共查询到20条相似文献,搜索用时 0 毫秒
1.
Treatment of L-tyrosine in a peroxidase/H2O2 system results in the formation of dityrosine. However, the phosphoester derivative of tyrosine, O-phospho-L-tyrosine, was unable to form dityrosine even in mixtures with free L-tyrosine. Dephosphorylation of O-phospho-L-tyrosine by alkaline phosphatase followed by horseradish peroxidase/H2O2 treatment resulted in the formation of dityrosine. Our in vitro results indicate that phosphorylation/dephosphorylation of L-tyrosine may regulate dityrosine formation, and is supposed to play an important role in protein-protein interactions, i.e. cross-linking. 相似文献
2.
We have analyzed the detailed structure and cytoplasmic distribution of cytoplasmic microtubule-associated proteins. The procedure used to identify these proteins, based on preparation of detergent-extracted cytoskeletons, permits separation of fractions containing assembled and unassembled microtubule proteins. We show that two of these proteins, 69 and 80 kd, are closely related to one another and that each protein is present as a set of structurally related polypeptides with differing isoelectric points. In both neuroblastoma and pheochromocytoma cells, several of the isoelectric variants are greatly enriched in the fraction containing assembled microtubule components. Their differential distribution is correlated with phosphorylation at novel sites on the protein. These results support the possibility that covalent modification of a cytoskeletal component may specify its functional state. 相似文献
3.
We have extended our previous theoretical analysis of the kinetics for radioactive GTP incorporation into steady-state microtubules [Zeeberg, B., Reid, R., & Caplow, M. (1980) J. Biol. Chem. 255, 9891-9899] to include the effects of a kinetic barrier for equilibration of labeled GTP with the tubulin E site. This binding has been found to be relatively slow; the half-time for GTP dissociation is approximately 25 s (k = 0.028 s-1). The slow binding of radioactive GTP apparently accounts for the following observations: (a) more radioactive nucleotide is incorporated into steady-state microtubules in the first 20 s when tubulin-[3H]GTP is used in a pulse than when [3H]GTP is used; (b) when steady-state microtubules are pulsed for 20 s with tubulin-[3H]GTP and then chased with excess nonradioactive GTP, radioactive nucleotide incorporation is not stopped immediately. Quantitative analysis of these results indicates that our steady-state microtubules do not contain significant amounts (greater than 1%) of GDP or GTP which can exchange with added GTP. The principal route for labeled nucleotide incorporation appears to be from tubulin-[3H]GTP subunit uptake, by diffusional and treadmilling processes. 相似文献
4.
Idriss HT 《Cell motility and the cytoskeleton》2000,46(1):1-5
The tubulin tyrosination/detyrosination cycle is a well-established posttranslational modification, which is carried out by two enzymes: Tubulin Tyrosine Ligase (TTL) and Tubulin Tyrosine Carboxypeptidase (TTCP). In this paper, I present evidence suggesting that the cycle itself is under the hierarchical control of reversible phosphorylation and that PKC mediated phosphorylation of TTL inhibits its activity, thereby preventing tubulin tyrosination. Phosphorylation of TTL is predicted to occur in a postulated Mg(++)/-ATP binding fold, leading to inhibition of Mg(++)/ATP binding and TTL mediated catalysis. The implications of such control are also discussed. 相似文献
5.
Biochemical dissection of the role of the one-kilodalton carboxyl-terminal moiety of tubulin in its assembly into microtubules 总被引:2,自引:0,他引:2
The 4-kDa C-terminal domain of both tubulin subunits plays a major role in the regulation of microtubule assembly [Serrano et al. (1984) Biochemistry 23, 4675]. Controlled proteolysis of tubulin with subtilisin produces the selective cleavage of this 4-kDa moiety from alpha- and beta-tubulin with a concomitant enhancement of the assembly. Here we show that gradual removal of the last six to eight amino acid residues of the C-terminal region of alpha and beta subunits by an exopeptidase, carboxypeptidase Y, produces a modified protein (C-tubulin) without relieving the modulatory effect of the C-terminal domain and the usual need of MAPs for microtubule assembly. Actually, treatment with this proteolytic enzyme did not change tubulin assembly as promoted by either MAP-2, taxol, MgCl2, dimethyl sulfoxide, or glycerol. The critical concentration for the assembly of C-tubulin remained the same as that for the unmodified tubulin control. Microtubule-associated proteins MAP-2 and tau incorporated into C-tubulin polymers. Clearly, pure C-tubulin did not assemble in the absence of MAPs or without addition of assembly-promoting compounds. However, proteolysis with the exopeptidase induced changes in tubulin conformation as assessed by biophysical methods and double-limited proteolysis. The cleavage with subtilisin after carboxypeptidase digestion did not result in enhancement of the assembly to the levels observed after the treatment of native tubulin with subtilisin. Interestingly, Ca2+ ions affected neither C-tubulin assembly nor depolymerized microtubules assembled from C-tubulin.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
6.
