首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously found that RBE4.B brain capillary endothelial cells (BCECs) form a layer with blood-brain barrier (BBB) properties if co-cultured with neurons for at least one week. As astrocytes are known to modulate BBB functions, we further set a culture system that included RBE4.B BCECs, neurons and astrocytes. In order to test formation of BBB, we measured the amount of 3H-sucrose able to cross the BCEC layer in this three-cell type model of BBB. Herein we report that both neurons and astrocytes induce a decrease in the permeability of the BCEC layer to sucrose. These effects are synergic as if BCECs are cultured with both neurons and astrocytes for 5 days, permeability to sucrose decreases even more. By Western analysis, we also found that, in addition to the canonical 60 kDa occludin, anti-occludin antibodies recognize a smaller protein of 48 kDa which accumulates during rat brain development. Interestingly this latter protein is present at higher amounts in endothelial cells cultured in the presence of both astrocytes and neurons, that is in those conditions in which sucrose permeation studies indicate formation of BBB.  相似文献   

2.
Summary The present study deals with a rapid and convenient assay for blood-brain barrier (BBB)-associated enzymes, γ-glutamyl transpeptidase (γ-GTP) and alkaline phosphatase (ALP), in cultured endothelial cells and other cells. These enzyme activities in cultured cells could be efficiently measured by direct incubation of each substrate in the culture plates without pretreatment of the cells. This new direct in situ-in plate assay was more rapid and convenient than conventional ex-plate assays, and these assays gave similar values for specific enzyme activities. γ-GTP and ALP activities could be detected by this in situ method in primary-cultured endothelial cells of porcine brain microvessels, but their levels were lower than those before culture. The degree of loss due to culture differed, between γ-GTP and ALP; a relatively large amount of ALP remained but the γ-GTP level decreased greatly In this direct in situ-in plate assay, cultured porcine aortic endothelial cells exhibited negligibly small activities for both enzymes, whereas cultured astroglial cells of neonatal porcine brain showed moderate γ-GTP activity and a trace of ALP activity. This direct in situ-in plate assay can be used for microculture and automatic measurement and offers a convenient means for studying the possible regulatory mechanisms of the expression of the BBB-associated enzymes.  相似文献   

3.
During the present study the contribution of lipoprotein lipase (LPL) to low density lipoprotein (LDL) holoparticle and LDL-lipid (alpha-tocopherol (alphaTocH)) turnover in primary porcine brain capillary endothelial cells (BCECs) was investigated. The addition of increasing LPL concentrations to BCECs resulted in up to 11-fold higher LDL holoparticle cell association. LPL contributed to LDL holoparticle turnover, an effect that was substantially increased in response to LDL-receptor up-regulation. The addition of LPL increased selective uptake of LDL-associated alphaTocH in BCECs up to 5-fold. LPL-dependent selective alphaTocH uptake was unaffected by the lipase inhibitor tetrahydrolipstatin but was substantially inhibited in cells where proteoglycan sulfation was inhibited by treatment with NaClO(3). Thus, selective uptake of LDL-associated alphaTocH requires interaction of LPL with heparan-sulfate proteoglycans. Although high level adenoviral overexpression of scavenger receptor BI (SR-BI) in BCECs resulted in a 2-fold increase of selective LDL-alphaTocH uptake, SR-BI did not act in a cooperative manner with LPL. Although the addition of LPL to BCEC Transwell cultures significantly increased LDL holoparticle cell association and selective uptake of LDL-associated alphaTocH, holoparticle transcytosis across this porcine blood-brain barrier (BBB) model was unaffected by the presence of LPL. An important observation during transcytosis experiments was a substantial alphaTocH depletion of LDL particles that were resecreted into the basolateral compartment. The relevance of LPL-dependent alphaTocH uptake across the BBB was confirmed in LPL-deficient mice. The absence of LPL resulted in significantly lower cerebral alphaTocH concentrations than observed in control animals.  相似文献   

