首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ephemeral pools, which can have high animal biomass and low dissolved oxygen, may be prone to nitrite accumulation. As such, it is important to understand how exposure to nitrite might affect development and growth of amphibians that breed in these ephemeral pools. Wood frog (Rana sylvatica) and eastern tiger salamander (Ambystoma tigrinum tigrinum) embryos and tadpoles and young larvae were exposed to elevated concentrations of nitrite derived from sodium nitrite: 0, 0.3, 0.6, 1.2, 2.1, 4.6, and 6.1 mg l−1 NO2–N. Increasing nitrite exposure slowed embryonic and larval development in both the eastern tiger salamander and the wood frog, reduced growth in tiger salamander embryos and larvae, and delayed metamorphosis in the wood frog. At concentrations less than 2 mg l−1 NO2–N nitrite delayed hatching, and at concentrations above 2 mg l−1 time to hatching decreased causing more individuals to hatch at less developed stages. Nitrite also increased asynchrony in tiger salamander hatching. The sublethal effects of nitrite on amphibian development, growth and hatching could have serious repercussions on amphibian fitness in ephemeral environments. Potential increases in mortality on field populations caused by sublethal effects of nitrite are discussed.  相似文献   

2.
Synopsis In an effort to assess the mode of chlorine action on rainbow trout (Salmo gairdneri), hematocrit percentage, and hemoglobin, methemoglobin, reduced glutathione, plasma protein, and plasma hemoglobin concentrations were determined in four tests in which duplicate groups of approximately 15 fish each were exposed to 3.86, 2.47, 2.75, and 1.09 mg 1–1 TRC12 for 8, 19, 20, and 29 minutes, respectively. Blood from fish exposed to chlorine was darker and thicker than that of the control. Chlorine seemed to diffuse readily through the gills, oxidizing the hemoglobin to methemoglobin and disrupting the erythrocyte membranes, resulting in hemolysis. Stress polycythemia was also due to the substantial increase of the hematocrit values and hemoglobin concentration. Hemoconcentration led to a significant rise in the reduced gluthathione and plasma protein concentrations. The hemoconcentration seemed to interfere with the blood circulation and hinder the delivery of oxygen to tissues.  相似文献   

3.
Nitrite oxidation is the second step of nitrification. It is the primary source of oceanic nitrate, the predominant form of bioavailable nitrogen in the ocean. Despite its obvious importance, nitrite oxidation has rarely been investigated in marine settings. We determined nitrite oxidation rates directly in 15N-incubation experiments and compared the rates with those of nitrate reduction to nitrite, ammonia oxidation, anammox, denitrification, as well as dissimilatory nitrate/nitrite reduction to ammonium in the Namibian oxygen minimum zone (OMZ). Nitrite oxidation (⩽372 nM NO2 d−1) was detected throughout the OMZ even when in situ oxygen concentrations were low to non-detectable. Nitrite oxidation rates often exceeded ammonia oxidation rates, whereas nitrate reduction served as an alternative and significant source of nitrite. Nitrite oxidation and anammox co-occurred in these oxygen-deficient waters, suggesting that nitrite-oxidizing bacteria (NOB) likely compete with anammox bacteria for nitrite when substrate availability became low. Among all of the known NOB genera targeted via catalyzed reporter deposition fluorescence in situ hybridization, only Nitrospina and Nitrococcus were detectable in the Namibian OMZ samples investigated. These NOB were abundant throughout the OMZ and contributed up to ∼9% of total microbial community. Our combined results reveal that a considerable fraction of the recently recycled nitrogen or reduced NO3 was re-oxidized back to NO3 via nitrite oxidation, instead of being lost from the system through the anammox or denitrification pathways.  相似文献   

