共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Fibroblast growth factors (FGFs) have been implicated in a number of proliferative lesions, including malignant tumor growth and vascularization. As a result, cytotoxic agents that target cell surface FGF receptors are currently under investigation. Previous reports have shown that conjugation of basic FGF with the ribosome inactivator, saporin, results in a potent cytotoxin specific for cells bearing high-affinity FGF receptors. In this report, we have used this FGF receptor-dependent cytotoxin to study receptor interactions at the surface of embryonal carcinoma cells, which express low numbers of high-affinity FGF receptors. The growth of three embryonal carcinoma cell lines and one embryonic stem cell line was shown to be inhibited by bFGF-saporin, suggesting that these cells are able to bind and internalize FGF through high-affinity FGF receptors. In addition, we determined that the responses of these cells to bFGF-saporin are qualitatively different than the responses of CHO-KI cells, which also exhibit low numbers of high-affinity FGF receptors. Specifically, pretreatment with bFGF-saporin reduces the cloning efficiency of CHO-KI cells 8- to 10-fold, whereas bFGF-saporin has little or no effect on the cloning efficiency of embryonal carcinoma cells. This finding suggests that bFGF-saporin is cytotoxic for CHO-KI cells, but not for embryonal carcinoma cells. Thus, our findings argue strongly that other factors, in addition to high-affinity FGF receptor number, are important in determining sensitivity of cells of bFGF-saporin. 相似文献
4.
Overexpression of hepatocyte growth factor receptor in renal carcinoma cells indirectly stimulates tumor growth in vivo 总被引:2,自引:0,他引:2
Miyata Y Ashida S Nakamura T Mochizuki Y Koga S Kanetake H Shuin T Kanda S 《Biochemical and biophysical research communications》2003,302(4):892-897
We examined the role of increased expression of HGFR kinase in in vivo growth of renal carcinoma. Human renal carcinoma cell line, ACHN cells, was transfected with plasmid encoding wild-type HGFR gene to generate cell lines with increased HGFR protein. ACHN cells with elevated HGFR expression, denoted clones 8 and 10, respectively, showed higher basal kinase activities of HGFR and PI3-kinase than those of empty-vector (mock)-transfected cells. Clone 8 and 10 cells grew similar to mock cells in culture. In mice, tumors of these clones grew more rapidly than those of mock cells. Microvessel density of clone 8 or 10 tumors was higher than that of mock tumors. Clone 8 and 10 cells secreted vascular endothelial growth factor-A (VEGF-A) more than mock cells and the secretion was PI3-kinase inhibitor, LY294002-sensitive. Anti-VEGF-A neutralizing antibody significantly inhibited tumor growth of clones 8 and 10 in mice. These results indicate for the first time that overexpression of HGFR tyrosine kinase in renal carcinoma cells participates in rapid tumor growth in vivo. 相似文献
5.
Astigiano S Damonte P Fossati S Boni L Barbieri O 《Differentiation; research in biological diversity》2005,73(9-10):484-490
Embryonal carcinoma (EC) cells, stem cells of teratocarcinoma, represent an excellent model to study the developmental mechanisms that, inappropriately reactivated, can drive tumorigenesis. EC cells are very aggressive, and grow rapidly when injected into adult syngeneic mice. However, when injected into blastocysts, they revert to normality, giving rise to chimeric animals. In order to study the ability of postimplantation embryonic environment to "normalize" tumorigenic cells, and to study their homing, we transplanted F9, Nulli-SCC1, and P19 EC cells into 8 to 15-day allogenic CD1 mouse embryos, into allogenic CD1 newborns, and into syngeneic adult mice, and evaluated tumor formation, spreading, and homing. We found that, although at all embryonic stages successful transplantation occurred, the chances of developing tumors after birth increased with the time of injection of EC cells into the embryo. In addition, using enhanced green fluorescent protein-expressing F9 cells, we demonstrated that the cells not giving rise to tumors remained latent and could be tracked down in tissues during adulthood. Our data indicate that the embryonic environment retains a certain ability to "normalize" tumor cells also during post-implantation development. This could occur through yet unknown epigenetic signals triggering EC cells' differentiation. 相似文献
6.