4.
α-Tocopherol (αTocH), a member of the vitamin E family, is essential for normal neurological function. Despite the importance of αTocH transport into the CNS, transfer mechanisms across the blood–brain barrier (BBB) are not entirely clear. We here investigate whether afamin, a known αTocH-binding protein, contributes to αTocH transport across an in vitro model of the BBB consisting of primary porcine brain capillary endothelial cells (BCEC) and basolaterally cultured astrocytoma cells. Exogenously added afamin had no adverse effects on BCEC viability or barrier function and was transported across BCEC Transwell cultures. Furthermore, αTocH transport across polarized BCEC cultures to astrocytoma cells is facilitated by afamin, though to a lesser extent than by high-density lipoprotein-mediated transport, an essential and in vivo operating αTocH import pathway at the cerebrovasculature. We also demonstrate that porcine BCEC endogenously synthesize afamin. In line with these in vitro findings, afamin was detected by immunohistochemistry in porcine, human postmortem, and mouse brain, where prominent staining was observed almost exclusively in the cerebrovasculature. The demonstration of afamin mRNA expression in isolated brain capillaries suggests that afamin might be a new family member of binding/transport proteins contributing to αTocH homeostasis at the BBB in vivo .  相似文献   

5.
Initial development of astroglial phenotype has been studied in vitro in an amphibian embryo (Pleurodeles waltI), to document the differentiation potentialities acquired by neural precursor cells isolated at the early neurula stage. In particular, we sought to determine whether interactions between neuroepithelial cells and the inducing tissue, the chordamesoderm, are required beyond this stage to specify precursor cells along glial lineages. Glial cell differentiation was documented by examining the appearance of glial fibrillary acidic protein (GFAp), a specific marker of astroglial lineages. Cells expressing GFAp-immunoreactivity differentiated rapidly, after 48 hours of culture, from cultivated neural plate cells, irrespective of the presence or absence of the inducing tissue. The widespread expression of Pleurodeles GFAp protein in neural plate cultures, in which CNS precursor cells develop alone in a simple saline medium, showed that prolonged contact with chordamesodermal cells was not necessary for the emergence of the astroglial phenotype. In addition, the initial development of astroglial phenotype has been defined in vivo. The first detectable GFAp-immunoreactivity was visualized in the neural tube of stage-24 embryos, a stage corresponding to 2-3 days in culture, defining radial glial cell end-feet. Thus, dissociation and culture of neural precursor cells did not appear to modify the onset of astroglial differentiation. At stage 32, GFAp-immunoreactivity was observed over the entire length of radial glial fibers and was also evidenced in mitotic cells located in the ventricular zone, suggesting that radial glial cells were not all post-mitotic.  相似文献   

6.
When in the vicinity of astrocytes, brain capillary endothelial cells (BCECs) develop the characteristic structural and functional features of the blood-brain barrier (BBB). The latter has low cellular permeability and restricts various compounds from entering the brain. We recently reported that the cytoskeleton-related proteins actin, gelsolin and filamin-A undergo the largest quantitative changes in bovine BCECs after re-induction of BBB functions by co-culture with glial cells. In the present study, we used an in-depth, proteomic approach to quantitatively compare differences in Triton-X-100-solubilized proteins from bovine BCECs with limited or re-induced BBB functions (i.e. cultured in the absence or presence of glial cells, respectively). The 81 protein spots of differing abundance were linked to 55 distinct genes. According to the Protein ANalysis THrough Evolutionary Relationships classification system and an Ingenuity Pathway Analysis, these quantitative changes mainly affected proteins involved in (i) cell structure and motility and (ii) protein metabolism and modification. The fold-changes affecting HSPB1, moesin and ANXA5 protein levels were confirmed by western blot analysis but were not accompanied by changes in the corresponding mRNA expression levels. Our results reveal that the bovine BCECs' phenotype adaptation to variations in their environment involves the reorganization of the actin cytoskeleton.  相似文献   

7.
Brain capillary endothelial cells (BCECs) play an important role in blood-brain barrier (BBB) functions and pathophysiologic mechanisms in brain ischemia and inflammation. We try to suppress gene expression in BCECs by intravenous application of small interfering RNA (siRNA). After injection of large dose siRNA with hydrodynamic technique to mouse, suppression of endogenous protein and the BBB function of BCECs was investigated. The brain-to-blood transport function of organic anion transporter 3 (OAT3) that expressed in BCECs was evaluated by Brain Efflux Index method in mouse. The siRNA could be delivered to BCECs and efficiently inhibited endogenously expressed protein of BCECs. The suppression effect of siRNA to OAT3 is enough to reduce the brain-to-blood transport of OAT3 substrate, benzylpenicillin at BBB. The in vivo siRNA-silencing method with hydrodynamic technique may be useful for the study of BBB function and gene therapy targeting BCECs.  相似文献   

