首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The M(3) muscarinic receptor is a prototypical member of the class A family of G protein-coupled receptors (GPCRs). To gain insight into the structural mechanisms governing agonist-mediated M(3) receptor activation, we recently developed a genetically modified yeast strain (Saccharomyces cerevisiae) which allows the efficient screening of large libraries of mutant M(3) receptors to identify mutant receptors with altered/novel functional properties. Class A GPCRs contain a highly conserved Asp residue located in transmembrane domain II (TM II; corresponding to Asp-113 in the rat M(3) muscarinic receptor) which is of fundamental importance for receptor activation. As observed previously with other GPCRs analyzed in mammalian expression systems, the D113N point mutation abolished agonist-induced receptor/G protein coupling in yeast. We then subjected the D113N mutant M(3) receptor to PCR-based random mutagenesis followed by a yeast genetic screen to recover point mutations that can restore G protein coupling to the D113N mutant receptor. A large scale screening effort led to the identification of three such second-site suppressor mutations, R165W, R165M, and Y250D. When expressed in the wild-type receptor background, these three point mutations did not lead to an increase in basal activity and reduced the efficiency of receptor/G protein coupling. Similar results were obtained when the various mutant receptors were expressed and analyzed in transfected mammalian cells (COS-7 cells). Interestingly, like Asp-113, Arg-165 and Tyr-250, which are located at the cytoplasmic ends of TM III and TM V, respectively, are also highly conserved among class A GPCRs. Our data suggest a conformational link between the highly conserved Asp-113, Arg-165, and Tyr-250 residues which is critical for receptor activation.  相似文献   

2.
G protein-coupled receptors (GPCRs) are key players in cell communication. Several classes of such receptors have been identified. Although all GPCRs possess a heptahelical domain directly activating G proteins, important structural and sequence differences within receptors from different classes suggested distinct activation mechanisms. Here we show that highly conserved charged residues likely involved in an interaction network between transmembrane domains (TM) 3 and 6 at the cytoplasmic side of class C GPCRs are critical for activation of the gamma-aminobutyric acid type B receptor. Indeed, the loss of function resulting from the mutation of the conserved lysine residue into aspartate or glutamate in the TM3 of gamma-aminobutyric acid type B(2) can be partly rescued by mutating the conserved acidic residue of TM6 into either lysine or arginine. In addition, mutation of the conserved lysine into an acidic residue leads to a nonfunctional receptor that displays a high agonist affinity. This is reminiscent of a similar ionic network that constitutes a lock stabilizing the inactive state of many class A rhodopsin-like GPCRs. These data reveal that despite their original structure, class C GPCRs share with class A receptors at least some common structural feature controlling G protein activation.  相似文献   

3.
During the past few years several new interacting partners for G protein-coupled receptors (GPCRs) have been discovered, suggesting that the activity of these receptors is more complex than previously anticipated. Recently, candidate G protein-coupled receptor associated sorting protein (GASP-1) has been identified as a novel interacting partner for the delta opioid receptor and has been proposed to determine the degradative fate of this receptor. We show here that GASP-1 associates in vitro with other opioid receptors and that the interaction domain in these receptors is restricted to a small portion of the carboxyl-terminal tail, corresponding to helix 8 in the three-dimensional structure of rhodopsin. In addition, we show that GASP-1 interacts with COOH-terminus of several other GPCRs from subfamilies A and B and that two conserved residues within the putative helix 8 of these receptors are critical for the interaction with GASP-1. In situ hybridization and northern blot analysis indicate that GASP-1 mRNA is mainly distributed throughout the central nervous system, consistent with a potential interaction with numerous GPCRs in vivo. Finally, we show that GASP-1 is a member of a novel family comprising at least 10 members, whose genes are clustered on chromosome X. Another member of the family, GASP-2, also interacts with the carboxyl-terminal tail of several GPCRs. Therefore, GASP proteins may represent an important protein family regulating GPCR physiology.  相似文献   

