首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
3.
Plasminogen activator inhibitor-1 (PAI-1) is produced by adipose tissue, and elevated PAI-1 levels in plasma are a risk factor in the metabolic syndrome. We investigated the regulatory effects of TNF-alpha and IL-6 on PAI-1 gene induction in human adipose tissue. Twenty healthy men underwent a 3-h infusion of either recombinant human TNF-alpha (n = 8), recombinant human IL-6 (n = 6), or vehicle (n = 6). Biopsies were obtained from the subcutaneous abdominal adipose tissue at preinfusion, at 1, 2, and 3 h during the infusion, and at 2 h after the infusion. The mRNA expression of PAI-1 in the adipose tissue was measured using real-time PCR. The plasma levels of TNF-alpha and IL-6 reached 18 and 99 pg/ml, respectively, during the infusions. During the TNF-alpha infusion, adipose PAI-1 mRNA expression increased 2.5-fold at 1 h, 6-fold at 2 h, 9-fold at 3 h, and declined to 2-fold 2 h after the infusion stopped but did not change during IL-6 infusion and vehicle. These data demonstrate that TNF-alpha rather than IL-6 stimulates an increase in PAI-1 mRNA in the subcutaneous adipose tissue, suggesting that TNF-alpha may be involved in the pathogenesis of related metabolic disorders.  相似文献   

4.
Contracting skeletal muscle expresses large amounts of IL-6. Because 1) IL-6 mRNA expression in contracting skeletal muscle is enhanced by low muscle glycogen content, and 2) IL-6 increases lipolysis and oxidation of fatty acids, we hypothesized that regular exercise training, associated with increased levels of resting muscle glycogen and enhanced capacity to oxidize fatty acids, would lead to a less-pronounced increase of skeletal muscle IL-6 mRNA in response to acute exercise. Thus, before and after 10 wk of knee extensor endurance training, skeletal muscle IL-6 mRNA expression was determined in young healthy men (n = 7) in response to 3 h of dynamic knee extensor exercise, using the same relative workload. Maximal power output, time to exhaustion during submaximal exercise, resting muscle glycogen content, and citrate synthase and 3-hydroxyacyl-CoA dehydrogenase enzyme activity were all significantly enhanced by training. IL-6 mRNA expression in resting skeletal muscle did not change in response to training. However, although absolute workload during acute exercise was 44% higher (P < 0.05) after the training period, skeletal muscle IL-6 mRNA content increased 76-fold (P < 0.05) in response to exercise before the training period, but only 8-fold (P < 0.05, relative to rest and pretraining) in response to exercise after training. Furthermore, the exercise-induced increase of plasma IL-6 (P < 0.05, pre- and posttraining) was not higher after training despite higher absolute work intensity. In conclusion, the magnitude of the exercise-induced IL-6 mRNA expression in contracting human skeletal muscle was markedly reduced by 10 wk of training.  相似文献   

5.
High circulating levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) are found in patients with hyperinsulinemia. Insulin stimulates release of IL-6 from adipocyte cultures, and it stimulates IL-6 gene expression in insulin-resistant, but not control, rat skeletal muscle. In addition, TNF-alpha may be involved in the pathogenesis of insulin resistance. Therefore, we studied the effect of insulin on IL-6 and TNF-alpha gene expression in human skeletal muscle and adipose tissue. Nine healthy young volunteers participated in the study. They underwent a 6-h hyperinsulinemic euglycemic clamp at a fixed insulin infusion rate, with blood glucose clamped at fasting level. Blood samples drawn at 0, 1, 2, 3, 4, 5, and 6 h were analyzed for IL-6 and TNF-alpha. Muscle and fat biopsies, obtained at 0, 2, 4, and 6 h, were analyzed for IL-6 and TNF-alpha mRNA with real-time PCR. IL-6 mRNA increased 11-, 3-, and 5-fold at 2, 4, and 6 h, respectively, in adipose tissue (ANOVA P = 0.027), whereas there was no significant effect of insulin on skeletal muscles. Plasma IL-6 increased during insulin stimulation. TNF-alpha mRNA increased 2.4-, 1.4-, and 2.2-fold in adipose tissue (ANOVA P = 0.001) and decreased 0.74-, 0.64-, and 0.68-fold in muscle tissue (ANOVA P = 0.04). Plasma levels of TNF-alpha were constant. In conclusion, the finding that insulin stimulates IL-6 and TNF-alpha gene expression in adipose tissue only and inhibits the TNF-alpha production in skeletal muscles suggests a differential regulation of muscle- and adipose tissue-derived IL-6 and TNF-alpha.  相似文献   