P Dráber E Dráberová D Zicconi C Sellitto V Viklicky P Cappuccinelli 《European journal of cell biology》1986,41(1):82-88
A set of four monoclonal antibodies against tubulin (TU-01, TU-02, TU-03, and TU-04) were produced using pig brain microtubule protein as antigen. Their characterization shows that all recognize antigenic determinants located on the tubulin alpha-subunit. However, peptide mapping of isolated alpha-tubulin, followed by immunoblotting with the monoclonal antibodies, shows that the antigenic determinants are located on different peptide fragments in at least three cases. The immunoreactivity with tubulins from different cells and tissues, ranging from eukaryotic microorganisms to man, was studied by immunoblotting and immunofluorescence. The antigenic determinants recognized by the antibodies are not uniformly distributed but, in some instances, are absent from tubulins of lower eukaryotic cells. These antibodies also make it possible to distinguish between different sets of microtubules within individual cells. Antigenically different microtubules are particularly evident in mouse spermatozoa and in some protozoa (T. vaginalis, H. muscarum, L. tropica, N. gruberi) possessing different sets of microtubules with different functions. These monoclonal antibodies can clearly identify the heterogeneity of tubulin or microtubules both from different organisms and within the same cell. 相似文献
7.
The acetylation of alpha-tubulin and its relationship to the assembly and disassembly of microtubules 总被引:2,自引:5,他引:2
下载免费PDF全文

A tight association between Chlamydomonas alpha-tubulin acetyltransferase (TAT) and flagellar axonemes, and the cytoplasmic localization of both tubulin deacetylase (TDA) and an inhibitor of tubulin acetylation have been demonstrated by the use of calf brain tubulin as substrate for these enzymes. A major axonemal TAT of 130 kD has been solubilized by high salt treatment, purified, and characterized. Using the Chlamydomonas TAT with brain tubulin as substrate, we have studied the effects of acetylation on the assembly and disassembly of microtubules in vitro. We also determined the relative rates of acetylation of tubulin dimers and polymers. The acetylation does not significantly affect the temperature-dependent polymerization or depolymerization of tubulin in vitro. Furthermore, polymerization of tubulin is not a prerequisite for the acetylation, although the polymer is a better substrate for TAT than the dimer. The acetylation is sensitive to calcium ions which completely inhibit the acetylation of both dimers and polymers of tubulin. Acetylation of the dimer is not inhibited by colchicine; the effect of colchicine on acetylation of the polymer can be explained by its depolymerizing effect on the polymer. 相似文献
8.
Distribution of microtubules containing post-translationally modified alpha-tubulin during Drosophila embryogenesis 总被引:2,自引:0,他引:2
R M Warn A Harrison V Planques N Robert-Nicoud J Wehland 《Cell motility and the cytoskeleton》1990,17(1):34-45
The distribution of microtubules (MTs) enriched in detyrosinated alpha-tubulin (Glu-tubulin) was studied in Drosophila embryos by immunofluorescence microscopy by using a monoclonal antibody (ID5) which was raised against a 14-residue synthetic peptide spanning the carboxyterminal sequence of Glu-tubulin (Wehland and Weber: J. Cell Sci. 88:185-203, 1987). While all MT arrays contained tyrosinated alpha-tubulin (Tyr-tubulin), MTs rich in Glu-tubulin were not found during early stages of development even by using an image intensification camera. Elevated levels of microtubular Glu-tubulin were first detected after CNS condensation in neurone processes. In addition, sperm tails, which remained remarkably stable inside the embryo until late stages of development, were decorated by ID5. This was in marked contrast to the distribution of microtubule arrays containing acetylated alpha-tubulin, which could already be detected during the cellular blastoderm stage. Additional experiments with taxol suggested that the absence of MTs rich in Glu-tubulin during early stages of development was not due to the rapid turnover rate of MTs, which would be too fast for alpha-tubulin to be detyrosinated. The possible significance of the differential detyrosination and acetylation of microtubules during development is discussed. 相似文献
9.