4.
Family 3 G-protein-coupled receptors (GPCRs), which includes metabotropic glutamate receptors (mGluRs), sweet and "umami" taste receptors (T1Rs), and the extracellular calcium-sensing receptor (CaR), represent a distinct group among the superfamily of GPCRs characterized by large amino-terminal extracellular ligand-binding domains (ECD) with homology to bacterial periplasmic amino acid-binding proteins that are responsible for signal detection and receptor activation through as yet unresolved mechanism(s) via the seven-transmembrane helical domain (7TMD) common to all GPCRs. To address the mechanism(s) by which ligand-induced conformational changes are conveyed from the ECD to the 7TMD for G-protein activation, we altered the length and composition of a 14-amino acid linker segment common to all family 3 GPCRs except GABA(B) receptor, in the CaR by insertion, deletion, and site-directed mutagenesis of specific highly conserved residues. Small alterations in the length and composition of the linker impaired cell surface expression and abrogated signaling of the chimeric receptors. The exchange of nine amino acids within the linker of CaR with the homologous sequence of mGluR1, however, preserved receptor function. Ala substitution for the four highly conserved residues within this amino acid sequence identified a Leu at position 606 of the CaR critical for cell surface expression and signaling. Substitution of Leu(606) for Ala resulted in impaired cell surface expression. However, Ile and Val substitutions displayed strong activating phenotypes. Disruption of the linker by insertion of nine amino acids of a random-coiled structure uncoupled the ECD from regulating the 7TMD. These data are consistent with a model of receptor activation in which the peptide linker, and particularly Leu(606), provides a critical interaction for the CaR signal transmission, a finding likely to be relevant for all family 3 GPCRs containing this conserved motif.  相似文献   

5.
The minimal size of the fourth intracellular domain of heptahelical G-protein coupling receptors (GPCRs) is close to 15 residues, and a juxtamembrane 15-residue segment is predicted as helical (Helix-8) in most of the receptors. Sequences of opsins, non-visual opsin-like (family A) GPCRs and Taste-2 receptors correspond with bovine rhodopsin at four positions in this tract. This is especially evident in monoamine receptors. In most GPCRs, the conserved juxtamembrane segment also has a large fraction of basic sidechains, and a considerable excess of cationic over anionic residues. The conservation is not dependent on the preferred G-protein α subunit or the overall length of the domain, indicating an additive speciation. In rod opsins and some A-GPCRs this segment has been shown to associate with the bilayer and to interact with G-proteins. The segment could also be involved in precoupling of receptors and transducers. These interactions could be helped by both the structural propensities and the high content of cationic sidechains.  相似文献   

6.
The crystal structure of the human A(2A) adenosine receptor, a member of the G protein-coupled receptor (GPCR) family, is used as a starting point for the structural characterization of the conformational equilibrium around the inactive conformation of the human A(2) (A(2A) and A(2B)) adenosine receptors (ARs). A homology model of the closely related A(2B)AR is reported, and the two receptors were simulated in their apo form through all-atom molecular dynamics (MD) simulations. Different conditions were additionally explored in the A(2A)AR, including the protonation state of crucial histidines or the presence of the cocrystallized ligand. Our simulations reveal the role of several conserved residues in the ARs in the conformational equilibrium of the receptors. The "ionic lock" absent in the crystal structure of the inactive A(2A)AR is rapidly formed in the two simulated receptors, and a complex network of interacting residues is presented that further stabilizes this structural element. Notably, the observed rotameric transition of Trp6.48 ("toggle switch"), which is thought to initiate the activation process in GPCRs, is accompanied by a concerted rotation of the conserved residue of the A(2)ARs, His6.52. This new conformation is further stabilized in the two receptors under study by a novel interaction network involving residues in transmembrane (TM) helices TM5 (Asn5.42) and TM3 (Gln3.37), which resemble the conformational changes recently observed in the agonist-bound structure of β-adrenoreceptors. Finally, the interaction between Glu1.39 and His7.43, a pair of conserved residues in the family of ARs, is found to be weaker than previously thought, and the role of this interaction in the structure and dynamics of the receptor is thoroughly examined. All these findings suggest that, despite the commonalities with other GPCRs, the conformational equilibrium of ARs is also modulated by specific residues of the family.  相似文献   

