucose concentration was raised to 16 mM. Islet glucokinase and hexokinase activities were determined by a sensitive and specific fluorometric method. Glucokinase activity was reduced to approximately 50% in islets cultured in low glucose medium with or without insulin present compared to results with fresh islets. However, islets cultured in 30 mM glucose showed that glucokinase activity was elevated to 236% compared to results with fresh islets. It is concluded that (a) glucose is the physiological regulator of glucokinase in the islet of Langerhans and that (b) the activity of glucokinase plays a crucial role in glucose-induced insulin secretion.  相似文献   

10.
The involvement of cyclic AMP-dependent protein kinase A (PKA) in the exocytotic release of insulin from rat pancreatic islets was investigated using the Rp isomer of adenosine 3',5'-cyclic phosphorothioate (Rp-cAMPS). Preincubation of electrically permeabilised islets with Rp-cAMPS (1 mM, 1 h, 4 degrees C) inhibited cAMP-induced phosphorylation of islet proteins of apparent molecular weights in the range 20-90 kDa, but did not affect basal (50 nM Ca2+) nor Ca2(+)-stimulated (10 microM) protein phosphorylation. Similarly, Rp-cAMPS (500 microM) inhibited both cAMP- (100 microM) and 8BrcAMP-induced (100 microM) insulin secretion from electrically permeabilised islets without affecting Ca2(+)-stimulated (10 microM) insulin release. In intact islets, Rp-cAMPS (500 microM) inhibited forskolin (1 microM, 10 microM) potentiation of insulin secretion, but did not significantly impair the insulin secretory response to a range of glucose concentrations (2-20 mM). These results suggest that cAMP-induced activation of PKA is not essential for either basal or glucose-stimulated insulin secretion from rat islets.  相似文献   

11.
Alteration of pancreatic beta-cell survival and Preproinsulin gene expression by prolonged hyperglycemia may result from increased c-MYC expression. However, it is unclear whether c-MYC effects on beta-cell function are compatible with its proposed role in glucotoxicity. We therefore tested the effects of short-term c-MYC activation on key beta-cell stimulus-secretion coupling events in islets isolated from mice expressing a tamoxifen-switchable form of c-MYC in beta-cells (MycER) and their wild-type littermates. Tamoxifen treatment of wild-type islets did not affect their cell survival, Preproinsulin gene expression, and glucose stimulus-secretion coupling. In contrast, tamoxifen-mediated c-MYC activation for 2-3 days triggered cell apoptosis and decreased Preproinsulin gene expression in MycER islets. These effects were accompanied by mitochondrial membrane hyperpolarization at all glucose concentrations, a higher resting intracellular calcium concentration ([Ca(2+)](i)), and lower glucose-induced [Ca(2+)](i) rise and islet insulin content, leading to a strong reduction of glucose-induced insulin secretion. Compared with these effects, 1-wk culture in 30 mmol/l glucose increased the islet sensitivity to glucose stimulation without reducing the maximal glucose effectiveness or the insulin content. In contrast, overnight exposure to a low H(2)O(2) concentration increased the islet resting [Ca(2+)](i) and reduced the amplitude of the maximal glucose response as in tamoxifen-treated MycER islets. In conclusion, c-MYC activation rapidly stimulates apoptosis, reduces Preproinsulin gene expression and insulin content, and triggers functional alterations of beta-cells that are better mimicked by overnight exposure to a low H(2)O(2) concentration than by prolonged culture in high glucose.  相似文献   

12.
The effects of glucose, sulfated cholecystokinin-octapeptide (CCK-8), or carbachol on insulin secretory dynamics were studied in pancreatic islets isolated from 1- and 3-day-old neonatal rats. When challenged with glucose, 1-day islets responded with a definite first phase and elevated secretion during the latter part of the stimulation period; 3-day islets had a first phase and a rising, sustained second phase. The presence of stimulatory concentrations of CCK-8 or carbachol in addition to glucose caused dramatic changes in the release pattern in both islet populations. In 1-day islets, carbachol stimulated mainly first phase secretion whereas CCK-8 enhanced first phase release and produced a definite second phase response. The two secretagogues increased significantly both phases of release in 3-day islets with no differences between the two agents in their effects. These results indicate that CCK-8 and carbachol differentially stimulate neonatal insulin secretion, possibly through different steps in the stimulus-secretion pathway. They also suggest that the cellular mechanism for second phase release is present in 1-day islets and can be activated by CCK-8.  相似文献   

