首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Thermostability is an important property of industrially significant hydrolytic enzymes: understanding the structural basis for this attribute will underpin the future biotechnological exploitation of these biocatalysts. The Cellvibrio family 10 (GH10) xylanases display considerable sequence identity but exhibit significant differences in thermostability; thus, these enzymes represent excellent models to examine the structural basis for the variation in stability displayed by these glycoside hydrolases. Here, we have subjected the intracellular Cellvibrio mixtus xylanase CmXyn10B to forced protein evolution. Error-prone PCR and selection identified a double mutant, A334V/G348D, which confers an increase in thermostability. The mutant has a Tm 8 degrees C higher than the wild-type enzyme and, at 55 degrees C, the first-order rate constant for thermal inactivation of A334V/G348D is 4.1 x 10(-4) min(-1), compared to a value of 1.6 x 10(-1) min(-1) for the wild-type enzyme. The introduction of the N to C-terminal disulphide bridge into A334V/G348D, which increases the thermostability of wild-type CmXyn10B, conferred a further approximately 2 degrees C increase in the Tm of the double mutant. The crystal structure of A334V/G348D showed that the introduction of Val334 fills a cavity within the hydrophobic core of the xylanase, increasing the number of van der Waals interactions with the surrounding aromatic residues, while O(delta1) of Asp348 makes an additional hydrogen bond with the amide of Gly344 and O(delta2) interacts with the arabinofuranose side-chain of the xylose moiety at the -2 subsite. To investigate the importance of xylan decorations in productive substrate binding, the activity of wild-type CmXyn10B, the mutant A334V/G348D, and several other GH10 xylanases against xylotriose and xylotriose containing an arabinofuranose side-chain (AX3) was assessed. The enzymes were more active against AX3 than xylotriose, providing evidence that the arabinose side-chain makes a generic contribution to substrate recognition by GH10 xylanases.  相似文献   

2.
Two classes of molecules inhibit the catalytic subunit (C) of the cyclic AMP-dependent protein kinase (cAPK), the heat-stable protein kinase inhibitors (PKIs) and the regulatory (R) subunits. Basic sites on C, previously identified as important for R/C interaction in yeast TPKI and corresponding to Lys213, Lys217, and Lys189 in murine Cα, were replaced with either Ala or Thr and characterized for their kinetic properties and ability to interact with RI and PKI. rC(K213A) and rC(K217A) were both defective in forming holoenzyme with RI but were inhibited readily with PKI. This contrasts with rC(R133A), which is defective in binding PKI but not RI (Wen & Taylor, 1994). Thus, the C-subunit employs two distinct electrostatic surfaces to achieve high-affinity binding with these two types of inhibitory molecules even though all inhibitors share a common consensus site that occupies the active site cleft. Unlike TPK1, mutation of Lys189 had no effect. The mutant C subunits that were defective in binding RI, rC(K213A) and rC(K217A), were then paired with three RI mutants, rRI(D140A), rRI(E143A), and rRI(D258A), shown previously to be defective in recognition of C. Although the mutations at Asp140 and Asp258 in RI were additive with respect to the C mutations, rC(K213A) and rRI(E143A) were compensatory, thus identifying a specific electrostatic interaction site between RI and C. The results are discussed in terms of the RI and C crystal structures and the sequence homology between the yeast and mammalian enzymes.  相似文献   

3.
Thermal denaturation studies as a function of pH were carried out on wild-type iso-1-cytochrome c and three variants of this protein at the solvent-exposed position 73 of the sequence. By examining the enthalpy and Tm at various pH values, the heat capacity increment (delta Cp), which is dominated by the degree of change in nonpolar hydration upon protein unfolding, was found for the wild type where lysine 73 is normally present and for three variants. For the Trp 73 variant, the delta Cp value (1.15 +/- 0.17 kcal/mol K) decreased slightly relative to wild-type iso-1-cytochrome c (1.40 +/- 0.06 kcal/mol K), while for the Ile 73 (1.65 +/- 0.07 kcal/mol K) and the Val 73 (1.50 +/- 0.06 kcal/mol K) variants, delta Cp increased slightly. In previous studies, the Trp 73, Ile 73, and Val 73 variants have been shown to have decreased m-values in guanidine hydrochloride denaturations relative to the wild-type protein (Hermann L, Bowler BE, Dong A, Caughey WS. 1995. The effects of hydrophilic to hydrophobic surface mutations on the denatured state of iso-1-cytochrome c: Investigation of aliphatic residues. Biochemistry 34:3040-3047). Both the m-value and delta Cp are related to the change in solvent exposure upon unfolding and other investigators have shown a correlation exists between these two parameters. However, for this subset of variants of iso-1-cytochrome c, a lack of correlation exists which implies that there may be basic differences between the guanidine hydrochloride and thermal denaturations of this protein. Spectroscopic data are consistent with different denatured states for thermal and guanidine hydrochloride unfolding. The different response of m-values and delta Cp for these variants will be discussed in this context.  相似文献   