7.
Several tryptophan (Trp) residues are conserved in G protein-coupled receptors (GPCRs). Relatively little is known about the contribution of these residues and especially of those in the fourth transmembrane domain in the function of the CB(2) cannabinoid receptor. Replacing W158 (very highly conserved in GPCRs) and W172 (conserved in CB(1) and CB(2) cannabinoid receptors but not in many other GPCRs) of the human CB(2) receptor with A or L or with F or Y produced different results. We found that the conservative change of W172 to F or Y retained cannabinoid binding and downstream signaling (inhibition of adenylyl cyclase), whereas removal of the aromatic side chain by mutating W172 to A or L eliminated agonist binding. W158 was even more sensitive to being mutated. We found that the conservative W158F mutation retained wild-type binding and signaling activities. However, W158Y and W158A mutants completely lost ligand binding capacity. Thus, the Trp side chains at positions 158 and 172 seem to have a critical, but different, role in cannabinoid binding to the human CB(2) receptor.  相似文献   

8.
beta-Arrestins have been shown to inhibit competitively G protein-dependent signaling and to mediate endocytosis for many of the hundreds of nonvisual rhodopsin family G protein-coupled receptors (GPCR). An open question of fundamental importance concerning the regulation of signal transduction of several hundred rhodopsin-like GPCRs is how these receptors of limited sequence homology, when considered in toto, can all recruit and activate the two highly conserved beta-arrestin proteins as part of their signaling/desensitization process. Although the serine and threonine residues that form GPCR kinase phosphorylation sites are common beta-arrestin-associated receptor determinants regulating receptor desensitization and internalization, the agonist-activated conformation of a GPCR probably reveals the most fundamental determinant mediating the GPCR and arrestin interaction. Here we identified a beta-arrestin binding determinant common to the rhodopsin family GPCRs formed from the proximal 10 residues of the second intracellular loop. We demonstrated by both gain and loss of function studies for the serotonin 2C, beta2-adrenergic, alpha2a)adrenergic, and neuropeptide Y type 2 receptors that the highly conserved amino acids, proline and alanine, naturally occurring in rhodopsin family receptors six residues distal to the highly conserved second loop DRY motif regulate beta-arrestin binding and beta-arrestin-mediated internalization. In particular, as demonstrated for the beta2 AR, this occurs independently of changes in GPCR kinase phosphorylation. These results suggest that a GPCR conformation directed by the second intracellular loop, likely using the loop itself as a binding patch, may function as a switch for transitioning beta-arrestin from its inactive form to its active receptor-binding state.  相似文献   

9.
In G protein-coupled receptors (GPCRs), the interaction between the cytosolic ends of transmembrane helix 3 (TM3) and TM6 was shown to play an important role in the transition from inactive to active states. According to the currently prevailing model, constructed for rhodopsin and structurally related receptors, the arginine of the conserved "DRY" motif located at the cytosolic end of TM3 (R3.50) would interact with acidic residues in TM3 (D/E3.49) and TM6 (D/E6.30) at the resting state and shift out of this polar pocket upon agonist stimulation. However, 30% of GPCRs, including all chemokine receptors, contain a positively charged residue at position 6.30 which does not support an interaction with R3.50. We have investigated the role of R6.30 in this receptor family by using CCR5 as a model. R6.30D and R6.30E substitutions, which allow an ionic interaction with R3.50, resulted in an almost silent receptor devoid of constitutive activity and strongly impaired in its ability to bind chemokines but still able to internalize. R6.30A and R6.30Q substitutions, allowing weaker interactions with R3.50, preserved chemokine binding but reduced the constitutive activity and the functional response to chemokines. These results indicate that the constitutive and ligand-promoted activity of CCR5 can be modified by modulating the interaction between the DRY motif in TM3 and residues in TM6 suggesting that the overall structure and activation mechanism are well conserved in GPCRs. However, the molecular interactions locking the inactive state must be different in receptors devoid of D/E6.30.  相似文献   