13.
The effect of various inhibitors of insulin secretion such as mannoheptulose (20 mM), atropine (1 mM), diphenylhydantoin (20 microng/ml), high concentration of Mg++ (5.3 mM) in the presence of 20 mM glucose (control) on insulin content and secretion from collagenase-isolated rat pancreatic islets was studied in vitro by cultivation of islets up to 5 or 9 days in glass Petri dishes without attachment. In a following short-term incubation for 60 min the glucose-induced insulin release without and with theophylline (5 mM) was investigated. Islets cultivated at 5 mM glucose and at 20 mM glucose with the inhibitors mannoheptulose or atropine lost the responsiveness to glucose and theophylline whereas such islets cultivated at 20 mM glucose alone or with diphenylhydantoin (DPH) or 5.3 mg Mg++ showed a stimulation of insulin secretion by glucose and theophylline. Compared, however, with freshly isolated islets all cultivated islets were restricted in their maximal glucose response and this defect was not evoked alone by quantitative changes in islet insulin content. Nevertheless, culture conditions which facilitate a net increase of insulin (content and release) during cultivation influenced also positively the glucose-induced insulin release without and with 5 mM theophylline in the following short-term experiments.  相似文献   

14.
15.
Isolated perifused rat islets were stimulated with glucose, exogenous insulin, or carbachol. C-peptide and, where possible, insulin secretory rates were measured. Glucose (8-10 mm) induced dose-dependent and kinetically similar patterns of C-peptide and insulin secretion. The addition of 100 nm bovine insulin had no effect on C-peptide release in response to 8-10 mm glucose stimulation. The addition of 100 nm bovine insulin or 500 nm human insulin together with 3 mm glucose had no stimulatory effect on C-peptide secretion rates from perifused rat islets. Stimulation with carbachol plus 7 mm glucose enhanced both C-peptide and insulin secretion, and the further addition of 100 nm bovine insulin had no inhibitory effect on C-peptide secretory rates under this condition. Perifusion studies using pharmacologic inhibitors (genistein and wortmannin) of the kinases thought to be involved in insulin signaling potentiated 10 mm glucose-induced secretion. The results support the following conclusions. 1) C-peptide release rates accurately reflect insulin secretion rates from collagenase-isolated, perifused rat islets. 2) Exogenously added bovine insulin exerts no inhibitory effect on release to several agonists including glucose. 3) In the presence of 3 mm glucose, exogenously added bovine or human insulin do not stimulate endogenous insulin secretion.  相似文献   

16.
AXEN, KATHLEEN V., XUE LI, AND ANTHONY SCLAFANI. Miglitol (BAY m 1099) treatment of diabetic hypothalamic-dietary obese rats improves islet response to glucose. Obes Res. 1999;7:83–89. Objective : The well-absorbed α-glucosidase inhibitor, miglitol (BAY m 1099), was included in the diets of hypothalamic-dietary obese diabetic rats to investigate its ability to improve glycemia and thereby reverse glucotoxic effects on islet secretory response. Research Methods and Procedures : Female rats received bilateral electrolytic lesions of the ventromedial hypothalamus and were fed high-fat, sucrosesupplemented diets until hyperinsulinemia and hyperglycemia were observed after 3 hours of food deprivation (nonfed). Diabetic animals were assigned to miglitol-treated (40 mg/17 g of diet) or untreated groups for 3 weeks; pancreatic islets were isolated for incubation experiments. Results : No differences in food intake, body weights, or nonfed plasma glucose or insulin levels were seen between treated and untreated diabetic rats. Islets isolated from untreated diabetic rats showed elevated basal insulin release and no insulin secretory response to an elevation in glucose concentration. In contrast, islets obtained from miglitol-treated rats showed more normal basal release and a significant insulin secretory response to glucose. Incubation of islets, obtained from normal control rats or untreated diabetic rats, in media containing miglitol at levels estimated to exist in plasma of treated rats had no effect on islet insulin secretory responses to glucose. Discussion : Islet secretory response was improved despite continued hyperglycemia and severe insulin resistance. Miglitol treatment may improve islet sensitivity to glucose either through effects on islet metabolism requiring prolonged exposure or by improvement in postmeal glycemia, despite persistent hyperglycemia.  相似文献   