4.
Aspartate transcarbamylase (EC 2.1.3.2) from E. coli is a multimeric enzyme consisting of two catalytic subunits and three regulatory subunits whose activity is regulated by subunit interactions. Differential scanning calorimetric (DSC) scans of the wild-type enzyme consist of two peaks, each comprised of at least two components, corresponding to denaturation of the catalytic and regulatory subunits within the intact holoenzyme (Vickers et al., J. Biol. Chem. 253 (1978) 8493; Edge et al., Biochemistry 27 (1988) 8081). We have examined the effects of nine single-site mutations in the catalytic chains. Three of the mutations (Asp-100-Gly, Glu-86-Gln, and Arg-269-Gly) are at sites at the C1: C2 interface between c chains within the catalytic subunit. These mutations disrupt salt linkages present in both the T and R states of the molecule (Honzatko et al., J. Mol. Biol. 160 (1982) 219; Krause et al., J. Mol. Biol. 193 (1987) 527). The remainder (Lys-164-Ile, Tyr-165-Phe, Glu-239-Gln, Glu-239-Ala, Tyr-240-Phe and Asp-271-Ser) are at the C1: C4 interface between catalytic subunits and are involved in interactions which stabilize either the T or R state. DSC scans of all of the mutants except Asp-100-Gly and Arg-269-Gly consisted of two peaks. At intermediate concentrations, Asp-100-Gly and Arg-269-Gly had only a single peak near the Tm of the regulatory subunit transition in the holoenzyme, although their denaturational profiles were more complex at high and low protein concentrations. The catalytic subunits of Glu-86-Gln, Lys-164-Ile and Asp-271-Ser appear to be significantly destabilized relative to wild-type protein while Tyr-165-Phe and Tyr-240-Phe appear to be stabilized. Values of delta delta G degree cr, the difference between the subunit interaction energy of wild-type and mutant proteins, evaluated as suggested by Brandts et al. (Biochemistry 28 (1989) 8588) range from -3.7 kcal mol-1 for Glu-86-Gln to 2.4 kcal mol-1 for Tyr-165-Phe.  相似文献   

5.
cAMP effector mechanisms. Novel twists for an 'old' signaling system   总被引:6,自引:0,他引:6  
Cyclic AMP (cAMP) has traditionally been thought to act exclusively through cAMP-dependent protein kinase (cAPK, PKA), but a growing number of cAMP effects are not attributable to general activation of cAPK. At present, cAMP is known also to directly regulate ion channels and the ubiquitous Rap guanine exchange factors Epac 1 and 2. Adding to the sophistication of cAMP signaling is the fact that (1) the cAPK holoenzyme is incompletely dissociated even at saturating cAMP, the level of free R subunit of cAPK being able to regulate the maximal activity of cAPK, (2) cAPK activity can be modulated by oxidative glutathionylation, and (3) cAPK is anchored close to relevant substrates, other signaling enzymes, and local compartments of cAMP. Finally, we will demonstrate an example of fine-tuning of cAMP signaling through synergistic induction of neurite extensions by cAPK and Epac.  相似文献   