10.
Activation of G protein-coupled receptors (GPCRs) originates in ligand-induced protein conformational changes that are transmitted to the cytosolic receptor surface. In the photoreceptor rhodopsin, and possibly other rhodopsin-like GPCRs, protonation of a carboxylic acid in the conserved E(D)RY motif at the cytosolic end of transmembrane helix 3 (TM3) is coupled to receptor activation. Here, we have investigated the structure of synthetic peptides derived from rhodopsin TM3. Polarized FTIR spectroscopy reveals a helical structure of a 31-mer TM3 peptide reconstituted into PC vesicles with a large tilt of 40-50 degrees of the helical axis relative to the membrane normal. Helical structure is also observed for the TM3 peptide in detergent micelles and depends on pH, especially in the C-terminal sequence. In addition, the fluorescence emission of the single tyrosine of the D(E)RY motif in the TM3 peptide exhibits a pronounced pH sensitivity that is abolished when Glu is replaced by Gln, demonstrating that protonation of the conserved Glu side chain affects the structure in the environment of the D(E)RY motif of TM3. The pH regulation of the C-terminal TM3 structure may be an intrinsic feature of the E(D)RY motif in other class I receptors, allowing the coupling of protonation and conformation of membrane-exposed residues in full-length GPCRs.  相似文献   

11.
Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain a large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.  相似文献   

12.
The Adhesion G-protein-coupled receptors (GPCRs) are the most complex gene family among GPCRs with large genomic size, multiple introns, and a fascinating flora of functional domains, though the evolutionary origin of this family has been obscure. Here we studied the evolution of all class B (7tm2)-related genes, including the Adhesion, Secretin, and Methuselah families of GPCRs with a focus on nine genomes. We found that the cnidarian genome of Nematostella vectensis has a remarkably rich set of Adhesion GPCRs with a broad repertoire of N-terminal domains although this genome did not have any Secretin GPCRs. Moreover, the single-celled and colony-forming eukaryotes Monosiga brevicollis and Dictyostelium discoideum contain Adhesion-like GPCRs although these genomes do not have any Secretin GPCRs suggesting that the Adhesion types of GPCRs are the most ancient among class B GPCRs. Phylogenetic analysis found Adhesion group V (that contains GPR133 and GPR144) to be the closest relative to the Secretin family in the Adhesion family. Moreover, Adhesion group V sequences in N. vectensis share the same splice site setup as the Secretin GPCRs. Additionally, one of the most conserved motifs in the entire Secretin family is only found in group V of the Adhesion family. We suggest therefore that the Secretin family of GPCRs could have descended from group V Adhesion GPCRs. We found a set of unique Adhesion-like GPCRs in N. vectensis that have long N-termini containing one Somatomedin B domain each, which is a domain configuration similar to that of a set of Adhesion-like GPCRs found in Branchiostoma floridae. These sequences show slight similarities to Methuselah sequences found in insects. The extended class B GPCRs have a very complex evolutionary history with several species-specific expansions, and we identified at least 31 unique N-terminal domains originating from other protein classes. The overall N-terminal domain structure, however, concurs with the phylogenetic analysis of the transmembrane domains, thus enabling us to track the origin of most of the subgroups.  相似文献   

13.
Signaling via heterotrimeric G-proteins is evoked by agonist-mediated stimulation of seven transmembrane spanning receptors (GPCRs). During the last decade it has become apparent that Gα subunits can be activated by receptor-independent mechanisms. Ric-8 belongs to a highly conserved protein family that regulates heterotrimeric G-protein function, acting as a non-canonical guanine nucleotide exchange factors (GEF) over a subset of Gα subunits. In this review we discuss the roles of Ric-8 in the regulation of diverse cell functions, emphasizing the contribution of its multiple domain protein structure in these diverse functions.  相似文献   

14.
G protein-coupled receptors (GPCRs) constitute a large and functionally diverse family of transmembrane proteins. They are fundamental in the transfer of extracellular stimuli to intracellular signaling pathways and are among the most targeted proteins in drug discovery. The detailed molecular mechanism for agonist-induced activation of rhodopsin-like GPCRs has not yet been described. Using a combination of site-directed mutagenesis and molecular modeling, we characterized important steps in the activation of the human histamine H1 receptor. Both Ser3.36 and Asn7.45 are important links between histamine binding and previously proposed conformational changes in helices 6 and 7. Ser3.36 acts as a rotamer toggle switch that, upon agonist binding, initiates the activation of the receptor through Asn7.45. The proposed transduction involves specific residues that are conserved among rhodopsin-like GPCRs.  相似文献   