8.
Astrocytes, a member of the glial cell family in the central nervous system, are assumed to play a crucial role in the formation of the blood-brain barrier (BBB) in vertebrates. It was shown that astrocytes induce BBB-properties in brain capillary endothelial cells (BCEC) in vitro. We now established an astroglial cell line of non-tumoral origin. The cloned cell line (A7) shows a highly increased proliferation rate and expresses the astrocytic marker glial fibrillary acidic protein. Furthermore, the clone A7 expresses S-100-protein and vimentin, which are also expressed by primary cultured astrocytes. This cell line therefore shows general astrocytic features. In addition, we were able to show that A7 cells re-induce the BBB-related marker enzyme alkaline phosphatase in BCEC, when these two cell types are co-cultured. Thus we have a cell line which can be readily cultured in large quantities, shows common astrocyte properties and is able to influence BCEC with respect to a BBB-related feature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
PVC-211 murine leukemia virus (MuLV) is a neuropathogenic variant of Friend MuLV (F-MuLV) which causes a rapidly progressive spongiform neurodegenerative disease in rodents. The primary target of PVC-211 MuLV infection in the brain is the brain capillary endothelial cell (BCEC), which is resistant to F-MuLV infection. Previous studies have shown that changes in the envelope gene of PVC-211 MuLV confer BCEC tropism to the virus. However, little is known about how infection of BCECs by PVC-211 MuLV induces neurological disease. Previous results suggest that nitric oxide (NO), which has been implicated as a potential neurotoxin, is involved in PVC-211 MuLV-induced neurodegeneration. In this study, we show that expression of inducible nitric oxide synthase (iNOS), which produces NO from L-arginine, is induced in BCECs from PVC-211 MuLV-infected rats. Furthermore, elevated levels of a 32-kDa cellular protein modified by 3-nitrotyrosine, which is a hallmark of NO production, were observed in virus-infected BCECs. BCECs from rats infected with BCEC-tropic but nonneuropathogenic PVF-e5 MuLV, which is a chimeric virus between PVC-211 MuLV and F-MuLV, fail to induce either iNOS expression or elevation of tyrosine nitration of a 32-kDa protein. These results suggest that expression of iNOS and nitration of tyrosine residues of a 32-kDa protein in PVC-211 MuLV-infected BCECs may play an important role in neurological disease induction.  相似文献   

10.
The immortalized rat brain microvessel endothelial cell line RBE4 was used to investigate the in vitro regulation of two blood-brain barrier specific enzymes, gamma-glutamyl transpeptidase (GTP) and alkaline phosphatase (ALP). The effects of bFGF, astroglial factors, and retinoic acid (a cell differentiation agent) on GTP and ALP activities were separately or simultaneously studied in order to define optimal culture conditions for induction of these two specific enzymes of the blood-brain barrier. In the present study, a phenotypically distinct subpopulation of endothelial cells has been shown to develop from confluent cobblestone monolayers of RBE4 immortalized cerebral endothelial cells. These distinct cells were present within multicellular aggregates and specifically exhibited GTP and ALP activities. Addition of bFGF, astroglial factors, or retinoic acid induced the formation of these three-dimensional structures and in consequence an increase in GTP and ALP activities. For retinoic acid and astroglial factors, this increase could also be explained by the stimulation of either GTP or ALP expression in the phenotypically distinct positive cells associated with aggregates. Simultaneous treatment with retinoic acid and astroglial factors had a synergistic effect on GTP and ALP expression and thus may allow these distinct cells to evolve toward a more differentiated state. Since such results were also obtained with physiological concentrations of retinoic acid, we suggest that addition of this agent might contribute to greater differentiation of cells in in vitro blood-brain barrier models where endothelial cells are cocultured with astrocytes. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Rat brain microvessel endothelial cells were immortalized by transfection with a plasmid containing the E1A adenovirus gene. One clone, called RBE4, was further characterized. These cells display a nontransformed phenotype and express typical endothelial markers, Factor VIII-related antigen and Bandeiraea simplicifolia binding sites. When RBE4 cells were grown in the presence of bFGF and on collagen-coated dishes, confluent cultures developed sprouts that extend above the monolayer and organized into three-dimensional structures. The activity of the blood-brain barrier-associated enzyme, gamma-glutamyl transpeptidase (γGTP), was expressed in these structures, not in the surrounding monolayer. Similar results were obtained with the microvessel-related enzyme alkaline phosphatase (ALP). Addition of agents that elevate intracellular cAMP reduced the formation of three-dimensional structures, but every cell inside the aggregates still expressed γCTP and ALP activities. Such structures, associated with high levels of γCTP and ALP activities, were also induced by astroglial factors, including (1) plasma membranes from newborn rat primary astrocytes or rat glioma C6 cells, (2) C6 conditioned media, or (3) diffusible factors produced by primary astrocytes grown in the presence of, but not in contact with RBE4 cells. RBE4 cells thus remain sensitive to angiogenic and astroglial factors for the expression of the blood-brain barrier-related γCTP activity, as well as for ALP activity, and could constitute the basis of a valuable in vitro model of the blood-brain barrier. © 1994 wiley-Liss, Inc.  相似文献   

