首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
汪天虹 Rent.  M 《菌物系统》1999,18(3):311-315
采用双载体系统,将携带有瑞氏木霉木糖醇脱氢酶基因的表达质粒pAJ401-xdh1转化已带有树干毕赤氏酵母木糖还原酶基因的重组酿酒酵母H475,构建了同时带有毕赤氏酵母木糖还原酶基因和瑞氏木霉木产基因的重组酿酒酵母HX1,研究了重组酿酒酵母HX1对木听转化利用情况。  相似文献   

2.
采用双载体系统,将携带有瑞氏木霉木糖醇脱氢酶基因的表达质粒pAJ401-Xdh1转化已带有树干毕赤氏酵母木糖还原酶基因的重组酿酒酵母H475,构建了同时带有毕赤氏酵母木糖还原酶基因和瑞氏木霉木糖醇脱氢酶基因的重组酿酒酵母HX1。研究了重组酿酒酵母HX1对木糖的转化利用情况。  相似文献   

3.
随着能源价格的持续上涨, 使用木质纤维素生产燃料乙醇已具有重要的实践意义。木糖是多数木质纤维素水解产物中含量仅次于葡萄糖的一种单糖, 传统乙醇生产菌株酿酒酵母不能利用木糖, 这为使用以木质纤维素为原料发酵生产乙醇带来了困难。多年以来人们试图通过基因工程和细胞融合等方法对其进行改造使其能够代谢木糖生产乙醇。本文主要介绍这方面的研究进展。  相似文献   

4.
5.
酿酒酵母木糖发酵酒精途径工程的研究进展   总被引:17,自引:1,他引:16  
途径工程(Pathway engineering),被称为第三代基因工程,改变代谢流向,开辟新的代谢途径是途径工程的主要目的。利用途径工程理念,对酿酒酵母(Saccharomyces cerevisiae)代谢途径进行理性设计,以拓展这一传统酒精生产菌的底物范围,使其充分利用可再生纤维质水解物中的各种糖分,是酿酒酵母酒精途径工程的研究热点之一。这里介绍了近年来酿酒酵母以木糖为底物的酒精途径工程的研究进展。  相似文献   

6.
根据NCBI中的木糖还原酶基因序列设计引物,利用高保真聚合酶克隆树干毕赤酵母木糖还原酶基因,加A后克隆到质粒pGM-T中,测序验证.然后将目的基因克隆到舍有强启动子的穿梭表达载体p424GPD中,构建含有XYL1基因的重组质粒p424GPD-XYL1.将p424GPD-XYL1转化到大肠杆菌中,提取总蛋白,聚丙烯酰胺凝胶电泳分析.酶活测定确定木糖还原酶基因XYL1在大肠杆菌中得到活性表达,表明表达载体构建成功.表达载体的成功构建为后续构建重组酿酒酵母利用木糖发酵奠定基础.  相似文献   

7.
酿酒酵母乙醇耐性的分子机制及基因工程改造   总被引:5,自引:0,他引:5  
提高工业微生物对毒性代谢产物及高温等环境胁迫因素的耐受性对工业生产具有重要的意义。发酵过程中产生的乙醇对酵母细胞的生长和代谢都具有较强的抑制作用,是酿酒酵母的重要环境胁迫因素之一。对酿酒酵母乙醇耐性的分子机制的研究可为选育具有较强乙醇耐受性的酵母菌种提供理论基础。近年来,通过细胞全局基因转录分析和基因功能分析,对酿酒酵母乙醇耐性的分子机制有了更多新的认识,揭示了很多新的与乙醇耐性相关的基因,并在此基础上,通过对相关基因进行过量表达或敲除,成功提高了酵母菌的乙醇耐性。以下综述了近年来酵母菌乙醇耐性的生物化学与分子生物学机制的研究进展,以及构建具有较高乙醇耐性的酵母菌的基因工程操作。这些研究不仅加深了对酿酒酵母乙醇耐性的机理认识,也可为高效进行生物转化生产生物质能源奠定理论基础。  相似文献   