6.
Glutamine synthetase (GS), Mr 622,000, from Escherichia coli contains 12 active sites formed at heterologous interfaces between subunits [Almassy, R. J., Janson, C. A., Hamlin, R., Xuong, N.-H., & Eisenberg, D. (1986) Nature (London) 323, 304-309]. Temperature-induced changes in UV spectra from 3 to 68 degrees C were reversible with the Mn2+- or Mg2+-enzyme at pH 7.0 (50 degrees C) in 100 mM KCl. No dissociation or aggregation of dodecamer occurred at high temperatures. The thermal transition involves the exposure of approximately 0.7 of the 2 Trp residues/subunit (by UV difference spectroscopy) and 2 of the 17 Tyr residues/subunit (change in exposure from 4.7 to 6.7 Tyr/subunit by second-derivative spectral analysis). Monitoring changes in Trp and Tyr exposure independently gives data that conform to a two-state model for partial unfolding with Tm values (where delta G unfolding = 0) differing by 2-3 degrees C at each level of [Mn2+] studied and with average delta HvH values of 80 and 94 kcal/mol, respectively. These observations suggest that two regions of the oligomeric structure unfold separately as independent transitions (random model). However, the data can be fit equally with a sequential model in which the Trp transition occurs first upon heating. By fitting with either model, Tm values increase from approximately 47 to approximately 54 degrees C with increasing free [Mn2+] from 3.6 to 49 microM but decrease from approximately 54 to approximately 43 degrees C by further increasing free [Mn2+] from 0.05 to 10 mM; such behavior indicates that the high-temperature form of the enzyme binds Mn2+ more weakly but has more binding sites than the native enzyme. The high-temperature Mn-enzyme form is somewhat less unfolded than is the catalytically inactive apoenzyme, which undergoes no further Trp or Tyr exposure on heating and therefore is assumed to be the high-temperature form of divalent cation-free GS. Adding substrates [ADP, L-Met-(SR)-sulfoximine, Gln, Gln + NH2OH, or Gln + ADP] to Mn.GS increased Tm to varying extents by preferential binding to the folded form. Indeed, the transition-state analogue complex GS.(Mn2.ADP.L-Met-(S)-sulfoximine phosphate)12 was stable in the folded form to at least 72 degrees C. Moreover, an Arrhenius plot for gamma-glutamyl transfer activity was linear from 4 to 72 degrees C with Ea = 18.3 kcal/mol.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Two fragments of pancreatic ribonuclease A, a truncated version of S-peptide (residues 1-15) and S-protein (residues 21-124), combine to give a catalytically active complex designated ribonuclease S. We have substituted the wild-type residue Met-13 with six other hydrophobic residues ranging in size from alanine to phenylalanine and have determined the thermodynamic parameters associated with binding of these analogues to S-protein by titration calorimetry in the temperature range 5-25 degrees C. The heat capacity change (delta Cp) associated with binding was obtained from a global analysis of the temperature dependences of the free energies and enthalpies of binding. The delta Cp's were not correlated in any simple fashion with the nonpolar surface area (delta Anp) buried upon binding.  相似文献   

8.
cAMP-dependent protein kinase (cAPK) contains a regulatory (R) subunit dimer bound to two catalytic (C) subunits. Each R monomer contains two cAMP-binding domains, designated A and B. The sequential binding of two cAMPs releases active C. We describe here the properties of RIIbeta and two mutant RIIbeta subunits, engineered by converting a conserved Arg to Lys in each cAMP-binding domain thereby yielding a protein that contains one intact, high affinity cAMP-binding site and one defective site. Structure and function were characterized by circular dichroism, steady-state fluorescence, surface plasmon resonance and holoenzyme activation assays. The Ka for RIIbeta is 610 nM, which is 10-fold greater than its Kd(cAMP) and significantly higher than for RIalpha and RIIalpha. The Arg mutant proteins demonstrate that the conserved Arg is important for both cAMP binding and organization of each domain and that binding to domain A is required for activation. The Ka of the A domain mutant protein is 21-fold greater than that of wild-type and the Kd(cAMP) is increased 7-fold, confirming that cAMP must bind to the mutated site to initiate activation. The domain B mutant Ka is 2-fold less than its Kd(cAMP), demonstrating that, unlike RIalpha, cAMP can access the A site even when the B site is empty. Removal of the B domain yields a Ka identical to the Kd(cAMP) of full-length RIIbeta, indicating that the B domain inhibits holoenzyme activation for RIIbeta. In RIalpha, removal of the B domain generates a protein that is more difficult to activate than the wild-type protein.  相似文献   