6.
Vitamin C and E supplementation has been shown to attenuate the acute exercise-induced increase in plasma interleukin-6 (IL-6) concentration. Here, we studied the effect of antioxidant vitamins on the regulation of IL-6 expression in muscle and the circulation in response to acute exercise before and after high-intensity endurance exercise training. Twenty-one young healthy men were allocated into either a vitamin (VT; vitamin C and E, n = 11) or a placebo (PL, n = 10) group. A 1-h acute bicycling exercise trial at 65% of maximal power output was performed before and after 12 wk of progressive endurance exercise training. In response to training, the acute exercise-induced IL-6 response was attenuated in PL (P < 0.02), but not in VT (P = 0.82). However, no clear difference between groups was observed (group × training: P = 0.13). Endurance exercise training also attenuated the acute exercise-induced increase in muscle-IL-6 mRNA in both groups. Oxidative stress, assessed by plasma protein carbonyls concentration, was overall higher in the VT compared with the PL group (group effect: P < 0.005). This was accompanied by a general increase in skeletal muscle mRNA expression of antioxidative enzymes, including catalase, copper-zinc superoxide dismutase, and glutathione peroxidase 1 mRNA expression in the VT group. However, skeletal muscle protein content of catalase, copper-zinc superoxide dismutase, or glutathione peroxidase 1 was not affected by training or supplementation. In conclusion, our results indicate that, although vitamin C and E supplementation may attenuate exercise-induced increases in plasma IL-6 there is no clear additive effect when combined with endurance training.  相似文献   

7.
Exercise increases IL-6 mRNA in subcutaneous adipose tissue; however, the immediate signal for the IL-6 induction is unknown. We, therefore, explored the possible role of epinephrine in the induction of IL-6 in adipose tissue. Subcutaneous adipose tissue biopsies and blood samples were obtained from eight healthy men (mean age 27 yr, mean height 184 cm, mean weight 83 kg) in response to epinephrine infusion or in response to saline infusion. The rate of epinephrine infusion was such that circulating epinephrine concentrations mimicked that typically seen during exercise. The level of IL-6 mRNA in subcutaneous adipose tissue increased 26-fold (95% confidence interval, 9- to 166-fold) at 3 h of epinephrine infusion compared with controls (P=0.028). In addition, plasma levels of IL-6 increased in response to epinephrine infusion (P <0.001). However, epinephrine did not affect the IL-6 receptor mRNA. In conclusion, epinephrine acutely increases IL-6 mRNA levels in subcutaneous adipose tissue as well as circulating IL-6 levels in healthy men.  相似文献   

8.
彭颗红  薛敏  肖松舒 《生物磁学》2009,(13):2514-2516,2537
目的:探讨visfatin基因在多囊卵巢综合征(PCOS)网膜脂肪组织中的表达及相关影响因素。方法:采用半定量RT-PCR方法检测PCOS组(30例)和对照组(25例)网膜脂肪组织visfatin mRNA表达,并测量体重指数、腰臀比、空腹血糖、空腹胰岛素、胰岛素抵抗指数和血清性激素水平。结果:①PCOS组网膜脂肪组织visfatin mRNA表达量高于对照组(P=0.000)。②网膜脂肪组织visfatin mRNA的表达量与BMI、WHR、FINS、HOMA-IR呈正相关(P〈0.05)。③多元逐步回归分析显示,HOMA-IR(P=0.000)和WHR(P=0.005)是影响网膜脂肪组织visfatin mRNA表达的相关因素。结论:网膜脂肪组织visfatin mRNA表达可能与PCOS胰岛素抵抗的发生和肥胖相关。  相似文献   

9.
Fatty acid transporter protein (FATP)-1 mRNA expression was investigated in skeletal muscle and in subcutaneous abdominal adipose tissue of 17 healthy lean, 13 nondiabetic obese, and 16 obese type 2 diabetic subjects. In muscle, FATP-1 mRNA levels were higher in lean women than in lean men (2.2 +/- 0.1 vs. 0.6 +/- 0.2 amol/microg total RNA, P < 0.01). FATP-1 mRNA expression was decreased in skeletal muscle in obese women both in nondiabetic and in type 2 diabetic patients (P < 0.02 vs. lean women in both groups), and in all women there was a negative correlation with basal FATP-1 mRNA level and body mass index (r = -0.74, P < 0.02). In men, FATP-1 mRNA was expressed at similar levels in the three groups both in skeletal muscle (0.6 +/- 0.2, 0.6 +/- 0.2, and 0.8 +/- 0.2 amol/microg total RNA in lean, obese, and type 2 diabetic male subjects) and in adipose tissue (0.9 +/- 0.2 amol/microg total RNA in the 3 groups). Insulin infusion (3 h) reduced FATP-1 mRNA levels in muscle in lean women but not in lean men. Insulin did not affect FATP-1 mRNA expression in skeletal muscle in obese nondiabetic or in type 2 diabetic subjects nor in subcutaneous adipose tissue in any of the three groups. These data show a gender-related difference in the expression of the fatty acid transporter FATP-1 in skeletal muscle of lean individuals and suggest that changes in FATP-1 expression may not contribute to a large extent to the alterations in fatty acid uptake in obesity and/or type 2 diabetes.  相似文献   

