首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calsequestrin (CS) is theCa2+ binding protein of thejunctional sarcoplasmic reticulum (jSR) lumen. Recently, a chimericCS-HA1, obtained by adding the nine-amino-acid viral epitopehemagglutinin (HA1) to the COOH terminus of CS, was shown to becorrectly segregated to the sarcoplasmic reticulum [A. Nori, K. A. Nadalini, A. Martini, R. Rizzuto, A. Villa, and P. Volpe.Am. J. Physiol. 272 (Cell Physiol. 41): C1420-C1428,1997]. A putative targeting mechanism of CS to jSR implieselectrostatic interactions between negative charges on CS and positivecharges on intraluminal domains of jSR integral proteins, such astriadin and junctin. To test this hypothesis, 2 deletion mutants ofchimeric CS were engineered: CS-HA1Glu-Asp, in which the 14 acidicresidues[-Glu-(Asp)5-Glu-(Asp)7-] of the COOH-terminal tail were removed, andCS-HA149COOH, in which thelast, mostly acidic, 49 residues of the COOH terminus were removed.Both mutant cDNAs were transiently transfected in HeLa cells, myoblastsof rat skeletal muscle primary cultures, or regenerating soleus musclefibers of adult rats. The expression and intracellular localization ofCS-HA1 mutants were studied by epifluorescence microscopy with use ofantibodies against CS or HA1. CS-HA1 mutants were shown to beexpressed, sorted, and correctly segregated to jSR. Thus short or longdeletions of the COOH-terminal acidic tail do not influence thetargeting mechanism of CS.

  相似文献   

2.
We continue our development of a kineticmodel of bursting electrical activity in the pancreatic -cell( J. Keizer and G. Magnus. Biophys. J. 56: 229-242,1989), including the influence of Ca2+ handling by themitochondria. Our minimal model of mitochondrial Ca2+handling [G. Magnus and J. Keizer. Am. J. Physiol. 273 (Cell Physiol. 42): C717-C733, 1997] is expanded toinclude the D-glucose dependence of the rate of productionof mitochondrial reducing equivalents. The Ca2+ dependenceof the mitochondrial dehydrogenases, which is also included in themodel, plays only a small role in the simulations, since thedehydrogenases appear to be maximally activated when D-glucose concentrations are sufficient to producebursting. A previous model of ionic currents in the plasma membrane isupdated using a recent experimental characterization of the dependence of the conductance of the ATP-sensitive K+(KATP) current on adenine nucleotides. The resultingwhole cell model is complex, involving 12 dynamic variables that coupleCa2+ handling in the cytoplasm and the mitochondria withelectrical activity in the plasma and inner mitochondrial membranes.Simulations with the whole cell model give rise to bursting electricalactivity similar to that seen in pancreatic islets and clusters ofpancreatic -cells. The full D-glucose dose response ofelectrical activity is obtained if the cytosolic rate of ATP hydrolysisis a sigmoidal function of glucose. The simulations give the correctshape, period, and phase of the associated oscillations in cytosolicCa2+, predict that the conductance of the KATPcurrent oscillates out of phase with electrical activity [as recentlyobserved in ob/ob mice (O. Larsson, H. Kindmark, R. Bränstrom, B. Fredholm, and P.-O. Berggren. Proc. Natl. Acad.Sci. USA 93: 5161-5165, 1996)], and make other novelpredictions. In this model, bursting results because Ca2+uptake into mitochondria during the active phase reduces the mitochondrial inner membrane potential, reducing the rate of production of ATP, which in turn activates the KATP current andrepolarizes the plasma membrane.