9.
Hashimoto K  Shimizu K  Nakashima N  Sugino A 《Biochemistry》2003,42(48):14207-14213
DNA polymerases delta and epsilon (pol delta and epsilon) are the two major replicative polymerases in the budding yeast Saccharomyces cerevisiae. The fidelity of pol delta is influenced by its 3'-5' proofreading exonuclease activity, which corrects misinsertion errors, and by enzyme cofactors. PCNA is a pol delta cofactor, called the sliding clamp, which increases the processivity of pol delta holoenzyme. This study measures the fidelity of 3'-5' exonuclease-proficient and -deficient pol delta holoenzyme using a synthetic 30mer primer/100mer template in the presence and absence of PCNA. Although PCNA increases pol delta processivity, the presence of PCNA decreased pol delta fidelity 2-7-fold. In particular, wild-type pol delta demonstrated the following nucleotide substitution efficiencies for mismatches in the absence of PCNA: G.G, 0.728 x 10(-4); T.G, 1.82 x 10(-4); A.G, <0.01 x 10(-4). In the presence of PCNA these values increased as follows: G.G, 1.30 x 10(-4); T.G, 2.62 x 10(-4); A.G, 0.074 x 10(-4). A similar but smaller effect was observed for exonuclease-deficient pol delta (i.e., 2-4-fold increase in nucleotide substitution efficiencies in the presence of PCNA). Thus, the fidelity of wild-type pol delta in the presence of PCNA is more than 2 orders of magnitude lower than the fidelity of wild-type pol epsilon holoenzyme and is comparable to the fidelity of exonuclease-deficient pol epsilon holoenzyme.  相似文献   

10.
The influence of acyl chain-length asymmetry on the thermodynamic parameters (Tm, delta H, and delta S) associated with the reversible main phase transition of aqueous dispersions prepared from saturated diacyl phosphatidylcholines was studied by high-resolution differential scanning calorimetry. Two series of saturated diacyl phosphatidylcholines, grouped according to their molecular weights of 678 and 706, with a total number of 25 molecular species were examined. The normalized acyl chain-length difference between the sn-1 and sn-2 acyl chains for a given phospholipid molecule in the gel-state bilayer is expressed quantitatively by the structural parameter delta C/CL, and the values of delta C/CL for the two series of lipids under study vary considerably from 0.04 to 0.67. When the value of delta C/CL is within the range of 0.09-0.40, it was shown that the thermodynamic parameters are, to a first approximation, a linear function of delta C/CL with a negative slope. In addition, the experimental Tm values and the predicted Tm values put forward by Huang (Biochemistry (1991) 30, 26-30) are in very good agreement. Beyond the point of delta C/CL = 0.41, the influence of acyl chain-length asymmetry on the thermodynamic parameters deviates significantly from a linear function. In fact, within the range of delta C/CL values of 0.42-0.67, the thermodynamic parameters in the Tm (or delta H) vs. delta C/CL plot were shown to be bell-shaped with the maximal Tm (or delta H) at delta C/CL = 0.57. These results are discussed in terms of changes in the acyl chain packing modes of various phosphatidylcholine molecules within the gel-state bilayer in excess water.  相似文献   

11.
F W Herberg  M L Doyle  S Cox  S S Taylor 《Biochemistry》1999,38(19):6352-6360
The catalytic (C) subunit of cAMP-dependent protein kinase (cAPK) is more stable by several criteria when it is part of a holoenzyme complex. By measuring the thermal stability of the free C subunit in the presence and absence of nucleotides and/or divalent metal ions, it was found that most of the stabilizing effects associated with the type I holoenzyme could be attributed to the nucleotide. The specific requirements for this enhanced stability were further dissected: Adenosine stabilized the C subunit up to 5 degrees C; however, divalent cations (i.e., Mg2+, Ca2+, and Mn2+) do not increase heat stability in combination with adenosine and adenine (1). Divalent cations as well as ATP and ADP have no effect by themselves (2). The enhanced stability derived from both ATP and ADP requires divalent cations. MnATP (12 degrees C) shows a much stronger effect than CaATP (7 degrees C) and MgATP (5 degrees C) (3). In the holoenzyme complex or the protein kinase inhibitor/C subunit complex, metal/ATP is also required for enhanced stability; neither the RI or RII subunits nor PKI alone stabilize the C subunit significantly (4). For high thermal stability, the occupation of the second, low-affinity metal-binding site is necessary (5). From these results, we concluded that the adenine moiety works independently from the metal-binding sites, stabilizing the free C subunit by itself. When the beta- and gamma-phosphates are present, divalent metals are required for positioning these phosphates, and two metals are required to achieve thermostability comparable to adenosine alone. The complex containing two metals is the most stable. A comparison of several conformations of the C subunit derived from different crystal structures is given attributing open and closed forms of the C subunit to less and more thermostable enzymes, respectively.  相似文献   