8.
利用基因工程手段得到重组菌YPH499-3中的spt15有效突变基因,通过表达载体pYX212转化入酿酒酵母原始菌株YPH499中,重新获得酿酒酵母重组菌株。对其性状进行研究,结果表明该菌株能有效利用木糖并共发酵木糖和葡萄糖。在30oC、200r/min,发酵72h时,50g/L木糖的利用率为82.0%,乙醇产率为28.4%;当木糖和葡萄糖以质量比1:1混合发酵时,木糖和葡萄糖的利用率分别为80.4%和100%,乙醇产率为31.4%;同时发现木糖醇的含量极低。从而验证了有效突变基因spt15-10对酿酒酵母共发酵木糖和葡萄糖产酒精的影响。  相似文献   

9.
木糖是纤维素原料水解液中最主要的五碳糖成分,由于野生的酿酒酵母缺乏有效的木糖利用途径,将外源木糖代谢途径整合至酿酒酵母中使其具有发酵木糖生产乙醇的能力是构建纤维素乙醇发酵菌株的关键。国内外学者的研究表明,同一木糖代谢途径导入不同酿酒酵母菌株中,所得到的重组菌发酵性能存在明显差异,表明宿主的遗传背景对菌株利用木糖能力和发酵性能具有重要的影响。就酿酒酵母宿主对重组菌株的木糖发酵性能的影响进行了综述,分析了产生宿主差异的内在机理,为进一步选育高效木糖共发酵菌种提供借鉴。  相似文献   

10.
利用不同强度的启动子调控木糖代谢关键酶活性,构建稳定代谢葡萄糖和木糖产乙醇的重组酿酒酵母。以本实验室专利菌株Saccharomyces cerevisiae Y5为宿主菌,将树干毕赤酵母Pichia stipitis CBS6054的木糖还原酶基因XYL1和木糖醇脱氢酶基因XYL2置于磷酸甘油酸激酶基因启动子(PGKp)控制下,酿酒酵母Y5内源的木酮糖激酶基因XKS1分别由己糖激酶基因启动子(HXK2p)及其内源启动子(XKS1p)控制。这3个基因连同各自表达元件导入宿主细胞中,打通其木糖上游代谢途径。酶活测定结果显示,HXK2p对木酮糖激酶表现出更强的启动效率。重组菌Y5-X3-1中木糖还原酶/木糖醇脱氢酶/木酮糖激酶(XR/XDH/XK)的酶活比值为1∶5∶4,其木糖消耗量是宿主菌的5倍,最高乙醇产量为24.35 g/L,达到理论值的73%。结果表明,通过调节XYL1、XYL2及XKS1启动子的强度,调控其表达水平,进而改变3种酶的活性水平,对于提高重组酿酒酵母利用木糖发酵产乙醇有明显效果。  相似文献   

11.
从256个自然样品中筛选得到1株可高效转化D-木糖的酵母。通过生理生化和分子生物学方法鉴定, 证实该菌株是属于Candida tropicalis。以该酵母为研究对象, 增加木糖醇脱氢酶表达量, 通过改变代谢流以达到提高酒精产率的目的。以pXY212-XYL2质粒为基础载体, 构建了含有潮霉素抗性的pYX212-XYL2-Hygro, 电击转化进入野生型C. tropicalis, 潮霉素抗性筛选, 得到含高拷贝木糖醇脱氢酶基因的重组菌株C. tropicalis XYL2-7。重组菌的比酶活达到0.5 u/mg protein, 比原始菌株提高了3倍。实验表明, 重组菌木糖醇得率比原始菌株降低了3倍, 酒精得率提高了5倍。首次通过实验验证了热带假丝酵母利用木糖产乙醇的可行性, 这对研究酵母利用秸秆、麦糠、谷壳等纤维质农业废弃物生产燃料乙醇具有重要启示。  相似文献   

12.
代谢工程改善野生酵母利用木糖产乙醇的性能   总被引:1,自引:0,他引:1  
从256个自然样品中筛选得到1株可高效转化D-木糖的酵母。通过生理生化和分子生物学方法鉴定, 证实该菌株是属于Candida tropicalis。以该酵母为研究对象, 增加木糖醇脱氢酶表达量, 通过改变代谢流以达到提高酒精产率的目的。以pXY212-XYL2质粒为基础载体, 构建了含有潮霉素抗性的pYX212-XYL2-Hygro, 电击转化进入野生型C. tropicalis, 潮霉素抗性筛选, 得到含高拷贝木糖醇脱氢酶基因的重组菌株C. tropicalis XYL2-7。重组菌的比酶活达到0.5 u/mg protein, 比原始菌株提高了3倍。实验表明, 重组菌木糖醇得率比原始菌株降低了3倍, 酒精得率提高了5倍。首次通过实验验证了热带假丝酵母利用木糖产乙醇的可行性, 这对研究酵母利用秸秆、麦糠、谷壳等纤维质农业废弃物生产燃料乙醇具有重要启示。  相似文献   