  相似文献   

3.
Properties of ATP-dependent K(+) channels in adrenocortical cells   总被引:6,自引:0,他引:6  
Bovine adrenocortical zona fasciculata (AZF)cells express a novel ATP-dependent K+-permeable channel(IAC). Whole cell and single-channel recordings were used to characterize IAC channels withrespect to ionic selectivity, conductance, and modulation bynucleotides, inorganic phosphates, and angiotensin II (ANG II). Inoutside-out patch recordings, the activity of unitaryIAC channels is enhanced by ATP in the patchpipette. These channels were K+ selective with nomeasurable Na+ or Ca2+ conductance. Insymmetrical K+ solutions with physiological concentrationsof divalent cations (M2+), IACchannels were outwardly rectifying with outward and inward chordconductances of 94.5 and 27.0 pS, respectively. In the absence ofM2+, conductance was nearly ohmic. Hydrolysis-resistantnucleotides including AMP-PNP and NaUTP were more potent than MgATP asactivators of whole cell IAC currents. Inorganicpolytriphosphate (PPPi) dramatically enhancedIAC activity. In current-clamp recordings, nucleotides and PPPi produced resting potentials in AZFcells that correlated with their effectiveness in activatingIAC. ANG II (10 nM) inhibited whole cellIAC currents when patch pipettes contained 5 mMMgATP but was ineffective in the presence of 5 mM NaUTP and 1 mM MgATP.Inhibition by ANG II was not reduced by selective kinase antagonists.These results demonstrate that IAC is adistinctive K+-selective channel whose activity isincreased by nucleotide triphosphates and PPPi.Furthermore, they suggest a model for IAC gatingthat is controlled through a cycle of ATP binding and hydrolysis.

  相似文献   

4.
Role of endogenous female hormones in hypoxic chemosensitivity   总被引:5,自引:0,他引:5  
Tatsumi, Koichiro, Cheryl K. Pickett, Christopher R. Jacoby,John V. Weil, and Lorna G. Moore. Role of endogenous female hormones in hypoxic chemosensitivity. J. Appl.Physiol. 83(5): 1706-1710, 1997.Effective alveolar ventilation and hypoxicventilatory response (HVR) are higher in females than in males andafter endogenous or exogenous elevation of progesterone and estrogen.The contribution of normal physiological levels of ovarian hormones toresting ventilation and ventilatory control and whether their site(s) of action is central and/or peripheral are unclear.Accordingly, we examined resting ventilation, HVR, and hypercapnicventilatory responses (HCVR) before and 3 wk after ovariectomy in fivefemale cats. We also compared carotid sinus nerve (CSN) and centralnervous system translation responses to hypoxia in 6 ovariectomized and 24 intact female animals. Ovariectomy decreased serum progesterone butdid not change resting ventilation, end-tidalPCO2, or HCVR (allP = NS). Ovariectomy reduced theHVR shape parameter A in the awake(38.9 ± 5.5 and 21.2 ± 3.0 before and after ovariectomy, respectively, P < 0.05) andanesthetized conditions. The CSN response to hypoxia was lower inovariectomized than in intact animals (shape parameterA = 22.6 ± 2.5 and 54.3 ± 3.5 in ovariectomized and intact animals, respectively,P < 0.05), but central nervous system translation of CSN activity into ventilation was similar inovariectomized and intact animals. We concluded that ovariectomy decreased ventilatory and CSN responsiveness to hypoxia, suggesting that the presence of physiological levels of ovarian hormones influences hypoxic chemosensitivity by acting primarily at peripheral sites.

  相似文献   

5.
Wang, C. G., J. J. Almirall, C. S. Dolman, R. J. Dandurand,and D. H. Eidelman. In vitro bronchial responsiveness in twohighly inbred rat strains. J. Appl.Physiol. 82(5): 1445-1452, 1997.We investigatedmethacholine (MCh)-induced bronchoconstriction in explanted airwaysfrom Fischer and Lewis rats. Lung explants, 0.5- to 1.0-mm thick, wereprepared from agarose-inflated lungs of anesthetized 8- to 12-wk-oldmale rats. After overnight culture, videomicroscopy was used to recordbaseline images of the individual airways. Dose-response curves to MChwere then constructed by repeated administration of MCh; airways werereimaged 10 min after each MCh administration. Airway internal luminalarea(Ai)was measured at successive MCh concentrations from109 to101 M. Inaddition to the effective concentration leading to 50% of the achievedmaximal response, we also determined the effective concentrationleading to a 40% reduction inAi.Both the effective concentration leading to 50% of the achievedmaximal response and the concentration leading to a 40% reduction inAiwere significantly lower among Fischer rat airways(P < 0.05). Airway closure was morecommon among Fischer rat airways (17%) than among those of Lewis rats(7.5%). Responsiveness of Fischer rat airways was more heterogeneousthan among Lewis airways; a larger number of Fischer rat airwaysexhibited high sensitivity to MCh. There was no relationship betweenresponsiveness and baselineAiin either strain. In a second experiment, we measured the rate ofcontraction of explanted airways from lungs inflated to 50, 75, and100% of total lung capacity. The average rate of contraction in thefirst 15 s was higher in Fischer rat airways at each inflation volume.These data indicate that the hyperresponsiveness of the Fischer rat reflects the responsiveness of individual airways throughout the airwaytree and are consistent with the notion that in this model hyperresponsiveness is an intrinsic property of airway smooth muscle.