10.
11.
12.
IL-6 activates HSP72 gene expression in human skeletal muscle   总被引:3,自引:0,他引:3  
To determine whether the cytokine interleukin (IL)-6 induces heat shock protein (HSP) 72 gene expression in skeletal muscle, 18 healthy, young men had either a high dose of IL-6 (HiIL-6; n=6), low dose IL-6 (LoIL-6; n=6), or saline (CON; n=6) infused into one femoral artery for 3h. Muscle biopsies were obtained from the vastus lateralis of the infusion limb and samples were analyzed for HSP72 mRNA. In addition, blood samples were collected from the femoral vein of the infusion limb and analyzed for plasma IL-6. In CON, femoral vein IL-6 concentration remained at basal levels throughout the experiment but in both HiIL-6 and LoIL-6, femoral vein IL-6 concentrations were markedly elevated (P<0.05). HSP72 gene expression did not increase above resting levels in CON. In contrast, in both HiIL-6 and LoIL-6, HSP72 mRNA increased (P<0.05) 2.5- and 2.3-fold, respectively after 30min of infusion and remained elevated (P<0.05) for 24h following infusion. These data demonstrate that IL-6 can rapidly induce HSP72 gene expression in human skeletal muscle.  相似文献   

13.
《Cellular signalling》2014,26(4):705-715
Visfatin is a novel multifunctional adipocytokine with inflammatory properties. Although a link between visfatin and atherosclerosis has recently been suggested, its actions in the development of atherosclerosis remain unknown. Therefore, we investigated a potential role and underlying mechanism(s) of visfatin in monocytes/macrophages differentiation, a critical early step in atherogenesis, using phorbol-12-myristate-13-acetate (PMA)-stimulated THP-1 cell models. The co-incubation of PMA with visfatin-induced CD36 expression with a concomitant increase in the phagocytosis of latex beads compared with PMA alone treatment. Moreover, visfatin markedly increased interleukin (IL)-1β secretion by enhancing IL-1β mRNA stability in a short-term incubation. Visfatin also significantly elevated the secretion of IL-6 as well as IL-1β in a longer incubation period, which was partially suppressed by nuclear factor-κB (NF-κB) inhibitor, BAY11-7082, and c-Jun-N-terminal kinase (JNK) inhibitor, SP600125. Furthermore, silencing IL-1β successfully blocked IL-6 secretion, CD36 expression, and NF-κB activation in response to visfatin. Collectively, these results suggest that visfatin enhances the IL-1β-dependent induction of IL-6 and CD36 via distinct signaling pathways mediated by JNK and NF-κB, respectively, and consequently, leading to the acceleration of monocytes/macrophages differentiation.  相似文献   

14.
15.
During the past 20 yr, it has been well documented that exercise has a profound effect on the immune system. With the discovery that exercise provokes an increase in a number of cytokines, a possible link between skeletal muscle contractile activity and immune changes was established. For most of the last century, researchers sought a link between muscle contraction and humoral changes in the form of an "exercise factor," which could mediate some of the exercise-induced metabolic changes in other organs such as the liver and the adipose tissue. We suggest that cytokines and other peptides that are produced, expressed, and released by muscle fibers and exert either paracrine or endocrine effects should be classified as "myokines." Since the discovery of interleukin (IL)-6 release from contracting skeletal muscle, evidence has accumulated that supports an effect of IL-6 on metabolism. We suggested that muscle-derived IL-6 fulfils the criteria of an exercise factor and that such classes of cytokines should be named "myokines." Interestingly, recent research demonstrates that skeletal muscles can produce and express cytokines belonging to distinctly different families. Thus skeletal muscle has the capacity to express several myokines. To date the list includes IL-6, IL-8, and IL-15, and contractile activity plays a role in regulating the expression of these cytokines in skeletal muscle. The present review focuses on muscle-derived cytokines, their regulation by exercise, and their possible roles in metabolism and skeletal muscle function and it discusses which cytokines should be classified as true myokines.  相似文献   