4.
The blue-light requirement for the biosynthesis of nitrite reductase and an NO2 transport system was studied in Chlamydomonas reinhardtii mutant S10. The only oxidized nitrogen species that could be taken up by this mutant was NO2, due to the presence of NO2 transport systems and the absence of high-affinity NO3 transporters. NH4+-grown cells required illumination with blue light to recover the ability to take up NO2 when resuspended in an NO2-containing NH4+-deprived medium. This blue-light- dependent recovery, which took 1 h, could be suppressed by cycloheximide, indicating that protein biosynthesis was involved. The biosynthesis of nitrite reductase took place in cell suspensions irradiated with red light, even in the absence of NO2, thus suggesting that the process requiring blue light was the biosynthesis of an NO2 transport system. Nitrite reductase-containing cells (pre-irradiated with red light) took 1 h to start consuming NO2 when they were additionally irradiated with blue light in the presence of this anion, and this process was also cycloheximide-sensitive. The NO2 transport system operated either under red plus blue light or red light only. Thus, in C. reinhardtii mutant S10 cells, blue light was only required for the biosynthesis of an NO2 transport system and not for its activity.  相似文献   

5.
Pike-perch Sander lucioperca is currently considered as one of the most promising candidates for production in freshwater recirculation aquaculture systems (RAS). Here, due to the lack of studies on nitrite (NO2?) toxicity in pike-perch, a flow-through exposure at 0, 0.44, 0.88, 1.75, 3.5, 7, 14 and 28 mg/L NO2?–N was carried out to determine the acute and chronic toxicity over a period of 32 days. In juvenile pike-perch, 120 h LC50 was 6.1 mg/L NO2?–N and at ≥ 14 mg/L NO2?–N all fish had died within 24 h. Chronic exposure revealed a significant build up of NO2? in the plasma as well as in the muscles at ≥ 0.44 mg/L NO2?–N peaking in fish exposed to the highest concentration of 3.5 mg/L NO2?–N after 32 days. Still, due to high individual variation methemoglobin (MetHb) was only significantly increased (p < 0.01) at 3.5 mg/L NO2?–N. No adverse effects on red blood cells (RBC) and hematocrit were observed in any of the treatments. In a second experiment, compensation of NO2? toxicity at increasing chloride concentrations (40 (freshwater), 65, 90, 140, 240, 440 mg/L Cl?) was observed at a constant exposure of 10 mg/L NO2?–N for 42 days. At ≥ 240 mg/L Cl?, NO2? build-up in blood plasma and muscle was completely inhibited. At lower Cl? concentrations (≤ 140 mg/L), NO2? was significantly increased in plasma, but only insignificantly elevated in muscle due to high individual variation. MetHb was increased significantly difference only at 40 mg/L Cl? (freshwater control) compared to the control. Again, high individual variations were observed. As a conclusion, S. lucioperca is moderately sensitive towards NO2? and acceptable levels in RAS should hence not exceed 1.75 mg/L NO2?–N to avoid MetHb formation. However, based on the 120 h LC50 and a factor of 0.01 according to Sprague (1971), a NO2? concentration of ≤ 0.061 mg/L NO2?–N is considered as “safe.” Thereby, no NO2? should accumulate in the plasma or muscle tissue during chronic exposure. For 10 mg/L NO2?–N, ≥ 240 mg/L chloride compensates for NO2? uptake in plasma and muscle.  相似文献   

6.
A scheme of development of nitrite-induced oxyhemoglobin oxidation in erythrocytes based on the analysis of experimental data is proposed. It was found that, contrary to widespread opinion, direct oxidative-reductive interaction between hemoglobin and nitrite is absent or negligible under physiological conditions. The driving stage of this process is methemoglobin-catalyzed peroxidase oxidation of nitrite. The product of the oxidation (presumably NO2 ·) directly oxidizes oxyhemoglobin to methemoglobin-peroxide complex without hydrogen peroxide release into the environment. The oxidant itself is reduced to nitrite or oxidized to nitrate as a result of interaction with another NO2 · molecule. Thus, the stoichiometry of the process depends on the ratio of rates of these two reactions. Substances that are able to compete with nitrite for peroxidase and therefore to prevent the nitrite oxidation effectively protect hemoglobin from oxidation. Catalase is not able to destroy methemoglobin-peroxide complexes, but it can prevent their production in the course of interaction of methemoglobin and free peroxide by destroying the latter.__________Translated from Biokhimiya, Vol. 70, No. 4, 2005, pp. 575–587.Original Russian Text Copyright © 2005 by Titov, Petrenko.  相似文献   