  相似文献   

6.
Xie, Ailiang, Fiona Rankin, Ruth Rutherford, and T. DouglasBradley. Effects of inhaledCO2 and added dead space on idiopathic central sleep apnea. J. Appl.Physiol. 82(3): 918-926, 1997.We hypothesizedthat reductions in arterial PCO2 (PaCO2) below the apnea threshold play akey role in the pathogenesis of idiopathic central sleep apnea syndrome(ICSAS). If so, we reasoned that raisingPaCO2 would abolish apneas in thesepatients. Accordingly, patients with ICSAS were studied overnight onfour occasions during which the fraction of end-tidalCO2 and transcutaneous PCO2 were measured: during room airbreathing (N1), alternating room airand CO2 breathing(N2),CO2 breathing all night(N3), and addition of dead space viaa face mask all night (N4).Central apneas were invariably preceded by reductions infraction of end-tidal CO2. Bothadministration of a CO2-enrichedgas mixture and addition of dead space induced 1- to 3-Torr increasesin transcutaneous PCO2, whichvirtually eliminated apneas and hypopneas; they decreased from43.7 ± 7.3 apneas and hypopneas/h onN1 to 5.8 ± 0.9 apneas andhypopneas/h during N3(P < 0.005), from 43.8 ± 6.9 apneas and hypopneas/h during room air breathing to 5.9 ± 2.5 apneas and hypopneas/h of sleep duringCO2 inhalation during N2 (P < 0.01), and to 11.6% of the room air level while the patients werebreathing through added dead space duringN4 (P < 0.005). Because raisingPaCO2 through two different meansvirtually eliminated central sleep apneas, we conclude that centralapneas during sleep in ICSA are due to reductions inPaCO2 below the apnea threshold.

  相似文献   

7.
The following is the abstract of the article discussed in thesubsequent letter:

Mitchell, Claire H., Jin Jun Zhang, Liwei Wang, andTim J. C. Jacob. Volume-sensitive chloride current in pigmented ciliary epithelial cells: role of phospholipases. Am. J. Physiol. 272 (Cell Physiol. 41): C212-C222, 1997.Thewhole cell recording technique was used to examine an outwardlyrectifying chloride current activated by hypotonic shock in bovinepigmented ciliary epithelial (PCE) cells. Removal of internal andexternal Ca2+ did not affect the activation of thesecurrents, but they were abolished by the phospholipase C inhibitorneomycin. The current was blocked by5-nitro-2-(3-phenylpropylamino)benzoic acid,4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid, and4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) in avoltage-dependent manner, but tamoxifen, dideoxyforskolin, andquinidine did not affect it. This blocking profile differs from that ofthe volume-sensitive chloride channel in neighboring nonpigmentedciliary epithelial cells (Wu, J., J. J. Zhang, H. Koppel, and T. J. C. Jacob. J. Physiol. Lond. 491: 743-755, 1996), and thisdifference implies that the volume responses of the two cell types aremediated by different chloride channels (Jacob, T. J. C., and J. J. Zhang. J. Physiol. Lond. In press). Intracellular administration of guanosine 5'-O-(3-thiotriphosphate) (GTPS) to PCE cells induced a transient, time-independent, outwardly rectifying chloride current that closely resembled the current activated by hypotonic shock. DIDS produced a voltage-dependent blockof the GTPS-activated current similar to the block of the hypotonically activated current. Intracellular neomycin completely prevented activation of this current as did incubation of the cells incalphostin C, an inhibitor of protein kinase C (PKC). Removal ofCa2+ did not affect activation of the current by GTPSbut extended the duration of the response. Inhibition of phospholipaseA2 (PLA2) with p-bromophenacyl bromideprevented the activation of the hypotonically induced current and alsoinhibited the current once activated by hypotonic solution. Thefindings imply that the hypotonic response in PCE cells is mediated byboth phospholipase C (PLC) and PLA2. Both phospholipasesgenerate arachidonic acid, and, in addition, the PLC pathway regulatesthe PLA2 pathway via a PKC-dependent phosphorylation ofPLA2.