12.
Abstract— Primary cultures of bovine brain capillary endo-thelial cells (BCEC), possessing tight junctions and high levels of γ-glutamyl transpeptidase, were used as an in vitro model for the blood-brain barrier. The interaction of acetylated low density lipoprotein (AcLDL) with BCEC was studied to characterize the scavenger receptor on these cells. A saturable high affinity binding site was found with a dissociation constant of AcLDL of 5.4 μg/ml (3.1 n M ) and a maximal binding ranging from 284 to 626 ng of AcLDL/mg of cell protein for eight primary cultures, and independent of the presence of calcium. Cell association was coupled to degradation, and both could be effectively competed for by polyinosinic acid and AcLDL but not by low density lipoprotein or by high density lipoprotein. Prolonged incubation showed an accumulation of the ligand in the cells. The rate of degradation of AcLDL was ∼ 10–20-fold lower in BCEC than that of peripheral endothelial cells. No evidence for lysosomal degradation could be obtained. Binding of 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocar-boxyamine perchlorate-labeled AcLDL by BCEC was observed, which could be competed for by an excess of un-labeled AcLDL and polyinosinic acid. We have shown that in vitro BCEC possesses specific binding sites for AcLDL, whereas these cells show a relatively low degradative capacity.  相似文献   

13.
We report an investigation on the influence of high frequency electromagnetic fields (EMF) on the permeability of an in vitro model of the blood-brain barrier (BBB). Our model was a co-culture consisting of rat astrocytes and porcine brain capillary endothelial cells (BCEC). Samples were characterized morphologically by scanning electron microscopy and immunocytochemistry. The BBB phenotype of the BCEC was shown by the presence of zona occludens protein (ZO-1) as a marker for tight junctions and the close contact of the cells together with the absence of intercellular clefts. Permeability measurements using (14)C-sucrose indicated a physiological tightness which correlated with the morphological findings and verified the usefulness of our in vitro model. Samples were exposed to EMF conforming to the GSM1800-standard used in mobile telephones (1.8 GHz). The permeability of the samples was monitored over four days and compared with results of samples that were cultured identically but not exposed to EMF. Exposure to EMF increased permeability for (14)C-sucrose significantly compared to unexposed samples. The underlying pathophysiological mechanism remains to be investigated.  相似文献   

14.
Abstract: Two molecular mass subtypes of muscarinic receptor are expressed by the chick retina (72 and 86 kDa). During development, the ratio of subtypes changes, with the 72-kDa form becoming predominant. We have found that subtype switch can occur in retina cell culture, and have investigated factors that influence this in vitro increase in the 72-kDa receptor. Increases similar to those in vivo occurred when cells were cultured at 105 cells/cm2, but not at 10-fold lower density. High-density cultures, maintained on coverslips, showed no receptor development when transferred to large volumes of fresh medium, indicating that cell-cell contact alone was not responsible for induction. However, replacement of fresh medium with conditioned medium (from high-density cultures) resulted in normal induction. There were no morphological differences between cultures with high and low levels of the 72-kDa receptor. Conditioned medium also induced 72-kDa receptors in low-density cultures, consistent with a minimal role for cell-cell contact. Efficacy of conditioned medium was markedly dependent on age. Media from cells cultured 1–4 days had no effect, but media from cells cultured 5–8 and 1–8 days elicited 1.6-fold and fourfold increases in the 72-kDa subtype, respectively. The data indicate that maturing retina cells secrete developmentally regulated factors that are necessary for abundant expression of the 72-kDa muscarinic receptor subtype.  相似文献   