7.
Intact, 14-day-old nitrogen-depleted wheat (Triticum vulgare cv. Blueboy) seedlings were exposed to solutions of 0.5 mM KNO2, 0.05 mM CaSO4 and 1 mM sodium 2-[N-morpholino]-ethanesulfonate, pH 6.1. Nitrite uptake was determined from depletion of the ambient solution or from incorporation of 15N in the tissue. An initial nitrite uptake shoulder was followed by a relatively slow uptake rate which subsequently increased to a substantially greater rate. This accelerated phase was maintained through 24 h. Nitrite accumulated to a slight extent in the root tissues during the first few hours but declined to low values when the accelerated rate was fully developed, indicating an increase in nitrite reductase activity paralleling the increase in nitrite uptake capacity. About 50% of the nitrogen absorbed as nitrite was translocated to the shoots by 9–12 h. Development of the accelerated nitrite uptake rate was restricted in excised roots, in intact plants kept in darkness, by 400 μg puromycin ml?1 and by 1 mM L-ethionine. When puromycin and L-ethionine were added after the accelerated phase had been initiated, their effects were not as detrimental as when they were added at first exposure to KNO2. The two inhibitors restricted translocation more than uptake. The data indicate an involvement of protein synthesis and a requirement for movement of a substance from shoots to roots for maximal development of the accelerated nitrite uptake phase. A requirement for protein synthesis in the transport of soluble organic nitrogen from roots to shoots is also suggested.  相似文献   

8.
The aim of the present study is to test the role of intracellular nitrite in external nitrite suppressing algal growth. We examined the growth of Microcystis aeruginosa at different nitrite levels under high nitrate conditions and without nitrate conditions. There were higher intracellular nitrite and lower Pmchla, Rd chla, αchl, maximum cell density and specific growth rate in high nitrate group than nitrate absence group at 5 mg NO2?‐N L?1. At 10 and 15 mg NO2?‐N L?1, Pmchla, Rd chla, αchl, maximum cell densities and specific growth rates in the high nitrate group became higher than those of the nitrate absence group, while a lower intracellular nitrite in the high nitrate group than nitrate absence group was observed. In addition, the intracellular nitrite and the growth of M. aeruginosa in the high nitrate group did not change from 5 to 10 mg NO2?‐N L?1. In the nitrite uptake experiment, with nitrite concentration increasing from 5 to 15 mg NO2?‐N L?1, maximum nitrite uptake rate of alga increased, and half‐saturation constant of alga decreased. These results indicate that external nitrite inhibited algal growth through stimulating intracellular nitrite rise, which resulted from overexpression of nitrite transporter.  相似文献   

9.
The method of fluorescent probes has been an important technique for detection of nitrite (NO2?). As an important inorganic salt, excessive nitrite would threaten humans and the environment. In this paper, a colorimetric fluorescent probe P‐N (1,2‐diaminoanthraquinone) with rapid response and high selectivity, which could detect NO2? by visual colour changes and fluorescence spectroscopy is presented. The probe P‐N solution (pH 1) changed from pink to colourless with the addition of NO2? and fluorescence intensity at 639 nm clearly decreased. Good linear exists between fluorescence intensities and NO2? concentrations for the range 0–16 μM, and the detection limit was 54 nM (based on a 3σ/slope). Moreover, probe P‐N could also detect NO2? in real water samples, and results were all satisfactory. Probe P‐N shows great practical application value for detecting NO2? in the environment.  相似文献   