  相似文献   

8.
Honda, Y., H. Tani, A. Masuda, T. Kobayashi, T. Nishino, H. Kimura, S. Masuyama, and T. Kuriyama. Effect of priorO2 breathing on ventilatoryresponse to sustained isocapnic hypoxia in adult humans.J. Appl. Physiol. 81(4):1627-1632, 1996.Sixteen healthy volunteers breathed 100%O2 or room air for 10 min in random order, then their ventilatory response to sustained normocapnic hypoxia (80% arterial O2saturation, as measured with a pulse oximeter) was studied for 20 min.In addition, to detect agents possibly responsible for the respiratorychanges, blood plasma of 10 of the 16 subjects was chemically analyzed.1) Preliminary O2 breathing uniformly andsubstantially augmented hypoxic ventilatory responses.2) However, the profile ofventilatory response in terms of relative magnitude, i.e., biphasichypoxic ventilatory depression, remained nearly unchanged.3) Augmented ventilatory incrementby prior O2 breathing wassignificantly correlated with increment in the plasma glutamine level.We conclude that preliminary O2administration enhances hypoxic ventilatory response without affectingthe biphasic response pattern and speculate that the excitatory aminoacid neurotransmitter glutamate, possibly derived from augmentedglutamine, may, at least in part, play a role in this ventilatoryenhancement.

  相似文献   

9.
Brown, Robert H., Wayne Mitzner, and Elizabeth M. Wagner.Interaction between airway edema and lung inflation onresponsiveness of individual airways in vivo. J. Appl.Physiol. 83(2): 366-370, 1997.Inflammatorychanges and airway wall thickening are suggested to cause increasedairway responsiveness in patients with asthma. In fivesheep, the dose-response relationships of individual airways weremeasured at different lung volumes to methacholine (MCh) before andafter wall thickening caused by the inflammatory mediator bradykininvia the bronchial artery. At 4 cmH2O transpulmonary pressure(Ptp), 5 µg/ml MCh constricted the airways to a maximum of 18 ± 3%. At 30 cmH2O Ptp, MCh resultedin less constriction (to 31 ± 5%). Bradykinin increased airwaywall area at 4 and 30 cmH2O Ptp(159 ± 6 and 152 ± 4%, respectively;P < 0.0001). At 4 cmH2O Ptp, bradykinin decreasedairway luminal area (13 ± 2%; P < 0.01), and the dose-response curve was significantly lower (P = 0.02). At 30 cmH2O, postbradykinin, the maximalairway narrowing was not significantly different (26 ± 5%;P = 0.76). Bradykinin produced substantial airway wall thickening and slight potentiation ofthe MCh-induced airway constriction at low lung volume. At high lung volume, bradykinin increased wall thickness but had no effecton the MCh-induced airway constriction. We conclude that inflammatoryfluid leakage in the airways cannot be a primary cause of airwayhyperresponsiveness.

  相似文献   

10.
Phillips, S. M., H. J. Green, M. A. Tarnopolsky, G. J. F. Heigenhauser, R. E. Hill, and S. M. Grant. Effects of training duration on substrate turnover and oxidation during exercise. J. Appl. Physiol. 81(5):2182-2191, 1996.Adaptations in fat and carbohydrate metabolismafter a prolonged endurance training program were examined using stableisotope tracers of glucose([6,6-2H2]glucose),glycerol([2H5]glycerol),and palmitate([2H2]palmitate).Active, but untrained, males exercised on a cycle for 2 h/day[60% pretraining peak O2consumption (O2 peak) = 44.3 ± 2.4 ml · kg1 · min1]for a total of 31 days. Three cycle tests (90 min at 60% pretraining O2 peak) wereadministered before training (PRE) and after 5 (5D) and 31 (31D) daysof training. Exercise increased the rate of glucose production(Ra) and utilization(Rd) as well as the rate oflipolysis (glycerol Ra) and freefatty acid turnover (FFA Ra/Rd).At 5D, training induced a 10% (P < 0.05) increase in total fat oxidation because of an increase inintramuscular triglyceride oxidation (+63%,P < 0.05) and a decreased glycogenoxidation (16%, P < 0.05).At 31D, total fat oxidation during exercise increased a further 58%(P < 0.01). The pattern of fatutilization during exercise at 31D showed a reduced reliance on plasmaFFA oxidation (FFA Rd) and agreater dependence on oxidation of intramuscular triglyceride, whichincreased more than twofold (P < 0.001). In addition, glucose Raand Rd were reduced at all timepoints during exercise at 31D compared with PRE and 5D. We concludethat long-term training induces a progressive increase in fatutilization mediated by a greater oxidation of fats from intramuscularsources and a reduction in glucose oxidation. Initial changes arepresent as early as 5D and occur before increases in muscle maximalmitochondrial enzyme activity [S. M. Phillips, H. J. Green, M. A. Tarnopolsky, G. J. F. Heigenhauser, and S. M. Grant.Am. J. Physiol. 270 (Endocrinol. Metab. 33):E265-E272, 1996].