13.
木糖代谢基因表达水平对酿酒酵母重组菌株产物形成的影响   总被引:12,自引:2,他引:12  
以E.coli-S.cerevisiae穿梭质粒YEp24为骨架,将树干毕赤酵母(Pichia stipitis CBS6054)的木糖还原酶(XR)基因XYL1及木糖醇脱氢酶(XDH)基因XYL1分别以不同的相对表达方向置于酿酒酵母的乙醇脱氢酶I(ADH1)启动子和磷酸甘油激酶(PGK)启动子下,构建不同XYL1及XYL2的重组质粒。这些重组质粒分别转化酿酒酵母(H158)受体菌。得到的重组菌株  相似文献   

14.
木糖还原酶催化木糖为木糖醇的反应,是木糖代谢的第一步。将木糖还原酶的原因XYL1引入酿酒酵母中,构建得到儿表达XYL1基因的重组酿酒酵母菌株HYEX2,该重组菌株的木糖还原酶比活力为7.47U/mg。研究表明,该菌株获得转化木糖产生木糖醇的能力,当辅助碳源葡萄糖的浓度为2%,并在发酵30h左右添加木糖,木糖醇的转化率可达到0.97g/g。  相似文献   

15.
Construction of xylose- and xylo-oligosaccharide-fermenting Saccharomyces cerevisiae strains is important, because hydrolysates derived from lignocellulosic biomass contain significant amounts of these sugars. We have obtained recombinant S. cerevisiae strain MA-D4 (D-XKXDHXR), expressing xylose reductase, xylitol dehydrogenase and xylulokinase. In the present study, we generated recombinant strain D-XSD/XKXDHXR by transforming MA-D4 with a β-xylosidase gene cloned from the filamentous fungus Trichoderma reesei. The intracellular β-xylosidase-specific activity of D-XSD/XKXDHXR was high, while that of the control strain was under the limit of detection. D-XSD/XKXDHXR produced ethanol, and xylose accumulated in the culture supernatant under fermentation in a medium containing xylo-oligosaccharides as sole carbon source. β-Xylosidase-specific activity in D-XSD/XKXDHXR declined due to xylose both in vivo and in vitro. D-XSD/XKXDHXR converted xylo-oligosaccharides in an enzymatic hydrolysate of eucalyptus to ethanol. These results indicate that D-XSD/XKXDHXR efficiently converted xylo-oligosaccharides to xylose and subsequently to ethanol.  相似文献   

16.
The activity and the cofactor specificity of xylose reductase and xylitol dehydrogenase were studied in extracts of yeasts from the genera Candida, Kluyveromyces, Pachysolen, Pichia,and Torulopsis grown under microaerobic conditions. It was found that xylitol dehydrogenase in all of the yeast species studied is specific for NAD+; xylose reductase in the xylitol-producing species C. didensiae, C. intermediae, C. parapsilosis, C. silvanorum, C. tropicalis, Kl. fragilis, Kl. marxianus, P. guillermondii, andT. molishiama is specific for NADPH; and xylose reductase in the ethanol-producing species P. stipitis, C. shehatae, and Pa. tannophilus is specific for both NADPH and NADH.  相似文献   

17.
The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion.  相似文献   

18.
随着能源价格的持续上涨,使用木质纤维素生产燃料乙醇已具有重要的实践意义.木糖是多数木质纤维素水解产物中含量仅次于葡萄糖的一种单糖,传统乙醇生产菌株酿酒酵母不能利用木糖,这为使用以木质纤维素为原料发酵生产乙醇带来了困难.多年以来人们试图通过基因工程和细胞融合等方法对其进行改造使其能够代谢木糖生产乙醇.本文主要介绍这方面的研究进展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号