17.
Recent studies of isolated human islets have shown that glucose induces hormone release with repetitive pulses of insulin and somatostatin in antisynchrony with those of glucagon. Since the mouse is the most important animal model we studied the temporal relation between hormones released from mouse islets. Batches of 5-10 islets were perifused and the hormones measured with radioimmunoassay in 30s fractions. At 3mM glucose, hormone secretion was stable with no detectable pulses of glucagon, insulin or somatostatin. Increase of glucose to 20mM resulted in an early secretory phase with a glucagon peak followed by peaks of insulin and somatostatin. Subsequent hormone secretion was pulsatile with a periodicity of 5min. Cross-correlation analyses showed that the glucagon pulses were antisynchronous to those of insulin and somatostatin. In contrast to the marked stimulation of insulin and somatostatin secretion, the pulsatility resulted in inhibition of overall glucagon release. The cytoarchitecture of mouse islets differs from that of human islets, which may affect the interactions between the hormone-producing cells. Although indicating that paracrine regulation is important for the characteristic patterns of pulsatile hormone secretion, the mouse data mimic those of human islets with more than 20-fold variations of the insulin/glucagon ratio. The data indicate that the mouse serves as an appropriate animal model for studying the temporal relation between the islet hormones controlling glucose production in the liver.  相似文献   

18.
The effects of lowered O2 tension on insulin secretion and changes in cellular energy parameters were investigated in isolated rat pancreatic islets perifused with buffers equilibrated with 21, 9, 5, and 1% oxygen and containing 5 mM glucose. Decreasing the external [O2] reduced the amount of insulin released in response to 16 mM glucose, 20 mM alpha-ketoisocaproic acid, and 40 mM KCl. Secretion elicited by high glucose or KCl had declined significantly at 9% oxygen, whereas that caused by alpha-ketoisocaproic acid became inhibited below 5% O2. Lowering the oxygen tension also decreased the ability of islets to respond with a rise in [ATP]/[ADP] upon stimulation with metabolic secretagogues. This reduction in the evoked increase in the nucleotide ratios paralleled the inhibition of stimulated insulin secretion. Addition of 2 mM amytal markedly decreased the islet energy level and eliminated the secretory response to 16 mM glucose. The results suggest that enhancement of B-cell energy production and a consequent rise in [ATP] (or [ATP]/[ADP]) are a necessary event for the hormone release elicited by high glucose and alpha-ketoisocaproic acid. A decrease in temperature inhibited insulin secretion with all three secretagogues tested. The energies of activation were similar for high glucose and KCl-induced secretion, about 20 kcal/mol, but were higher for alpha-ketoisocaproic acid, about 35 kcal/mol. At 28 degrees C, the [ATP]/[ADP] was larger than that at 38 degrees C (8 versus 5) and was not increased further upon addition of 16 mM glucose. It is suggested that a decrease in the rate of energy production at lowered temperatures may contribute to the inhibition of insulin release caused by metabolic secretagogues.  相似文献   

19.
Esters of succinic acid are potent insulin secretagogues, and have been proposed as novel antidiabetic agents for type 2 diabetes. This study examines the effects of acute and chronic exposure to succinic acid monomethyl ester (SAM) on insulin secretion, glucose metabolism and pancreatic beta cell function using the BRIN-BD11 cell line. SAM stimulated insulin release in a dose-dependent manner at both non-stimulatory (1.1mM) and stimulatory (16.7mM) glucose. The depolarizing actions of arginine also stimulated a significant increase in SAM-induced insulin release but 2-ketoisocaproic acid (KIC) inhibited SAM induced insulin secretion indicating a possible competition between the preferential oxidative metabolism of these two agents. Prolonged (18hour) exposure to SAM revealed decreases in the insulin-secretory responses to glucose, KIC, glyceraldehyde and alanine. Furthermore, SAM diminished the effects of nonmetabolized secretagogues arginine and 3-isobutyl-1-methylxanthine (IBMX). While the ability of BRIN-BD11 cells to oxidise glucose was unaffected by SAM culture, glucose utilization was substantially reduced. Collectively, these data suggest that while SAM may enhance the secretory potential of non-metabolized secretagogues, it may also serve as a preferential metabolic fuel in preference to other important physiological nutrients and compromise pancreatic beta cell function following prolonged exposure.  相似文献   

20.
Acetylcholine stimulates insulin secretion in the presence of physiological concentrations of glucose. Stimulation of insulin secretion by acetylcholine is accompanied by an increase in glucose usage by isolated rat islets. Acetylcholine increased glucose usage by 38%, 28%, and 12% at 3.5 mM, 5.5 mM, and 10 mM glucose, respectively, compared to glucose usage by isolated islets incubated with glucose alone. Data showing increased glucose usage in islets treated with acetylcholine converge with data from an earlier report (J. Biol. Chem. 254 3921-3929 [1979]) showing a crossover point for glycolytic metabolites at phosphofructokinase to indicate that activation of glycolysis by acetylcholine results from increased phosphofructokinase activity and coordinate activation of hexokinase in intact islets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号