  相似文献   

11.
Schuessler, Thomas F., Stewart B. Gottfried, and Jason H. T. Bates. A model of the spontaneously breathing patient: applications to intrinsic PEEP and work of breathing.J. Appl. Physiol. 82(5):1694-1703, 1997.Intrinsic positive end-expiratory pressure(PEEPi) and inspiratory work ofbreathing (WI) are important factors in the management of severe obstructive respiratory disease. Weused a computer model of spontaneously breathing patients with chronicobstructive pulmonary disease to assess the sensitivity of measurementtechniques for dynamic PEEPi(PEEPi dyn) andWI to expiratory muscle activity(EMA) and cardiogenic oscillations (CGO) on esophageal pressure.Without EMA and CGO, bothPEEPi dyn andWI were accurately estimated(r = 0.999 and 0.95, respectively). Addition of moderate EMA causedPEEPi dyn andWI to be systematically overestimated by 141 and 52%, respectively. Furthermore, CGOintroduced large random errors, obliterating the correlation betweenthe true and estimated values for bothPEEPi dyn(r = 0.29) andWI (r = 0.38). Thus the accurateestimation of PEEPi dyn andWI requires steps to be taken toameliorate the adverse effects of both EMA and CGO. Taking advantage ofour simulations, we also investigated the relationship betweenPEEPi dyn and staticPEEPi(PEEPi stat). ThePEEPi dyn/PEEPi statratio decreased as stress adaptation in the lung was increased,suggesting that heterogeneity of expiratory flow limitation isresponsible for the discrepancies betweenPEEPi dyn andPEEPi stat thathave been reported in patients with severe airwayobstruction.

  相似文献   

12.
Brimioulle, Serge, Philippe Lejeune, and Robert Naeije.Effects of hypoxic pulmonary vasoconstriction on pulmonary gasexchange. J. Appl. Physiol. 81(4):1535-1543, 1996.Several reports have suggested that hypoxicpulmonary vasoconstriction (HPV) might result in deterioration ofpulmonary gas exchange in severe hypoxia. We therefore investigated theeffects of HPV on gas exchange in normal and diseased lungs. Weincorporated a biphasic HPV stimulus-response curve observed in intactdogs (S. Brimioulle, P. Lejeune, J. L. Vachièry, M. Delcroix, R. Hallemans, and R. Naeije, J. Appl.Physiol. 77: 476-480, 1994) into a 50-compartment lung model (J. B. West, Respir.Physiol. 7: 88-110, 1969) to control the amount ofblood flow directed to each lung compartment according to the localhypoxic stimulus. The resulting model accurately reproduced the bloodgas modifications caused by HPV changes in dogs with acute lung injury.In single lung units, HPV had a moderate protective effect on alveolaroxygenation, which was maximal at near-normal alveolarPO2 (75-80 Torr), mixed venousPO2 (35 Torr), andPO2 at which hemoglobin is 50%saturated (24 Torr). In simulated diseased lungs associated with40-60 Torr arterial PO2,however, HPV increased arterial PO2 by 15-20 Torr. We conclude that HPV can improve arterialoxygenation substantially in respiratory failure.