12.
Cànaves JM  Leon DA  Taylor SS 《Biochemistry》2000,39(49):15022-15031
The regulatory (R) subunit of cAMP-dependent protein kinase (cAPK) is a multidomain protein with two tandem cAMP-binding domains, A and B. The importance of cAMP binding on the stability of the R subunit was probed by intrinsic fluorescence and circular dichroism (CD) in the presence and absence of urea. Several mutants were characterized. The site-specific mutants R(R209K) and R(R333K) had defects in cAMP-binding sites A and B, respectively. R(M329W) had an additional tryptophan in domain B. Delta(260-379)R lacked Trp260 and domain B. The most destabilizing mutation was R209K. Both CD and fluorescence experiments carried out in the presence of urea showed a decrease in cooperativity of the unfolding, which also occurred at lower urea concentrations. Unlike native R, R(R209K) was not stabilized by excess cAMP. Additionally, CD revealed significant alterations in the secondary structure of the R209K mutant. Therefore, Arg209 is important not only as a contact site for cAMP binding but also for the intrinsic structural stability of the full-length protein. Introducing the comparable mutation into domain B, R333K, had a smaller effect on the integrity and stability of domain A. Unfolding was still cooperative; the protein was stabilized by excess cAMP, but the unfolding curve was biphasic. The R(M329W) mutant behaved functionally like the native protein. The Delta(260-379)R deletion mutant was not significantly different from wild-type RIalpha in its stability. Consequently, domain B and the interaction between Trp260 and cAMP bound to site A are not critical requirements for the structural stability of the cAPK regulatory subunit.  相似文献   

13.
While there is no question that ligands can induce large-scale domain movements that narrow (close) the active-site cleft of the catalytic (C) subunit of cAMP-dependent protein kinase (cAPK), the results from small-angle X-ray scattering, protein footprinting, and thermostability studies are inconsistent with regard to which ligands induce these movements. This inconsistency suggests a greater complexity of cAPK conformational dynamics than is generally recognized. As an initial step to study this issue in relation to the catalysis, a new method to measure cAPK domain closure was developed, and the state of domain closure and the local segmental flexibility at major steps of the cAPK catalytic cycle were examined with site-directed labeling and fluorescence spectroscopy. To achieve this, a C subunit mutant (F239C/C199A) was engineered that allowed for fluorescein 5-maleimide (donor) conjugation of F239C in the large lobe and tetramethylrhodamine (acceptor) conjugation of C343 in the small lobe. Domain closure was assessed as an increase in the efficiency of energy transfer between donor and acceptor. The anisotropy decay of fluoroscein 5-maleimide, conjugated to a site of cysteine substitution (K81C) in the small lobe of the C subunit was used to assess the local backbone flexibility around the B helix. The effects of substrate/pseudosubstrate (ATP and PKI(5-24)), a fragment of protein kinase inhibitor) and products (ADP and phosphorylated PKS) on domain closure and B helix flexibility were measured. The results show that domain closure is not tightly coupled to the flexibility around K81C. Moreover, although substrates/pseudosubstrate and products independently close the active-site cleft, only the substrates substantially decreased the backbone flexibility around the B helix. Because this order-to-disorder transition coincides with the phosphoryl transfer transition, the results suggest the existence of an internal entropy contribution to catalysis.  相似文献   

14.
Both cytosolic and mitochondrial aspartate transaminase can be resolved of pyridoxal phosphate. The resulting apoenzymes still bind individual structural components of the coenzyme. The separate contributions of coenzyme components to protein thermal stability have been independently assessed for phosphate ions (Pi) and for the pyridoxal or pyridoxamine components of the coenzyme. 31P NMR and differential scanning calorimetry reveal that the thermodynamic contributions of binding are not additive and are dissimilar for the two isozymes. High and low affinity sites for Pi binding are present in both apoenzymes with only the low affinity site being present in the holoenzyme forms. The contribution of both bound phosphates to increasing temperatures (Tm) and enthalpies (delta Hd) of denaturation differ between the isozymes and within sites. In either isozyme occupancy of the high affinity site by Pi produces only a 4- or 5- degree increase in the Tm value with respect to Pi-free apoenzyme. By contrast, in the mitochondrial apoenzyme, the presence of Pi at the second low affinity site increases the calorimetric parameters from Tm = 47 degrees C and delta Hd = 4.7 cal g-1 to Tm = 62 degrees C and delta Hd = 7 cal g-1. For cytosolic apoenzyme the respective changes are from 66 to 69.5 degrees C and 5.2 to 5.8 cal g-1. Addition of pyridoxal, but not pyridoxamine, displaces the high affinity Pi in both apoenzymes. This shows that the pyridine ring and Pi groups of pyridoxal-P bind exclusive of each other when they are not covalently linked as an ester, as in the coenzyme. The observation has been exploited as a method to prepare completely dephosphorylated mitochondrial apoenzyme. Electrostatic effects, structural differences in the phosphate binding pockets, and steric effects can be invoked to account for the Pi and pyridine binding behavior in the two proteins.  相似文献   