Cornelia M. M. van der Kruijssen Tanja A. E. van Achterberg Alie Feijen Jean M. Hébert Peter de Waele Adriana J. M. van den Eijnden-van Raaij 《Development, growth & differentiation》1995,37(5):559-574
We have used the P19 embryonal carcinoma (EC) aggregation system as a model for early mouse development to study induction and modulation of mesodermal and neuronal differentiation. By studying the expression of marker genes for differentiated cells in this model we have shown that there is a good correlation between the differentiation direction induced in P19 EC aggregates and the expression of these genes. Expression of the neuronal gene midkine is exclusively upregulated when P19 EC cells are induced to form neurons while expression of early mesodermal genes such as Brachyury T, evx-1 , goosecoid and nodal is elevated after induction to the mesodermal pathway. In the present study we have further shown that activin A blocks the different directions of differentiation of P19 EC cells induced by retinoic acid (RA) in a dose-dependent way. To understand the mechanism behind this inhibitory action of activin A the expression of several RA-responsive genes, including the three RA receptor genes (RARα, RARβ and RARγ) was determined. Since activin has no clear effect on the expression and activity of the RAR it is very likely that this factor acts downstream of these receptors. In addition to activin, fibroblast growth factors (FGF) were shown to modulate P19 EC cell differentiation. However, in contrast to activin, FGF exclusively blocks the mesodermal differentiation of P19 EC cells by either 10−9 mol/L RA or a factor produced by visceral endoderm-like cells (END-2 factor). The FGF effect is dose-independent. These results suggest an important function for RA and the END-2 factor in the induction and for activin and FGF in the modulation of specific differentiation processes in murine development. 相似文献
7.
HSPs (heat shock proteins) have been recognized to maintain cellular homoeostasis during changes in microenvironment. The present study aimed to investigate the HSPs expression pattern in hierarchical neural differentiation stages from mouse embryonal carcinoma stem cells (P19) and its role in heat stressed exposed cells. For induction of HSPs, cells were heated at 42°C for 30 min and recovered at 37°C in different time points. For neural differentiation, EBs (embryoid bodies) were formed by plating P19 cells in bacterial dishes in the presence of 1 mM RA (retinoic acid) and 5% FBS (fetal bovine serum). Then, on the sixth day, EBs were trypsinized and plated in differentiation medium containing neurobasal medium, B27, N2 and 5% FBS and for an extra 4 days. The expression of HSPs and neural cell markers were evaluated by Western blot, flow cytometry and immunocytochemistry in different stages. Our results indicate that HSC (heat shock constant)70 and HSP60 expressions decreased following RA treatment, EB formation and in mature neural cells derived from heat-stressed single cells and not heat-treated EBs. While the level of HSP90 increased six times following maturation process, HSP25 was expressed constantly during neural differentiation; however, its level was enhanced with heat stress. Accordingly, heat shock 12 h before the initiation of differentiation did not affect the expression of neuroectodermal and neural markers, nestin and β-tubulin III, respectively. However, both markers increased when heat shock was induced after treatment and when EBs were formed. In conclusion, our results raise the possibility that HSPs could regulate cell differentiation and proliferation under both physiological and pathological conditions. 相似文献
8.
9.
10.