  相似文献   

13.
We describe thebiochemical properties of an eicosanoid-modulated Clchannel and assess the mechanisms by which the epoxyeicosatrienoic acids (EETs) alter both its unitary conductance and its openprobability (Po). After a purification protocolinvolving wheat-germ agglutinin affinity and anion-exchangechromatography, the proteins were sequentially inserted into liposomes,which were then fused into PLBs. Functional and biochemicalcharacterization tests confirm that the Cl channel is a55-kDa glycosylated monomer with voltage- and Ca2+concentration-independent activity. 5,6- and 8,9-EET decreased theconductance of the native channel (control conductance: 70 ± 5 pSin asymmetrical 50 mM trans/250 mM cis CsCl) in aconcentration-dependent manner, with respective 50% inhibitoryconcentration values of 0.31 and 0.42 µM. These regioisomerssimilarly decreased the conductance of the purified channel (controlconductance value: 75 ± 5 pS in asymmetrical 50 mMtrans/250 mM cis CsCl), which had been stripped of its native proteic and lipidic environment. On the other hand, 5,6- and 8,9-EETs decreased the Po of the nativechannel with respective 50% inhibitory concentration values of 0.27 and 0.30 µM but failed to alter the Po of thepurified protein. Thus we suggest that the effects of these EETs onchannel conductance likely result from direct interactions ofEET anions with the channel pore, whereas the alterationof Po requires a lipid environment of specificcomposition that is lost on solubilization and purification of the protein.

  相似文献   

14.
Yang, X. X., W. S. Powell, M. Hojo, and J. G. Martin.Hyperpnea-induced bronchoconstriction is dependent ontachykinin-induced cysteinyl leukotriene synthesis. J. Appl. Physiol. 82(2): 538-544, 1997.The purposeof the study was to test the hypothesis that tachykinins mediatehyperpnea-induced bronchoconstriction indirectly by triggeringcysteinyl leukotriene (LT) synthesis in the airways. Guinea pigs(350-600 g) were anesthetized with xylazine and pentobarbital sodium and received hyperpnea challenge (tidal volume 3.5-4.0 ml,frequency 150 breaths/min) with either humidified isocapnic gas(n = 6) or dry gas(n = 7). Dry gas challenge wasperformed on animals that received MK-571(LTD4 antagonist; 2 mg/kg iv; n = 5), capsaicin(n = 4), neurokinin (NK) antagonists[NK1 (CP-99994) + NK2 (SR-48968) (1 mg/kg iv);n = 6], or theH1 antihistamine pyrilamine (2 mg/kg iv; n = 5). We measured thetracheal pressure and collected bile for 1 h before and 2 h afterhyperpnea challenge. We examined the biliary excretion of cysteinylLTs; the recovery of radioactivity in bile after instillation of 1 µCi [3H]LTC4intratracheally averaged 24% within 4 h(n = 2). The major cysteinyl LTidentified was LTD4 (32% recoveryof radioactivity). Cysteinyl LTs were purified from bile of animalsundergoing hyperpnea challenge by using reverse-phase high-pressureliquid chromatography and quantified by radioimmunoassay. There was asignificant increase in the peak value of tracheal pressure afterchallenge, indicating bronchoconstriction in dry gas-challenged animalsbut not after humidified gas challenge. MK-571, capsaicin, and NKantagonists prevented the bronchoconstriction; pyrilamine didnot. Cysteinyl LT levels in the bile after challenge weresignificantly increased from baseline in dry gas-challenged animals(P < 0.05) and were higher than inthe animals challenged with humidified gas or dry gas-challengedanimals treated with capsaicin or NK antagonists (P < 0.01). The results indicatethat isocapnic dry gas hyperpnea-induced bronchoconstriction is LTmediated and the role of tachykinins in the response is indirectthrough release of LTs. Endogenous histamine does not contribute to theresponse.

  相似文献   

15.
Reinertsen, R. E., V. Flook, S. Koteng, and A. O. Brubakk.Effect of oxygen tension and rate of pressure reduction duringdecompression on central gas bubbles. J. Appl.Physiol. 84(1): 351-356, 1998.Reduction inascent speed and an increase in theO2 tension in the inspired airhave been used to reduce the risk for decompression sickness. It haspreviously been reported that decompression speed andO2 partial pressure are linearly related for human decompressions from saturation hyperbaric exposures. The constant of proportionality K(K = rate/partial pressure of inspiredO2) indicates the incidence ofdecompression sickness. The present study investigated the relationshipamong decompression rate, partial pressure of inspiredO2, and the number of central gasbubbles after a 3-h dive to 500 kPa while breathing nitrox with an O2 content of 35 kPa. Weused transesophageal ultrasonic scanning to determine the number ofbubbles in the pulmonary artery of pigs. The results show that, for agiven level of decompression stress, decompression rate andO2 tension in the inspired air canbe traded off against each other by using pulmonary artery bubbles asan end point. The results also seem to confirm that decompressions thathave a high K value are morestressful.