16.
17.
Novel anti-inflammatory effects of insulin have recently been described, and insulin therapy to maintain euglycemia suppresses the plasma levels of free fatty acids (FFA) and increases the survival of critically ill patients. We aimed to explore the effect of short-term high levels of plasma FFA on the inflammatory response to a low dose of endotoxin. Fourteen healthy male volunteers underwent the following two trials in a randomized crossover design: 1) continuous infusion of 20% Intralipid [0.7 ml.kg(-1).h(-1) (1.54 g/kg)] for 11 h, and 2) infusion of isotonic saline for 11 h (control). In each trial, heparin was given to activate lipoprotein lipase, and an intravenous bolus of endotoxin (0.1 ng/kg) was given after 6 h of Intralipid/saline infusion. Blood samples and muscle and fat biopsies were obtained before the Intralipid/saline infusion and before as well as after infusion of an endotoxin bolus. Plasma levels of FFA, triglycerides, and glycerol were markedly increased during the Intralipid infusion. Endotoxin exposure induced an increase in plasma levels of TNF-alpha, IL-6, and neutrophils and further stimulated gene expression of TNF-alpha and IL-6 in both skeletal muscle and adipose tissue. The systemic inflammatory response to endotoxin was significantly pronounced during Intralipid infusion. Short-term hyperlipidemia enhances the inflammatory response to endotoxin, and skeletal muscle and adipose tissue are capable of producing essential inflammatory mediators after endotoxin stimulation.  相似文献   

18.
Lai AP  Chen WH 《生理学报》2012,64(1):96-100
Visfatin, also named nicotinamide phosphoribosyl transferase (NAMPT), is a cytokine secreted from adipose tissue. Visfatin can regulate immune action and is involved in the NAD+ salvage pathway. In addition, recent researches have shown that visfatin helps the regulation of glucose and lipid metabolism, especially in exercise-induced weight reduction for obesity. The aim of this review is to provide an overview of the contribution of visfatin gene polymorphisms to glucose and lipid metabolism and exercise-induced weight reduction in obesity.  相似文献   

19.
Obesity is associated with metabolic disorders, such as insulin resistance. Visfatin is an adipose-derived secretory factor to exert insulin-mimetic effects. Plasma visfatin levels and mRNA levels of visfatin in adipose tissues are increased in obesity. However, the mechanism that mediates induction of visfatin mRNA in adipose tissue of obesity remains unknown. Recent studies have reported that fat tissue is hypoxia in obesity. In this study, we investigated the effects of hypoxia on mRNA expression of visfatin in adipocytes. Hypoxia increased visfatin mRNA expression. Desferoxamine and Cobaltous chloride, two hypoxia mimetic compounds, also increased visfatin mRNA levels. Dimethyloxallyl glycine, a stabilizer of hypoxia-inducible factor 1alpha (HIF1alpha), mimicked the hypoxia-mediated upregulation of visfatin, and YC1, an inhibitor of HIF1 cancelled the hypoxia-induced upregulation of visfatin mRNA. We identified two functional hypoxia responsive elements (HRE) in mouse visfatin promoter. Hypoxic treatment and overexpression of HIF1alpha increased the promoter activity, and mutation of the HRE blunted hypoxia-induced activation of visfatin promoter. Our results suggest that visfatin mRNA expression is upregulated in the fat tissue of obesity through the activation of HIF1alpha pathway due to hypoxia.  相似文献   

20.

Background

Glyceroneogenesis is an important step in the control of fatty acid re-esterification with PEPCK and PDK4 being identified as key enzymes in this process. We have previously shown that glyceroneogenic enzymes such as PDK4 are rapidly induced in white adipose tissue during exercise. Recent studies have suggested that IL-6 regulates adipose tissue metabolism and gene expression during exercise. Interestingly, IL-6 has been reported to directly decrease PEPCK expression. The purpose of this investigation was to determine the role of IL-6 in modulating the effects of exercise on the expression of glyceroneogenic enzymes in mouse adipose tissue. We hypothesized that the exercise-mediated induction of PDK4 and PEPCK would be greater in adipose tissue from IL-6 deficient mice compared to wild type controls.

Methodology and Principle Findings

Treatment of cultured epididymal adipose tissue (eWAT) with IL-6 (150 ng/ml) increased the phosphorylation of AMPK, ACC and STAT3 and induced SOCS3 mRNA levels while decreasing PEPCK and PDK4 mRNA. AICAR decreased the expression of PDK4 and PEPCK. The activation of AMPK by IL-6 was independent of increases in lipolysis. An acute bout of treadmill running (15 meters/minute, 5% incline, 90 minutes) did not induce SOCS3 or increase phosphorylation of STAT3 in eWAT, indicating that IL-6 signalling was not activated. Exercise-induced increases in PEPCK and PDK4 mRNA expression were attenuated in eWAT from IL-6−/− mice in parallel with a greater relative increase in AMPK phosphorylation compared to exercised WT mice. These changes occurred independent of alterations in beta-adrenergic signalling in adipose tissue from IL-6−/− mice.

Conclusions and Significance

Our findings question the role of IL-6 signalling in adipose tissue during exercise and suggest an indirect effect of this cytokine in the regulation of adipose tissue gene expression during exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号