15.
Receptor interactions of parotid acinar cells with beta-agonists are mediated by cyclic 3',5'-monophosphate (cAMP) and expressed as cAMP-dependent protein kinase (cAPK) activation. In addition to its location in the cytoplasm, we have shown that cAPK is associated with the nuclear non-histone protein (NHP) fraction (0.35 M NaCl extract) of rat parotid acinar cells. Nuclei were prepared from isolated parotid acini with minimal contamination from other cell types or cytoplasmic components. The nuclear cAPK activity was inhibited by the thermostable inhibitor and was stimulated by the addition of exogenous cAMP to the assay, indicating that the enzyme is present in the holoenzyme form. Enzyme activity was not increased in the presence of detergent, suggesting that cAPK is not bound to the nuclear membrane. Photoaffinity-labeling studies with an 8-azido analog of cAMP showed that regulatory subunits of both type I and type II cAPK isozymes are present in parotid cell nuclei. Short-term in vitro stimulation of the acini with 10(-6) M isoproterenol did not alter cAPK activity in the nuclear fraction. These findings indicate that compartmentation of cAPK into nuclear and extranuclear locations in rat parotid acinar cells is similar to that of several other cell types which are responsive to hormonal stimulation.  相似文献   

16.
The importance of the interdomain connector loop and of the carboxy-terminal domain of Saccharomyces cerevisiae proliferating cell nuclear antigen (PCNA) for functional interaction with DNA polymerases delta (Poldelta) and epsilon (Pol epsilon) was investigated by site-directed mutagenesis. Two alleles, pol30-79 (IL126,128AA) in the interdomain connector loop and pol30-90 (PK252,253AA) near the carboxy terminus, caused growth defects and elevated sensitivity to DNA-damaging agents. These two mutants also had elevated rates of spontaneous mutations. The mutator phenotype of pol30-90 was due to partially defective mismatch repair in the mutant. In vitro, the mutant PCNAs showed defects in DNA synthesis. Interestingly, the pol30-79 mutant PCNA (pcna-79) was most defective in replication with Poldelta, whereas pcna-90 was defective in replication with Pol epsilon. Protein-protein interaction studies showed that pcna-79 and pcna-90 failed to interact with Pol delta and Pol epsilon, respectively. In addition, pcna-90 was defective in interaction with the FEN-1 endo-exonuclease (RTH1 product). A loss of interaction between pcna-79 and the smallest subunit of Poldelta, the POL32 gene product, implicates this interaction in the observed defect with the polymerase. Neither PCNA mutant showed a defect in the interaction with replication factor C or in loading by this complex. Processivity of DNA synthesis by the mutant holoenzyme containing pcna-79 was unaffected on poly(dA) x oligo(dT) but was dramatically reduced on a natural template with secondary structure. A stem-loop structure with a 20-bp stem formed a virtually complete block for the holoenzyme containing pcna-79 but posed only a minor pause site for wild-type holoenzyme, indicating a function of the POL32 gene product in allowing replication past structural blocks.  相似文献   