  相似文献   

16.
The hypothesis that the intracellularNa+ concentration([Na+]i)is a regulator of the epithelialNa+ channel (ENaC) was tested withthe Xenopus oocyte expression systemby utilizing a dual-electrode voltage clamp.[Na+]iaveraged 48.1 ± 2.2 meq (n = 27)and was estimated from the amiloride-sensitive reversal potential.[Na+]iwas increased by direct injection of 27.6 nl of 0.25 or 0.5 MNa2SO4.Within minutes of injection,[Na+]istabilized and remained elevated at 97.8 ± 6.5 meq(n = 9) and 64.9 ± 4.4 (n = 5) meq 30 min after theinitial injection of 0.5 and 0.25 MNa2SO4,respectively. This increase of[Na+]icaused a biphasic inhibition of ENaC currents. In oocytes injected with0.5 MNa2SO4(n = 9), a rapid decrease of inwardamiloride-sensitive slope conductance(gNa) to 0.681 ± 0.030 of control within the first 3 min and a secondary, slowerdecrease to 0.304 ± 0.043 of control at 30 min were observed.Similar but smaller inhibitions were also observed with the injectionof 0.25 MNa2SO4.Injection of isotonicK2SO4(70 mM) or isotonicK2SO4made hypertonic with sucrose (70 mMK2SO4-1.2M sucrose) was without effect. Injection of a 0.5 M concentration ofeitherK2SO4,N-methyl-D-glucamine (NMDG) sulfate, or 0.75 M NMDG gluconate resulted in a much smaller initial inhibition (<14%) and little or no secondary decrease. Thusincreases of[Na+]ihave multiple specific inhibitory effects on ENaC that can betemporally separated into a rapid phase that was complete within 2-3 min and a delayed slow phase that was observed between 5 and 30 min.

  相似文献   

17.
Inwardlyrectifying K+ current(IKir) infreshly isolated bovine retinal pigment epithelial (RPE) cells wasstudied in the whole cell recording configuration of the patch-clamptechnique. When cells were dialyzed with pipette solution containing noATP, IKir randown completely in <10 min [half time(t1/2) = 1.9 min]. In contrast, dialysis with 2 mM ATP sustainedIKir for 10 min or more. Rundown was also prevented with 4 mM GTP or ADP. When 0.5 mMATP was used,IKir ran down by~71%. Mg2+ was a criticalcofactor because rundown occurred when the pipette solution contained 4 mM ATP but no Mg2+(t1/2 = 1.8 min).IKir also randown when the pipette solution contained 4 mMMg2+ + 4 mM5'-adenylylimidodiphosphate(t1/2 = 2.7 min)or 4 mM adenosine 5'-O-(3-thiotriphosphate)(t1/2 = 1.9 min),nonhydrolyzable and poorly hydrolyzable ATP analogs, respectively. Weconclude that the sustained activity ofIKirin bovine RPE requires intracellular MgATP and that the underlyingmechanism may involve ATP hydrolysis.