15.
Although the G protein-coupled receptors (GPCRs) share a similar seven-transmembrane domain structure, only a limited number of amino acid residues is conserved in their protein sequences. One of the most highly conserved sequences is the NPXXY motif located at the cytosolic end of the transmembrane region-7 of many GPCRs, particularly of those belonging to the family of the rhodopsin/beta-adrenergic-like receptors. Exchange of Tyr(305) in the corresponding NPLVY sequence of the bradykinin B(2) receptor (B(2)R) for Ala resulted in a mutant, termed Y305A, that internalized [(3)H]bradykinin (BK) almost as rapidly as the wild-type (wt) B(2)R. However, receptor sequestration of the mutant after stimulation with BK was clearly reduced relative to the wt B(2)R. Confocal fluorescence microscopy revealed that, in contrast to the B(2)R-enhanced green fluorescent protein chimera, the Y305A-enhanced green fluorescent protein chimera was predominantly located intracellularly even in the absence of BK. Two-dimensional phosphopeptide analysis showed that the mutant Y305A constitutively exhibited a phosphorylation pattern similar to that of the BK-stimulated wt B(2)R. Ligand-independent Y305A internalization was demonstrated by the uptake of rhodamine-labeled antibodies directed to a tag sequence at the N terminus of the mutant receptor. Co-immunoprecipitation revealed that Y305A is precoupled to G(q/11) without activating the G protein because the basal accumulation rate of inositol phosphate was unchanged as compared with wt B(2)R. We conclude, therefore, that the Y305A mutation of B(2)R induces a receptor conformation which is prone to ligand-independent phosphorylation and internalization. The mutated receptor binds to, but does not activate, its cognate heterotrimeric G protein G(q/11), thereby limiting the extent of ligand-independent receptor internalization.  相似文献   

16.
G protein-coupled receptor kinases (GRKs) are key regulators of signal transduction that specifically phosphorylate activated G protein-coupled receptors (GPCRs) to terminate signaling. Biochemical and crystallographic studies have provided great insight into mammalian GRK2/3 interactions and structure. However, despite extensive in vitro characterization, little is known about the in vivo contribution of these described GRK structural domains and interactions to proper GRK function in signal regulation. We took advantage of the disrupted chemosensory behavior characteristic of Caenorhabditis elegans grk-2 mutants to discern the interactions required for proper in vivo Ce-GRK-2 function. Informed by mammalian crystallographic and biochemical data, we introduced amino acid substitutions into the Ce-grk-2 coding sequence that are predicted to selectively disrupt GPCR phosphorylation, Gα(q/11) binding, Gβγ binding, or phospholipid binding. Changing the most amino-terminal residues, which have been shown in mammalian systems to be required specifically for GPCR phosphorylation but not phosphorylation of alternative substrates or recruitment to activated GPCRs, eliminated the ability of Ce-GRK-2 to restore chemosensory signaling. Disrupting interaction between the predicted Ce-GRK-2 amino-terminal α-helix and kinase domain, posited to stabilize GRKs in their active ATP- and GPCR-bound conformation, also eliminated Ce-GRK-2 chemosensory function. Finally, although changing residues within the RH domain, predicted to disrupt interaction with Gα(q/11), did not affect Ce-GRK-2 chemosensory function, disruption of the predicted PH domain-mediated interactions with Gβγ and phospholipids revealed that both contribute to Ce-GRK-2 function in vivo. Combined, we have demonstrated functional roles for broadly conserved GRK2/3 structural domains in the in vivo regulation of organismal behavior.  相似文献   