17.
D Shortle  A K Meeker  E Freire 《Biochemistry》1988,27(13):4761-4768
By use of intrinsic fluorescence to determine the apparent equilibrium constant Kapp as a function of temperature, the midpoint temperature Tm and apparent enthalpy change delta Happ on reversible thermal denaturation have been determined over a range of pH values for wild-type staphylococcal nuclease and six mutant forms. For wild-type nuclease at pH 7.0, a Tm of 53.3 +/- 0.2 degrees C and a delta Happ of 86.8 +/- 1.4 kcal/mol were obtained, in reasonable agreement with values determined calorimetrically, 52.8 degrees C and 96 +/- 2 kcal/mol. The heat capacity change on denaturation delta Cp was estimated at 1.8 kcal/(mol K) versus the calorimetric value of 2.2 kcal/(mol K). When values of delta Happ and delta Sapp for a series of mutant nucleases that exhibit markedly altered denaturation behavior with guanidine hydrochloride and urea were compared at the same temperature, compensating changes in enthalpy and entropy were observed that greatly reduce the overall effect of the mutations on the free energy of denaturation. In addition, a correlation was found between the estimated delta Cp for the mutant proteins and the d(delta Gapp)/dC for guanidine hydrochloride denaturation. It is proposed that both the enthalpy/entropy compensation and this correlation between two seemingly unrelated denaturation parameters are consequences of large changes in the solvation of the denatured state that result from the mutant amino acid substitutions.  相似文献   

18.
Based on primary structure comparison between four highly homologous DNA-binding proteins (HUs) displaying differential thermostability, we have employed in vitro site-directed mutagenesis to decipher their thermostability mechanism at the molecular level. The contribution of the 11 amino acids that differ between the thermophilic HUBst from Bacillus stearothermophilus (Tm = 61.6 degrees C) and the mesophilic HUBsu from Bacillus subtilis (Tm = 39.7 degrees C) was evaluated by replacing these amino acids in HUBst with their mesophilic counterparts. Among 11 amino acids, three residues, Gly-15, Glu-34, and Val-42, which are highly conserved in the thermophilic HUs, have been found to be responsible for the thermostability of HUBst. These amino acids in combination (HUBst-G15E/E34D/V42I) reduce the thermostability of the protein (Tm = 45.1 degrees C) at the level of its mesophilic homologue HUBsu. By replacing these amino acids in HUBsu with their thermophilic counterparts, the HUBsu-E15G/D34E/142V mutant was generated with thermostability (Tm = 57.8 degrees C) at the level of thermophilic HUBst. Employing the same strategy, we generated several mutants in the extremely thermophilic HUTmar from Thermotoga maritima (Tm = 80.5 degrees C), and obtained data consistent with the previous results. The triplet mutant HUTmar-G15E/E34D/V421 (Tm = 35.9 degrees C) converted the extremely thermophilic protein HUTmar to mesophilic. The various forms of HU proteins were overproduced in Escherichia coli, highly purified, and the thermostability of the mutants confirmed by circular dichroism spectroscopy. The results presented here were elucidated on the basis of the X-ray structure of HUBst and HUTmar (our unpublished results), and their mechanism was proposed at the molecular level. The results clearly show that three individual local interactions located at the helix-turn-helix part of the protein are responsible for the stability of HU proteins by acting cooperatively in a common mechanism for thermostability.  相似文献   

19.
A structural feature shared by the metallo-beta-lactamases is a flexible loop of amino acids that extends over their active sites and that has been proposed to move during the catalytic cycle of the enzymes, clamping down on substrate. To probe the movement of this loop (residues 152-164), a site-directed mutant of metallo-beta-lactamase L1 was engineered that contained a Trp residue on the loop to serve as a fluorescent probe. It was necessary first, however, to evaluate the contribution of each native Trp residue to the fluorescence changes observed during the catalytic cycle of wild-type L1. Five site-directed mutants of L1 (W39F, W53F, W204F, W206F, and W269F) were prepared and characterized using metal analyses, CD spectroscopy, steady-state kinetics, stopped-flow fluorescence, and fluorescence titrations. All mutants retained the wild-type tertiary structure and bound Zn(II) at levels comparable with wild type and exhibited only slight (<10-fold) decreases in k(cat) values as compared with wild-type L1 for all substrates tested. Fluorescence studies revealed a single mutant, W39F, to be void of the fluorescence changes observed with wild-type L1 during substrate binding and catalysis. Using W39F as a template, a Trp residue was added to the flexile loop over the active site of L1, to generate the double mutant, W39F/D160W. This double mutant retained all the structural and kinetic characteristics of wild-type L1. Stopped-flow fluorescence and rapid-scanning UV-visible studies revealed the motion of the loop (k(obs) = 27 +/- 2 s(-1)) to be similar to the formation rate of a reaction intermediate (k(obs) = 25 +/- 2 s(-1)).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号