15.
Zhu D  Li R  Liu G  Hua W 《Life sciences》1999,65(15):PL221-PL231
The effect of nimodipine on nitric oxide synthase (NOS) activities in brains in transient focal cerebral ischemia rats, in cultured mouse neurons and astroglial cells and bovine brain capillary endothelial cells (BCECs) was investigated. The administration of nimodipine (3 mg.kg(-1), p.o., twice a day, for 3 days) before middle cerebral artery (MCA) occlusion significantly reduced infarct size, decreased nitrite/nitrate (NOx) content and inhibited Ca2+-independent NOS activity in the infarct area. Nimodipine inhibited the Ca2+-independent NOS activity induced by lipopolysaccharide (LPS) + tumor necrosis factor alpha (TNF alpha) in mouse astroglial cells with an IC50 value of 0.036+/-0.003 mM and Ca2+-dependent NOS activity in mouse neurons with an IC50 value of 0.047+/-0.003 mM, but did not affect Ca2+-dependent NOS activity in BCECs. The inhibition of Ca2+-independent NOS activity by nimodipine in astroglial cells was competitive with respect to L-arginine. Nimodipine also inhibited the induction of Ca2+-independent NOS activity in vitro. These results suggest that nimodipine in addition to its cerebral vasodilating effect may protect brain from ischemic neuronal damage through modifying NOS activity.  相似文献   

16.
Brain capillary endothelial cells (BCECs) form blood brain barrier (BBB) to maintain brain homeostasis. Cell turnover of BCECs by the balance of cell proliferation and cell death is critical for maintaining the integrity of BBB. Here we found that stimuli with tunicamycin, endoplasmic reticulum (ER) stress inducer, up-regulated inward rectifier K+ channel (Kir2.1) and facilitated cell death in t-BBEC117, a cell line derived from bovine BCECs. The activation of Kir channels contributed to the establishment of deeply negative resting membrane potential in t-BBEC117. The deep resting membrane potential increased the resting intracellular Ca2+ concentration due to Ca2+ influx through non-selective cation channels and thereby partly but significantly regulated cell death in t-BBEC117. The present results suggest that the up-regulation of Kir2.1 is, at least in part, responsible for cell death/cell turnover of BCECs induced by a variety of cellular stresses, particularly ER stress, under pathological conditions.  相似文献   

17.
(1) The blood–brain barrier (BBB) characteristics of cerebral endothelial cells are induced by organ-specific local signals. Brain endothelial cells lose their phenotype in cultures without cross-talk with neighboring cells. (2) In contrast to astrocytes, pericytes, another neighboring cell of endothelial cells in brain capillaries, are rarely used in BBB co-culture systems. (3) Seven different types of BBB models, mono-culture, double and triple co-cultures, were constructed from primary rat brain endothelial cells, astrocytes and pericytes on culture inserts. The barrier integrity of the models were compared by measurement of transendothelial electrical resistance and permeability for the small molecular weight marker fluorescein. (4) We could confirm that brain endothelial monolayers in mono-culture do not form tight barrier. Pericytes induced higher electrical resistance and lower permeability for fluorescein than type I astrocytes in co-culture conditions. In triple co-culture models the tightest barrier was observed when endothelial cells and pericytes were positioned on the two sides of the porous filter membrane of the inserts and astrocytes at the bottom of the culture dish. (5) For the first time a rat primary culture based syngeneic triple co-culture BBB model has been constructed using brain pericytes beside brain endothelial cells and astrocytes. This model, mimicking closely the anatomical position of the cells at the BBB in vivo, was superior to the other BBB models tested. (6) The influence of pericytes on the BBB properties of brain endothelial cells may be as important as that of astrocytes and could be exploited in the construction of better BBB models.  相似文献   