  相似文献   

18.
Lee, Dae T., Michael M. Toner, William D. McArdle, IoannisS. Vrabas, and Kent B. Pandolf. Thermal and metabolic responses tocold-water immersion at knee, hip, and shoulder levels.J. Appl. Physiol. 82(5):1523-1530, 1997.To examine the effect of cold-water immersion atdifferent depths on thermal and metabolic responses, eight men (25 yrold, 16% body fat) attempted 12 tests: immersed to the knee (K), hip(H), and shoulder (Sh) in 15 and 25°C water during both rest (R) orleg cycling [35% peak oxygen uptake; (E)] for up to 135 min. At 15°C, rectal (Tre)and esophageal temperatures(Tes) between R and E were notdifferent in Sh and H groups (P > 0.05), whereas both in K group were higher during E than R(P < 0.05). At 25°C,Tre was higher(P < 0.05) during E than R at alldepths, whereas Tes during E washigher than during R in H and K groups.Tre remained at control levels inK-E at 15°C, K-E at 25°C, and in H-E groups at 25°C,whereas Tes remained unchanged inK-E at 15°C, in K-R at 15°C, and in all 25°C conditions (P > 0.05). During R and E, themagnitude of Tre change wasgreater (P < 0.05) than themagnitude of Tes change in Sh andH groups, whereas it was not different in the K group(P > 0.05). Total heat flow wasprogressive with water depth. During R at 15 and 25°C, heatproduction was not increased in K and H groups from control level(P > 0.05) but it did increase in Shgroup (P < 0.05). The increase inheat production during E compared with R was smaller(P < 0.05) in Sh (121 ± 7 W/m2 at 15°C and 97 ± 6 W/m2 at 25°C) than in H (156 ± 6 and 126 ± 5 W/m2,respectively) and K groups (155 ± 4 and 165 ± 6 W/m2, respectively). These datasuggest that Tre andTes respond differently duringpartial cold-water immersion. In addition, water levels above knee in15°C and above hip in 25°C cause depression of internal temperatures mainly due to insufficient heat production offsetting heatloss even during light exercise.

  相似文献   

19.
Whole cellpatch-clamp techniques were used to investigate amiloride-sensitivesodium conductance (GNa) in the everted initial collecting tubule of Ambystoma. Accessibility to both theapical and basolateral membranes made this preparation ideal forstudying the regulation of sodium transport by insulin.GNa accounted for 20% of total cell conductance(GT) under control conditions. A restingmembrane potential of 75 ± 2 mV (n = 7)together with the fact that GT is stable withtime suggested that the cells studied were viable. Measurements ofcapacitance and use of a known uncoupling agent, heptanol, suggestedthat cells were not electrically coupled. Thus the values ofGT and GNa represented individual principal cells. Exposure of the basolateral membrane toinsulin (1 mU/ml) for 10-60 min significantly (P < 0.05) increased the normalized GNa [1.2 ± 0.3 nS (n = 6) vs. 2.0 ± 0.4 nS(n = 6)]. Cell-attached patch-clamp techniques wereused to further elucidate the mechanism by which insulin increasesamiloride-sensitive epithelial sodium channel (ENaC) activity. In thepresence of insulin there was no apparent change in either the numberof active levels/patch or the conductance of ENaC. The openprobability increased significantly (P < 0.01) from0.21 ± 0.04 (n = 6) to 0.46 ± 0.07 (n = 6). Thus application of insulin enhanced sodium reabsorption by increasing the fraction of time the channel spent inthe open state.

  相似文献   

20.
Cell-attached recordings revealedK+ channel activity in basolateral membranes ofguinea pig distal colonic crypts. Inwardly rectified currents wereapparent with a pipette solution containing 140 mM K+.Single-channel conductance () was 9 pS at the resting membrane potential. Another inward rectifier with  of 19 pS was observed occasionally. At a holding potential of 80 mV,  was 21 and 41 pS,respectively. Identity as K+ channels was confirmed afterpatch excision by changing the bath ion composition. From reversalpotentials, relative permeability of Na+ overK+ (PNa/PK)was 0.02 ± 0.02, withPRb/PK = 1.1 andPCl/PK < 0.03. Spontaneous open probability (Po) of the 9-pSinward rectifier (gpKir) was voltageindependent in cell-attached patches. Both a low(Po = 0.09 ± 0.01) and a moderate(Po = 0.41 ± 0.01) activity mode wereobserved. Excision moved gpKir to the mediumactivity mode; Po ofgpKir was independent of bath Ca2+activity and bath acidification. Addition of Cl andK+ secretagogues altered Po ofgpKir. Forskolin or carbachol (10 µM)activated the small-conductance gpKir inquiescent patches and increased Po inlow-activity patches. K+ secretagogues, either epinephrine(5 µM) or prostaglandin E2 (100 nM), decreasedPo of gpKir in activepatches. This gpKir may be involved inelectrogenic secretion of Cl and K+ acrossthe colonic epithelium, which requires a large basolateral membraneK+ conductance during maximal Cl secretionand, presumably, a lower K+ conductance during primaryelectrogenic K+ secretion.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号