Geoffrey O. Wasteneys Monique Cadrin Kenneth R. Reuhl David L. Brown 《Cell biology and toxicology》1988,4(1):41-60
Immunofuorescence staining with antibodies to tubulin and vimentin and staining with phalloidin have been used to examine the effects of methylmercury on the cytoskeleton of embryonal carcinoma cells in culture. Exposure of embryonal carcinoma cells to methylmercury (0.01 to 10 m) resulted in concentration- and time-dependent disassembly of microtubules in interphase and mitotic cells. These effects were reversible when cultures were washed free of methylmercury. Spindle microtubules were more sensitive than those of interphase cells. Spindle damage resulted in an accumulation of cells in prometaphase/metaphase, which; correlated with a temporary delay in the resumption of normal proliferation rate upon removal of methylmercury. Of the interphase cytoskeletal components, microtubules were the first affected by methylmercury. Vimentin intermediate filaments appeared relatively insensitive to methylmercury, but showed a reorganization secondary to the microtubule disassembly. Actin microfilaments appeared unchanged in cells showing complete absence of microtubules. Our results 1) support previous reports suggesting that microtubules are a primary target of methylmercury, 2) document a differential sensitivity of mitotic and interphase microtubule systems and 3) demonstrate the relative insensitivities of other cytoskeletal components.Abbreviations -MEM
alpha minimal essential medium
- EC
embryonal carcinoma cells
- McHg
methylmercury
- PBS
phosphate buffered saline
- SB
microtubule stabilizing buffer 相似文献
11.
The growth rate of malignant F9 embryonal carcinoma cells slows considerably following all-trans-retinoic acid-induced differentiation into benign parietal endoderm. To determine the mechanism of this process, we examined the expression of cyclins D1, D2, and D3 and the activity of their associated kinases. Cyclin D1 and D3 mRNA levels decreased during complete differentiation induced by all-trans-retinoic acid and dibutyryl cAMP, while the levels of cyclin D2 and the cyclin-dependent kinase (Cdk) inhibitor p27 mRNAs increased. Ultimately, terminally differentiated cells possessed 50% of the Cdk4-associated kinase activity observed in undifferentiated cells. Since numerous genes are differentially regulated during parietal endoderm differentiation, it is difficult to determine whether retinoic acid affects cell cycle gene expression directly or if these changes are caused by differentiation. We found that the retinoid X receptor (RXR)-selective agonists LG100153 and LG100268 significantly inhibited F9 cell growth without causing overt terminal differentiation as assessed by anchorage-independent growth and differentiation-associated gene expression. As seen in cells induced to differentiate by the RAR agonist all-trans-retinoic acid, RXR activation led to an increase in the number of cells in G1 phase. RXR agonists also sharply induced the levels of the Cdk regulatory subunits, cyclin D2 and D3. However, Cdk4-dependent kinase activity was reduced by RXR-selective retinoid treatment. These observations suggest that some retinoids can directly inhibit proliferation and regulate Cdk4-dependent kinase activity without inducing terminal differentiation. 相似文献
12.
Chong‐hui Li Xian‐qiang Wang Ke Pan Cheng Zhou Jia‐hong Dong 《Cell biochemistry and function》2016,34(4):274-285
We aimed to elucidate the effects of hepatoma‐derived growth factor (HDGF) on growth and metastasis of hepatocellular carcinoma (HCC) cells. Tissue microarrays with 236 HCC specimens and 18 extrahepatic metastases were utilized to detect the HDGF expression by immunohistochemistry. Meanwhile, HDGF expressions in HCC cell lines with different metastatic potentials were examined using immunofluorescence staining, real‐time PCR and western blotting. After HDGF silencing, the growth and metastatic potentials of HCC cells were evaluated by soft agar assay, invasion assay, together with tumorigenicity assay in nude mice. The gelatin zymography was performed by detecting MMP‐2 and MMP‐9 levels. Additionally, western blotting was conducted to determine the levels of total and phosphorylated ERK1/2, JNK, p38 and Akt. The results showed that HDGF was overexpressed in HCC metastasis tumour, and the expression increased with the differentiation degree of tumours (Grade I 44.0%, Grade II 48.4% and Grade III 65.6%). Consistently, HDGF levels were positively associated with the metastatic capability of HCC cells (MHCC97L < MHCC97H < HCCLM3). The growth and metastasis were suppressed by HDGF‐siRNA. Gelatinolytic activities were enhanced in the three metastatic HCC cell lines, but had no significant difference among them. The tumourigenicity and metastatic capability of HCCLM3 cells in nude mice were inhibited after silencing HDGF. Meanwhile, HDGF‐siRNA specifically suppressed the total and phosphorylated protein levels of ERK1/2, while not JNK, p38 and Akt. In conclusion, HDGF was overexpressed in HCC patients and cells, and HDGF might be closely correlated with HCC metastasis via regulating ERK signalling pathway. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
13.