10.
Summary In the combined ion exchange/biological denitrification process for nitrate removal from ground water, in which nitrate is removed by ion exchange, the resins are regenerated in a closed circuit by a biological denitrification reactor. This denitrification reactor eliminates nitrate from the regenerant. Methanol is used as electron donor for biological denitrification. To obtain sufficient regeneration of the resins within a reasonable time, high NaCl or NaHCO3 concentrations (10–30 g/l) in the regenerant are necessary. High NaHCO3 concentrations affected the biological denitrification in three ways: a) a slight decrease in denitrification capacity (30%) was observed; b) the yield coefficient and CH3OH/NO3 -–N ratio decreased. When high NaHCO3 concentrations (above 10g NaHCO3/l) were used, the yield coefficient was 0.10–0.13 g VSS/g NO3 -–N and the CH3OH/NO3 -–N ratio was 2.00–2.03 g/g; c) high NaHCO3 concentrations influenced nitrite production. Nitrite is an intermediate product of biological denitrification and with rising NaHCO3 concentrations nitrite accumulation was suppressed. This was explained by the effect of high NaHCO3 concentrations on the pH in the microenvironment of the denitrifying organisms. High NaCl concentrations also resulted in a slight decrease in denitrification capacity, but the second and third effects were not observed in the presence of high NaCl concentrations.Although the pH in the regenerant will rise as a result of biological denitrification, the capacity of a denitrification reactor did not decrease significantly when a pH of 8.8–9.2 was reached.  相似文献   

11.
亚硝酸盐胁迫对罗氏沼虾血细胞及其抗氧化酶活力的影响   总被引:2,自引:0,他引:2  
【背景】亚硝酸盐是虾类集约化养殖过程中最常见的毒性污染物之一,研究亚硝酸盐胁迫对罗氏沼虾血细胞的毒性以及抗氧化酶在抗胁迫防御中的作用,能够为罗氏沼虾养殖过程中的亚硝酸盐中毒防治提供理论参考。【方法】以不同浓度(0、1、5和10 mg·L~(-1))的亚硝态氮(NO_2~--N)对罗氏沼虾进行胁迫,于胁迫后的0、6、12、24和48 h取样,应用流式细胞术检测血细胞活性氧(ROS)含量和细胞凋亡率,同时测定血细胞总数(THC)和胞内抗氧化酶活力。【结果】1 mg·L~(-1)NO_2~--N在48 h内对血细胞ROS含量、凋亡率和THC均无显著影响。5 mg·L~(-1)NO_2~--N胁迫24 h,血细胞ROS含量显著上升,THC显著下降,胁迫48 h凋亡率显著提高。10 mg·L~(-1)NO_2~--N胁迫6 h,血细胞ROS含量和凋亡率均显著上升,胁迫12 h THC显著下降。血细胞的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GPx)的活力均不同程度地被NO_2~--N胁迫所诱导,CAT活力主要在胁迫前期提高,而GPx活力在胁迫后期提高。【结论与意义】亚硝酸盐存在浓度和时间毒性效应,一定浓度的亚硝酸盐会诱导虾血细胞产生ROS,这些ROS的过量产生诱导了血细胞发生凋亡,继而导致THC下降,这一氧化胁迫过程可能是亚硝酸盐对罗氏沼虾产生细胞毒性的重要机制之一。抗氧化酶活力的诱导表明抗氧化酶在亚硝酸盐胁迫过程中发挥防御作用。  相似文献   

12.
Nitrite: a key compound in N loss processes under acid conditions?   总被引:1,自引:0,他引:1  
Summary Nitrite is very important in N transformation processes because it is an intermediate product in the aerobic nitrification as well as in the anaerobic denitrification process. Under soil conditions whereby aerobic and anaerobic zones are close to each other, the mobile nitrite can be a link between both N transformation processes. Because of its low stability in acid conditions, nitrite can be a key compound in N loss processes.The results are presented in three sets of incubation experiments using soil+added nitrite before and after oxidation of organic matter; soil+added nitrite and various iron oxide minerals; nitrite solutions without soil but with added ferrous iron.It was found that under acid conditions, soil organic matter as well as the soil mineral phase have a stimulating effect on the nitrite decomposition. Conditions favouring the solubility of Fe(III)-compounds and promoting the formation of Fe2+ increase the nitrite decomposition, even under slightly acid conditions. Of the gaseous decomposition products, only trace amounts of NO2 occur while NO is the major component. Conditions whereby NO and NO2 cannot escape from the medium promote production of some nitrite.  相似文献   