Caldesmon is known to bind to smooth muscle myosin. Ca2+/calmodulin-dependent phosphorylation of caldesmon completely blocks its interaction with myosin. Cleavage of caldesmon at its 2 cysteine residues by 2-nitro-5-thiocyanobenzoic acid (NTCB) occurs initially at one site to yield 108-kDa and 21.2-kDa peptides and subsequently at the second site within the 108-kDa peptide to yield 85-kDa and 23.5-kDa fragments. The 23.5-kDa peptide retains the ability to bind to myosin. The N-terminal (95 kDa) and C-terminal (42 kDa) chymotryptic peptides of caldesmon were isolated and digested with NTCB: the C-terminal actin- and calmodulin-binding peptide was not cleaved, indicating that it does not contain either of the cysteine residues, whereas the 95-kDa N-terminal peptide was cleaved at two sites to yield 56-kDa, 23.5-kDa, and 21.2-kDa fragments. The arrangement of NTCB fragments in caldesmon is, therefore: 21.2 kDa/23.5 kDa/85 kDa from N to C terminus. Digestion of phosphorylated caldesmon with NTCB suggested a single phosphorylation site in the 21.2-kDa peptide and three sites in the 23.5-kDa peptide. These results lead to the development of a model whereby caldesmon may cross-link actin to myosin and such cross-linking is blocked by phosphorylation of caldesmon. This mechanism may explain the formation of reversible "latch bridges" which permit force maintenance at low levels of myosin phosphorylation in intact smooth muscles. 相似文献
10.
Distribution of acetylated alpha-tubulin in retina and in vitro-assembled microtubules 总被引:4,自引:0,他引:4
We have used the mouse monoclonal antibody 6-11 B-1, specific for acetylated alpha-tubulin, to determine the distribution of acetylated alpha-tubulin in in vitro-assembled microtubules and retinal tissue. Analysis by immunoblots revealed that microtubules assembled from bovine brain extracts contain both acetylated and nonacetylated alpha-tubulin. Immunofluorescence, using 6-11 B-1 and antitubulin B-5-1-2, a monoclonal antibody specific for alpha-tubulin, demonstrated the colocalization of both alpha-tubulin species in neurons of the retina and that acetylated microtubules are relatively abundant in neurons. However, analysis at higher resolution revealed that rod photoreceptors contain spatially distinct microtubule arrays which differ in content of acetylated alpha-tubulin and differ in stability. Acetylated microtubules which composed those of the rod outer segment and connecting cilium were resistant to depolymerization in nocodazole or colchicine. In contrast, the nonacetylated microtubules which composed those of the rod-inner segment were depolymerized in nocodazole or colchicine. Therefore, these acetylated microtubules are more resistant to depolymerization than non-acetylated microtubules. 相似文献
11.
12.
《Cell cycle (Georgetown, Tex.)》2013,12(23):4083-4089
Cell division in eukaryotes depends on a fine control of the dynamic changes of microtubules. Nucleolar and spindle-associated protein (NuSAP) is a microtubule-binding and -bundling protein essential for the integrity of the anaphase spindle and cell division. NuSAP contains two consensus cdk phosphorylation sites in its microtubule-binding domain. Here we show NuSAP is phosphorylated by cdk1 in early mitosis. This phosphorylation inhibits the binding of NuSAP to microtubules. During metaphase-to anaphase transition, NuSAP is dephosphorylated to promote spindle midzone formation and cell cycle progression. Expression of cdk1 phosphorylation-null mutant causes extensive bundling of microtubules in the prometaphase spindle. Our results suggest that phosphorylation and dephosphorylation of NuSAP during progression of mitosis regulate spindle organization through modulation of the dynamics of microtubules. 相似文献
13.