Angie Rizzino Victor Terranova David Rohrbach Craig Crowley Heather Rizzino 《Journal of cellular biochemistry》1980,13(2):243-253
In this paper we have examined the growth and differentiation of the embryonal carcinoma cell line, F9, in the defined medium EM-3 at low density. We show that the growth of F9 and their differentiated cells (F9-diff) in EM-3 is strongly density dependent. At low cell densities the growth of both cell types is severely limited and most of the cells do not survive. Although this poses a problem for working with F9 and F9-diff in EM-3, it provides a convenient assay for identifying molecules that support their growth at low density. Using this assay, we have determined that laminin, a newly isolated glycoprotein of basement membranes, significantly improves the growth and short-term survival of both F9 and F9-diff. However, addition of laminin to EM-3 is insufficient to promote the clonal growth of these cell types. Our findings also indicate that laminin promotes the attachment of F9 and F9-diff in defined media. On the basis of our results, we propose an attachment function for laminin during the early stages of mammalian development. 相似文献
14.
Apoptosis during iron chelator-induced differentiation in F9 embryonal carcinoma cells 总被引:3,自引:0,他引:3
Tanaka T Satoh T Onozawa Y Kohroki J Itoh N Ishidate M Muto N Tanaka K 《Cell biology international》1999,23(8):541-550
We have previously demonstrated that three potent iron chelators, hinokitiol, dithizone and deferoxamine, induce differentiation of F9 embryonal carcinoma cells, as do other well-known morphogens such as retinoic acid (RA) and sodium butyrate (NaB). In this study, we compared the patterns of cell proliferation, cell death and cell cycle arrest during the process of differentiation induced by these five agents. When F9 cells were cultured with the agents at their individual differentiation-inducing concentrations, cell proliferation was rapidly inhibited by treatment with the iron chelators and NaB. In contrast, RA did not influence the rate of increase of cell number at the concentration of 1 microm. The three chelators also caused a marked reduction in cell viability, and the treated cells exhibited internucleosomal DNA fragmentation, whereas cells treated with NaB showed no apoptotic characteristics. RA induced apoptosis weakly at 1 microm and strongly at higher concentrations. In addition, all the iron chelators hindered cell cycle progression, resulting in an arrest at the G1-S interface or S phase. The phenomena observed in chelator-treated cells were considerably different from those in RA- or NaB-treated cells. It is concluded that the three iron chelators cause both severe apoptotic cell death and cell cycle arrest of proliferating F9 cells via cellular iron deprivation, and that this apoptotic change may be independent of the process of differentiation. 相似文献
15.
Monique Cadrin Geoffrey O. Wasteneys Elizabeth M. V. Jones-Villeneuve David L. Brown Kenneth R. Reuhl 《Cell biology and toxicology》1988,4(1):61-80
Immunofluorescence staining with antibodies to tubulin, neurofilaments and glial filaments was used to study the effects of methylmercury on the differentiation of retinoic acid-induced embryonal carcinoma cells into neurons and astroglia and on the cytoskeleton of these neuroectodermal derivatives. Methylmercury did not prevent undifferentiated embryonal carcinoma cells from developing into neurons and glia. Treatment of committed embryonal carcinoma cells with methylmercury doses exceeding 1 M resulted in the formation of neurons with abnormal morphologies. In differentiated cultures, microtubules were the first cytoskeletal element to be affected. Their disassembly was time- and concentration-dependent. Microtubules in glial cells and in neuronal perikarya were more sensitive than those in neuronal processes. Neurofilaments and glial filaments appeared relatively insensitive to methylmercury treatment but showed reorganization after complete disassembly of the microtubules. The data demonstrate 1) the sensitivity of microtubules of both neurons and glia to methylmercury-induced depolymerization, and 2) the heterogeneous response of neuronalAbbreviations -MEM
alpha minimal essential medium
- EC
embryonal carcinoma cells
- FCS
fetal calf serum
- MAP
microtubule-associated protein
- MeHg
methylmercury
- RA
retinoic acid 相似文献
16.