17.
An approach to discover sequence patterns characteristic of ligand classes is described and applied to aminergic G protein-coupled receptors (GPCRs). Putative ligand-binding residue positions were inferred from considering three lines of evidence: conservation in the subfamily absent or underrepresented in the superfamily, any available mutation data, and the physicochemical properties of the ligand. For aminergic GPCRs, the motif is composed of a conserved aspartic acid in the third transmembrane (TM) domain (rhodopsin position 117) and a conserved tryptophan in the seventh TM domain (rhodopsin position 293); the roles of each are readily justified by molecular modeling of ligand-receptor interactions. This minimally defined motif is an appropriate computational tool for identifying additional, potentially novel aminergic GPCRs from a set of experimentally uncharacterized "orphan" GPCRs, complementing existing sequence matching, clustering, and machine-learning techniques. Motif sensitivity stems from the stepwise addition of residues characteristic of an entire class of ligand (and not tailored for any particular biogenic amine). This sensitivity is balanced by careful consideration of residues (evidence drawn from mutation data, correlation of ligand properties to residue properties, and location with respect to the extracellular face), thereby maintaining specificity for the aminergic class. A number of orphan GPCRs assigned to the aminergic class by this motif were later discovered to be a novel subfamily of trace amine GPCRs, as well as the successful classification of the histamine H4 receptor.  相似文献   

18.
G protein-coupled receptors (GPCRs) are part of multi-protein networks called ‘receptosomes’. These GPCR interacting proteins (GIPs) in the receptosomes control the targeting, trafficking and signaling of GPCRs. PDZ domain proteins constitute the largest protein family among the GIPs, and the predominant function of the PDZ domain proteins is to assemble signaling pathway components into close proximity by recognition of the last four C-terminal amino acids of GPCRs. We present here a machine learning based approach for the identification of GPCR-binding PDZ domain proteins. In order to characterize the network of interactions between amino acid residues that contribute to the stability of the PDZ domain-ligand complex and to encode the complex into a feature vector, amino acid contact matrices and physicochemical distance matrix were constructed and adopted. This novel machine learning based method displayed high performance for the identification of PDZ domain-ligand interactions and allowed the identification of novel GPCR-PDZ domain protein interactions.  相似文献   

19.
Recent studies suggest that the second extracellular loop (o2 loop) of bovine rhodopsin and other class I G protein-coupled receptors (GPCRs) targeted by biogenic amine ligands folds deeply into the transmembrane receptor core where the binding of cis-retinal and biogenic amine ligands is known to occur. In the past, the potential role of the o2 loop in agonist-dependent activation of biogenic amine GPCRs has not been studied systematically. To address this issue, we used the M(3) muscarinic acetylcholine receptor (M3R), a prototypic class I GPCR, as a model system. Specifically, we subjected the o2 loop of the M3R to random mutagenesis and subsequently applied a novel yeast genetic screen to identity single amino acid substitutions that interfered with M3R function. This screen led to the recovery of about 20 mutant M3Rs containing single amino acid changes in the o2 loop that were inactive in yeast. In contrast, application of the same strategy to the extracellular N-terminal domain of the M3R did not yield any single point mutations that disrupted M3R function. Pharmacological characterization of many of the recovered mutant M3Rs in mammalian cells, complemented by site-directed mutagenesis studies, indicated that the presence of several o2 loop residues is important for efficient agonist-induced M3R activation. Besides the highly conserved Cys(220) residue, Gln(207), Gly(211), Arg(213), Gly(218), Ile(222), Phe(224), Leu(225), and Pro(228) were found to be of particular functional importance. In general, mutational modification of these residues had little effect on agonist binding affinities. Our findings are therefore consistent with a model in which multiple o2 loop residues are involved in stabilizing the active state of the M3R. Given the high degree of structural homology found among all biogenic amine GPCRs, our findings should be of considerable general relevance.  相似文献   

20.
G-protein-coupled receptors (GPCRs) are involved in a vast variety of cellular signal transduction processes from visual, taste and odor perceptions to sensing the levels of many hormones and neurotransmitters. As a result of agonist-induced conformation changes, GPCRs become activated and catalyze nucleotide exchange within the G proteins, thus detecting and amplifying the signal. GPCRs share a common heptahelical transmembrane structure as well as many conserved key residues and regions. Rhodopsins are prototypical GPCRs that detect photons in retinal photoreceptor cells and trigger a phototransduction cascade that culminates in neuronal signaling. Biophysical and biochemical studies of rhodopsin activation, and the recent crystal structure determination of bovine rhodopsin, have provided new information that enables a more complete mechanism of vertebrate rhodopsin activation to be proposed. In many aspects, rhodopsin might provide a structural and functional template for other members of the GPCR family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号