The dynamic instability of microtubules is not modulated by alpha-tubulin tyrosinylation. 总被引:1,自引:0,他引:1
The tyrosinylation of chick brain alpha-tubulin and the effects of the tyrosinylation status on the assembly and dynamic instability of chick brain MAP2:tubulin microtubule protein have been examined. Each of the eight major alpha-isotypes can be tyrosinylated in vitro, irrespective of whether a C-terminal tyrosine is genetically encoded. The extent of tyrosinylation is however limited to congruent to 0.3 mol.mol-1. The tyrosinylation status (0 vs. 0.3 mol.mol-1) has no effect on either the assembly kinetics of chick brain microtubule protein or on the rate of length redistribution following assembly and shearing. It is therefore unlikely that the tyrosinylation status directly affects the intrinsic stability of assembled microtubules since the rate of length redistribution is both a sensitive assay and a function of the kinetic parameters governing dynamic instability. 相似文献
14.
Postpolymerization detyrosination of alpha-tubulin: a mechanism for subcellular differentiation of microtubules 总被引:9,自引:15,他引:9
下载免费PDF全文

Tyrosinated (Tyr) and detyrosinated (Glu) alpha-tubulin, species interconverted by posttranslational modification, are largely segregated in separate populations of microtubules in interphase cultured cells. We sought to understand how distinct Tyr and Glu microtubules are generated in vivo, by examining time-dependent alterations in Tyr and Glu tubulin levels (by immunoblots probed with antibodies specific for each species) and distributions (by immunofluorescence) after microtubule regrowth and stabilization. When microtubules were allowed to regrow after complete depolymerization by microtubule antagonists, Glu microtubules reappeared with a delay of approximately 25 min after the complete array of Tyr microtubules had regrown. In these experiments, Tyr tubulin immunofluorescence first appeared as an aster of distinct microtubules, while Glu tubulin staining first appeared as a grainy pattern that was not altered by detergent extraction, suggesting that Glu microtubules were created by detyrosination of Tyr microtubules. Treatments with taxol, azide, or vinblastine, to stabilize polymeric tubulin, all resulted in time-dependent increases in polymeric Glu tubulin levels, further supporting the hypothesis of postpolymerization detyrosination. Analysis of monomer and polymer fractions during microtubule regrowth and in microtubule stabilization experiments were also consistent with postpolymerization detyrosination; in each case, Glu polymer levels increased in the absence of detectable Glu monomer. The low level of Glu monomer in untreated or nocodazole-treated cells (we estimate that Glu tubulin comprises less than 2% of the monomer pool) also suggested that Glu tubulin entering the monomer pool is efficiently retyrosinated. Taken together these results demonstrate that microtubules are polymerized from Tyr tubulin and are then rapidly converted to Glu microtubules. When Glu microtubules depolymerize, the resulting Glu monomer is retyrosinated. This cycle generates structurally, and perhaps functionally, distinct microtubules. 相似文献
15.
2-Methyl-2-[p-(1,2,3,4-tetrahydro-1-naphthyl)phenoxy]propionic acid (TPIA), an acetyl coenzyme A carboxylase inhibitor, blocks the aldosterone-induced increase in transepithelial sodium transport. To examine the requirement for ongoing fatty acid synthesis and/or elongation in the aldosterone-induced alteration of cellular protein metabolism in the toad's urinary bladder, the effect of TPIA has been examined in double-labeled amino acid incorporation experiments. TPIA itself has no effect on the pattern of protein labeling in either the "soluble" or a plasma membrane-enriched fraction. However, inhibition of fatty acid synthesis selectively inhibits the aldosterone-induced incorporation of membrane proteins without altering the labeling of soluble cell protein. These results indicate that ongoing fatty acid synthesis is required for the hormone-induced changes in plasma membrane protein metabolism. 相似文献
16.
Phosphorylation of tyrosine aminotransferase in vivo 总被引:2,自引:0,他引:2
17.
Summary A study on the distribution of radioactive zinc (65Zn) in flowers of Vicia faba L. and Nicotiana tabacum L. showed the highest activity, expressed as cpm/mg dry weight, in pollen Also, using a histochemical method, it was observed that a portion of the naturally occurring zinc present in pollen grains was transferred into their growing tubes during germination. Calculations in based on the specific activity in 65Zn-labelled pollen grains and in seeds from flowers pollinated with this pollen showed that about 68% of the radioisotope content of the pollen was incorporated into the seeds. The significance of these results and the possible role of zinc in fertilization is discussed. 相似文献
18.