13.
Nitrite (NO2 ) is an intermediate in a variety of soil N cycling processes. However, NO2 dynamics are often not included in studies that explore the N cycle in soil. Within the presented study, nitrite dynamics were investigated in a Nothofagus betuloides forest on an Andisol in southern Chile. We carried out a 15N tracing study with six 15N labeling treatments, including combinations of NO3 , NH4 + and NO2 . Gross N transformation rates were quantified with a 15N tracing model in combination with a Markov chain Monte Carlo optimization routine. Our results indicate the occurrence of functional links between (1) NH4 + oxidation, the main process for NO2 production (nitritation), and NO2 reduction, and (2) oxidation of soil organic N, the dominant NO3 production process in this soil, and dissimilatory NO3 reduction to NH4 + (DNRA). The production of NH4 + via DNRA was approximately ten times higher than direct mineralization from recalcitrant soil organic matter. Moreover, the rate of DNRA was several magnitudes higher than the rate of other NO3 reducing processes, indicating that DNRA is able to outcompete denitrification, which is most likely not an important process in this ecosystem. These functional links are most likely adaptations of the microbial community to the prevailing pedo-climatic conditions of this Nothofagus ecosystem.  相似文献   

14.
The aim of this study was to determine the effects of nitrite on the growth and survival of the white shrimp L. vannamei in two different salinities. Nitrite concentrations tested in salinity 8 g/L were 0 (control), 2.5, 5.0, 10.0, and 20.0 mg NO2?-N/L, and in salinity 24 g/L were 0 (control), 5.0, 10.0, 20.0, and 40.0 mg NO2?-N/L. For these experiments, 30 experimental units with 30?L of useful volume were stocked with 20 juvenile L. vannamei (8.0 ± 0.50 g), corresponding to a stocking density of 100 shrimp/m2, and cultivated for an experimental period of 30 days. A significant difference was found between the control and treatment groups with respect to growth and survival. The 2.5 mg NO2?-N/L treatment showed the best performance indexes in salinity 8 g/L, while the best growth performance indexes were found in the control and 5.0 mg NO2?-N/L treatments in salinity 24 g/L. Total mortality was observed in the 10 and 20 mg NO2?-N/L treatment groups from salinity 8 g/L and in the 40 mg NO2?-N/L treatment group in salinity 24 g/L. This study determined that concentrations of nitrite of up to 2.5 and 10 mg/L are acceptable for the rearing of L. vannamei in salinities of 8 and 24 g/L, respectively.  相似文献   

15.
Nitrite influx into crayfish showed saturation kinetics, supporting a carrier-mediated uptake. Addition of 4,4′-diisothiocyanatostilbene-2,2′-disulfonate (DIDS: at 10−5, 10−4 and 10−3 M) and bumetanide (at 10−5 M and 10−4 M) to the ambient water did not significantly affect nitrite influx. Rather than suggesting that neither Cl/HCO3 exchange nor K+/Na+/2Cl cotransport were involved in the transport, this may reflect that the gill cuticle has a low permeability to the pharmacological agents, or that the sensitivity of the transport mechanism to the inhibitors is low. Nitrite accumulation in the haemolymph was significantly decreased during hypercapnic conditions compared to normocapnic conditions. This supports the idea that an acid–base regulatory decrease in Cl(influx)/HCO3 (efflux) induced by hypercapnia should decrease NO2 uptake if NO2 and Cl share this uptake route. The respiratory acidosis caused by exposure to hypercapnia alone was partially compensated by HCO3 accumulation in the haemolymph. Combined exposure to hypercapnia and nitrite improved pH recovery, mainly by augmenting the [HCO3 ] increase, but also by decreasing haemolymph PCO2. Exposure to nitrite in normocapnic water induced an initial increase in haemolymph [HCO3 ] and later also a decrease in PCO2. Thus, the improved acid-base compensation during combined hypercapnia and nitrite exposure was an amplification of this nitriteinduced response. Haemolymph base excess rose much more than haemolymph [Ca], suggesting that transfer of acid-base equivalents between animal and water was more important than H+ buffering by exoskeletal CaCO3 in mediating the increase in haemolymph [HCO3 ]. Accepted: 27 June 2000  相似文献   