18.
The effects of progesterone on murine suppressor cell function generated in allogeneic MLCs were investigated. BALB/c splenic lymphocytes stimulated in vitro with C3H/He cells significantly suppressed the proliferative response of BALB/c lymphocytes in a secondary MLC. This suppression was highly specific for the sensitizing alloantigens since the suppressor cells had no effect on the proliferative response of BALB/c lymphocytes to third-party alloantigens. In addition, BALB/c lymphocytes stimulated with syngeneic cells were observed to nonspecifically suppress the MLC response to a lesser extent. One to 10 micrograms/ml progesterone added at initiation to suppressor cell generating cultures diminished the ability of both alloantigen specific and nonspecific suppressor cell populations to suppress the proliferative response of homologous lymphocytes to alloantigens. Experiments with pyrilamine, an antihistamine, which blocks cytotoxic T lymphocyte (CTL) generation, suggests that progesterone has a direct inhibitory effect on suppressor cell function independent of its ability to block CTL induction. The effects of progesterone on suppressor cells were not due to shifts in peak response time in MLC or induction of radiosensitive cells in progesterone-treated cultures. Estradiol at doses between 5 and 10 micrograms/ml, and cortisol at dose of 1 microgram/ml, also significantly inhibited suppressor cell function. These results suggest that the steroid hormone milieu within the placenta may effect the activity of allogeneic or nonspecific suppressor cell activity.  相似文献   

19.
The P-glycoproteinmdr is expressed not only in tumoral cells, but also in nontransformed cells, including the specialized endothelial cells of brain capillaries which build up the blood-brain barrier. Since all previously identified blood-brain barrier markers are rapidly lost when cerebral capillary endothelial cells are maintained in primary culture, we have investigated whether P-glycoprotein (P-gp) would follow the same rule, in order to address the influence of the cerebral environment on the specific P-gp expression in the brain endothelium. As compared to freshly isolated purified cerebral capillaries, P-glycoprotein was detected by immunochemistry at a high level in 5–7 day primary cultures. In our culture conditions, P-glycoprotein was immunodetected at a lower molecular weight than that found in freshly isolated capillaries. Enzymatic deglycosylation led to the same 130 kDa protein for both fresh and cultured samples, suggesting that P-gp post-translational modifications were altered in primary cultures. However, studies on the uptake and efflux of the P-gp substrate [3H]vinblastine, and on the effect of variousmdr reversing agents on the uptake and efflux, clearly indicated that the efflux pump function of the P-glycoprotein was maintained in primary cultures of bovine cerebral capillary endothelial cells. P-Glycoprotein may thus represent the first blood-brain barrier marker which is maintained in cerebral endothelial cells cultured in the absence of factors originating from the brain parenchyma.Abbreviations BBB blood-brain barrier - BCEC brain capillary endothelial cells - -GT -glutamyltranspeptidase - HBSS Hank's balanced salt solution - Mab monoclonal antibody - mdr multidrug resistance - P-gp P-glycoprotein  相似文献   

20.
We have previously described a technique to obtain short-term cultures of epithelial cells from Wistar rat vaginae. In order to improve the efficiency and life span of these cultures, in the present study we have cultured the vaginal cells with lethally irradiated 3T3 cell feeder layers. Under this condition, cells can grow for several weeks while retaining epithelial characteristics and can eventually be subcultured. The proliferative effect of the ovarian hormones in these cultures was studied using two different approaches, [Methyl-3H]Thymidine (3HTdr) incorporation and increase in cell number. Both assays indicated a proliferative effect of 17 beta-estradiol and progesterone at physiological concentrations. This proliferative effect was also shown in feeder layer-free cultures, ruling out an indirect effect through the mesodermal cells. The capacity of the hormones to modify terminal differentiation in the culture was also studied, using colony stratification as an indicator of differentiation. Progesterone and fetal calf serum had an inhibitory effect on terminal differentiation, whereas 17 beta-estradiol induced a stimulatory action. This culture model allowed us to show a direct effect of the ovarian hormones on vaginal cells in vitro and seems to be a useful model to study hormone-cell interactions in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号