Single site alpha-tubulin mutation affects astral microtubules and nuclear positioning during anaphase in Saccharomyces cerevisiae: possible role for palmitoylation of alpha-tubulin
下载免费PDF全文

We generated a strain of Saccharomyces cerevisiae in which the sole source of alpha-tubulin protein has a cys-to-ser mutation at cys-377, and then we examined microtubule morphology and nuclear positioning through the cell cycle. During G1 of the cell cycle, microtubules in the C377S alpha-tubulin (C377S tub1) mutant were indistinguishable from those in the control (TUB1) strain. However, mitotic C377S tub1 cells displayed astral microtubules that often appeared excessive in number, abnormally long, and/or misoriented compared with TUB1 cells. Although mitotic spindles were always correctly aligned along the mother-bud axis, translocation of spindles through the bud neck was affected. In late anaphase, spindles were often not laterally centered but instead appeared to rest along the sides of cells. When the doubling time was increased by growing cells at a lower temperature (15 degrees C), we often found abnormally long mitotic spindles. No increase in the number of anucleate or multinucleate C377S mutant cells was found at any temperature, suggesting that, despite the microtubule abnormalities, mitosis proceeded normally. Because cys-377 is a presumptive site of palmitoylation in alpha-tubulin in S. cerevisiae, we next compared in vivo palmitoylation of wild-type and C377S mutant forms of the protein. We detected palmitoylated alpha-tubulin in TUB1 cells, but the cys-377 mutation resulted in approximately a 60% decrease in the level of palmitoylated alpha-tubulin in C377S tub1 cells. Our results suggest that cys-377 of alpha-tubulin, and possibly palmitoylation of this amino acid, plays a role in a subset of astral microtubule functions during nuclear migration in M phase of the cell cycle. 相似文献
19.
Alteration of epidermal growth factor receptor activity by mutation of its primary carboxyl-terminal site of tyrosine self-phosphorylation 总被引:19,自引:0,他引:19
P J Bertics W S Chen L Hubler C S Lazar M G Rosenfeld G N Gill 《The Journal of biological chemistry》1988,263(8):3610-3617
The epidermal growth factor (EGF) receptor, which exhibits intrinsic protein tyrosine kinase activity, undergoes a rapid, intramolecular self-phosphorylation reaction following EGF activation. The primary sites of tyrosine self-phosphorylation in vivo are located in the extreme carboxyl-terminal region of the molecule, principally Tyr-1173. To test the biological and biochemical consequences of this EGF receptor self-phosphorylation, we made the mutation Tyr----Phe-1173. Membranes containing the mutated receptor exhibited an ED50 for EGF activation of tyrosine kinase activity equivalent to control receptor at both high and low substrate levels, but exhibited reduced basal and EGF-stimulated tyrosine kinase activity at low, non-saturating substrate levels. The Tyr----Phe-1173 mutant possessed high affinity EGF binding and could still self-phosphorylate other tyrosine sites in an intramolecular fashion with a low Km for ATP (200 nM), suggesting that this alteration did not grossly change receptor structure. When EGF-dependent growth of Chinese hamster ovary cells expressing comparable levels of control or mutant EGF receptor was measured, the ability of the mutant receptor to mediate cell growth in response to EGF was reduced by approximately 50%, yet both receptors exhibited a similar affinity and ED50 for EGF. These results support the concept that this self-phosphorylation site can act as a competitive/alternate substrate for the EGF receptor, and that this region of the molecule is important in modulating its maximal biological activity. 相似文献
20.
Bäckesjö CM Vargas L Superti-Furga G Smith CI 《Biochemical and biophysical research communications》2002,299(3):510-515
Bruton's tyrosine kinase (Btk) is necessary for B-lymphocyte development. Mutation in the gene coding for Btk causes X-linked agammaglobulinemia (XLA) in humans. Similar to Btk, c-Abl is a tyrosine kinase shuttling between the cytoplasm and the nucleus where it is involved in different functions depending on the localization. In this report we describe for the first time that c-Abl and Btk physically interact and that c-Abl can phosphorylate tyrosine 223 in the SH3 domain of Btk. Interestingly, the Btk sequence matched a v-Abl substrate [correction] identified from a randomized peptide library and was also highly related to a number of previously found c-Abl substrates. 相似文献