Masayoshi Kumegawa Toshihiko Yajima Masahiko Hiramatsu Eiko Ikeda Keiko Hatakeyama Masayoshi Namba 《Biochimica et Biophysica Acta (BBA)/General Subjects》1981,675(2):305-308
The effect of epidermal growth factor (EGF) on collagen fiber formation in clone RLC-18(4) epithelial cells obtained from rat liver was investigated by silver impregnation and assay of hydroxyproline content. EGF caused dose-related stimulation of collagen fiber formation and was effective at as low as concentration as 0.5 ng/ml. Actinomycin D suppressed collagen fiber formation increased by EGF, suggesting that this factor stimulates de novo collagen synthesis in the cells. 相似文献
17.
18.
Shinjirou Kawazoe Nobuhito Ikeda Kengo Miki Masayuki Shibuya Kumi Morikawa Seiji Nakano Mitsuo Oshimura Ichiro Hisatome Yasuaki Shirayoshi 《Development, growth & differentiation》2009,51(2):81-93
Embryonic carcinoma (EC) cells, which are malignant stem cells of teratocarcinoma, have numerous morphological and biochemical properties in common with pluripotent stem cells such as embryonic stem (ES) cells. However, three EC cell lines (F9, P19 and PCC3) show different developmental potential and self‐renewal capacity from those of ES cells. All three EC cell lines maintain self‐renewal capacity in serum containing medium without Leukemia Inhibitory factor (LIF) or feeder layer, and show limited differentiation capacity into restricted lineage and cell types. To reveal the underlying mechanism of these characteristics, we took the approach of characterizing extrinsic factors derived from EC cells on the self‐renewal capacity and pluripotency of mouse ES cells. Here we demonstrate that EC cell lines F9 and P19 produce factor(s) maintaining the undifferentiated state of mouse ES cells via an unidentified signal pathway, while P19 and PCC3 cells produce self‐renewal factors of ES cells other than LIF that were able to activate the STAT3 signal; however, inhibition of STAT3 activation with Janus kinase inhibitor shows only partial impairment on the maintenance of the undifferentiated state of ES cells. Thus, these factors present in EC cells‐derived conditioned medium may be responsible for the self‐renewal capacity of EC and ES cells independently of LIF signaling. 相似文献
19.
20.
Hepatocyte growth factor stimulates the growth and activates mitogen-activated protein kinase in human hepatoma cells 总被引:4,自引:0,他引:4
Hsuan-Shu Lee A-Mei Huang Guan-Tarn Huang Pei-Ming Yang Pei-Jer Chen Jin-Chuan Sheu Ming-Yang Lai Sheng-Chung Lee Chen-Kung Chou Ding-Shinn Chen MD 《Journal of biomedical science》1998,5(3):180-184
Hepatocyte growth factor (HGF) is a potent mitogen for hepatocytes and various epithelial cells. Unexpectedly, it has been reported to inhibit the growth of hepatoma cells in vitro. To clarify this phenomenon, we examined the effects of recombinant baculovirus-expressed HGF on the growth of 6 human hepatoma cell lines. The growth of Hep3B and HepG2 cells was markedly stimulated to 1.8- and 1.7-fold, respectively, PLC/PRF/5 to 1.4-fold, and SK-Hep-1 to 1.2-fold in a dose-dependent manner under HGF concentrations below 20 ng/ml. Neither HuH-7 nor HCC36 were affected. None of these cells were inhibited. All these cells expressed c-Met, the membrane receptor for HGF, and their c-Met would be activated to be phosphorylated upon addition of HGF. They also contained the ERK2 subgroup of mitogen-activated protein kinases (MAPKs). When HGF was added, their ERK2 would also be phosphorylated. The extent of ERK2 phosphorylation was partially correlated to their growth response to HGF. In conclusion, HGF could stimulate the growth of certain human hepatoma cells, probably through activation of c-Met and MAPKs. 相似文献