16.
Evaluation of crop N status will assist optimal N management of intensive vegetable production. Simple procedures for monitoring crop N status such as petiole sap [NO3?–N], leaf N content and soil solution [NO3?] were evaluated with indeterminate tomato and muskmelon. Their sensitivity to assess crop N status throughout each crop was evaluated using linear regression analysis against nitrogen nutrition index (NNI) and crop N content. NNI is the ratio between the actual and the critical crop N contents (critical N content is the minimum N content necessary to achieve maximum growth), and is an established indicator of crop N status. Nutrient solutions with four different N concentrations (treatments N1–N4) were applied throughout each crop. Average applied N concentrations were 1, 5, 13 and 22 mmol L?1 in tomato, and 2, 7, 13 and 21 mmol L?1 in muskmelon. Respective rates of N were 23, 147, 421 and 672 kg N ha?1 in tomato, and 28, 124, 245 and 380 kg N ha?1 in muskmelon. For each N treatment in each crop, petiole sap [NO3?–N] was relatively constant throughout the crop. During both crops, there were very significant (P < 0.001) linear relationships between both petiole sap [NO3?–N] and leaf N content with NNI and with crop N content. In indeterminate tomato, petiole sap [NO3?–N] was very strongly linearly related to NNI (R2 = 0.88–0.95, P < 0.001) with very similar slope and intercept values on all dates. Very similar relationships were obtained from published data of processing tomato. A single linear regression (R2 = 0.77, P < 0.001) described the relationship between sap [NO3?–N] and NNI for both indeterminate and processing tomato, each grown under very different conditions. A single sap [NO3?–N] sufficiency value of 1050 mg N L?1 was subsequently derived for optimal crop N nutrition (at NNI = 1) of tomato grown under different conditions. In muskmelon, petiole sap [NO3?–N] was strongly linearly related to NNI (R2 = 0.75 – 0.88, P < 0.001) with very similar slope and intercept values for much of the crop (44–72 DAT, days after transplanting). A single linear relationship between sap [NO3?–N] and NNI (R2 = 0.77, P < 0.001) was derived for this period, but sap sufficiency values could not be derived for muskmelon as NNI values were >1. Relationships between petiole sap [NO3?–N] with crop N content, and leaf N content with both NNI and crop N content had variable slopes and intercept values during the indeterminate tomato and the muskmelon crops. Soil solution [NO3?] in the root zone was not a sensitive indicator of crop N status. Of the three systems examined for monitoring crop/soil N status, petiole sap [NO3?–N] is suggested to be the most useful because of its sensitivity to crop N status and because it can be rapidly analysed on the farm.  相似文献   

17.
The strictly aquatic breathing Nile tilapia, Oreochromis niloticus is an extremely hypoxia-tolerant fish. To augment our understanding of the effects of hypoxia on anaerobic glycolysis in the Nile tilapia, we studied the effect of short-term for 1 day (trial 1) and long-term for 30 days (trial 2) hypoxia on a selected glycolytic enzymes activity and mRNA expression in liver and white muscle. The hypoxic oxygen concentrations used in the two trials were 2, 1, and 0.5 mg O2 L?1 for comparison with a control normoxic group 8 mg O2 L?1. The activity of phosphofructokinase (PFK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) in liver and white muscle except liver LDH decreased in trial 1 and increased in trial 2. Assessments of mRNA levels in trial 1 revealed that PFK was downregulated and LDH was upregulated in liver and white muscle, while PK fluctuated between upregulation in liver and downregulation in white muscle. Meanwhile, PK and LDH were upregulated while PFK was similar to control values in both tissues in trial 2. Comet assay results demonstrated an increase in DNA damage that was directly proportional to increasing hypoxic concentrations. This damage was more pronounced in trial 1. This suggests that the Nile tilapia cope better with long-term hypoxic conditions, possibly as an adaptive response.  相似文献   

18.
Summary -nitropropionic acid (BNP) was converted to nitrate in media inoculated with A. flavus spores or with replacement cultures of mycelium pregrown in glucose-peptone medium. Conversion by replacement cultures was rapid: 8–30% in 2 days; influenced by pH: most rapid at pH 3.5; and extensive: as much as 80% BNP nitrogen appeared as nitrate after 14 days. Nitrite was detectable in BNP replacement cultures at low levels or not at all, and nitrate was formed in BNP replacement media with or without glucose. Nitrite was not oxidized in growing cultures inoculated with spores, but replacement cultures oxidized over 50% of added nitrite to nitrate in 8 days. No nitrite or nitrate appeared in replacement systems with pyruvic oxime, oxalacetic acid oxime, acetoxime, ketoglutaric acid oxime, or hydroxylamine.Of the three non-nitrifying mutants of A. flavus obtained, all formed nitrate from BNP in replacement but only one oxidized nitrite to nitrate. No accumulation of free or bound hydroxylamine or of nitrite could be detected in the mutants. BNP was detected by qualitative test in cultures of the wild type but not the mutants. Evidence indicates that the pathway in A. flavus is BNPNO3 - rather than BNPNO2 -NO3 -.  相似文献   

19.
As a common pollutant, nitrite concentrations can approach 15 mg NO2-N L−1 in some aquatic systems. Microcystis aeruginosa blooms are common and widespread in eutrophic freshwater bodies. In this study, M. aeruginosa was exposed to nitrite concentrations ranging from 0 to 15 mg NO2-N L−1, and the responses of M. aeruginosa were investigated. The specific growth rates, maximum cell densities, light-saturated photosynthetic rates (Pm chla ), dark respiration rates (Rd chla ), and apparent photosynthetic efficiencies (αchla ) showed a significant decline with nitrite concentrations increasing. Electrical conductivity and malondialdehyde contents investigation revealed cell membrane damage and apparent leakage of intracellular contents under high nitrite level conditions due to oxidative stress enhancement. Intracellular microcystin (MC)-LR content reached the highest value at 10 mg NO2-N L−1; however, extracellular MC-LR contents showed a continuous increase until 15 mg NO2-N L−1 owing to the increasing leakage of intracellular contents. These results elucidated that the high-level nitrite inhibited M. aeruginosa growth by rising oxidative stress, damaging cell membrane, and reducing photosynthesis. However, the moderate increase in nitrite concentrations promoted toxin production and release of toxin.  相似文献   

20.
Nitrite accumulates during biological denitrification processes when carbon sources are insufficient. Acetate, methanol, and ethanol were investigated as supplementary carbon sources in the nitrite denitrification process using biogranules. Without supplementary external electron donors (control), the biogranules degraded 200 mg l?1 nitrite at a rate of 0.27 mg NO2–N g?1?VSS h?1. Notably, 1,500 mg l?1 acetate and 700 mg l?1 methanol or ethanol enhanced denitrification rates for 200 mg l?1 nitrite at 2.07, 1.20, and 1.60 mg NO2–N g?1?VSS h?1, respectively; these rates were significantly higher than that of the control. The sodium dodecyl sulfate polyacrylamide gel electrophoresis of the nitrite reductase (NiR) enzyme identified three prominent bands with molecular weights of 37–41 kDa. A linear correlation existed between incremental denitrification rates and incremental activity of the NiR enzyme. The NiR enzyme activity was enhanced by the supplementary carbon sources, thereby increasing the nitrite denitrification rate. The capacity of supplementary carbon source on enhancing NiR enzyme activity follows: methanol?>?acetate?>?ethanol on molar basis or acetate?>?ethanol?>?methanol on an added weight basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号