首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
半胱氨酸合成酶的产物半胱氨酸是植物中含硫氨基酸的重要来源,大蒜中含硫氨基酸丰富,研究大蒜半胱氨酸合成酶的性质及生物学功能以明确其在大蒜硫代谢中的作用。利用生物信息学技术分析从NCBI数据库中获得的3个大蒜的半胱氨酸合成酶基因(AsGCS2、AsGCS3和AsGCS4)的开放阅读框,预测其蛋白序列、分子量大小、蛋白质特性、亚细胞定位、系统进化等特征;通过荧光定量PCR分析了3个半胱氨酸合成酶的组织表达特性。结果显示,AsGCS2、AsGCS3和AsGCS4的开放态读码框长度分别为1 152 bp、1 296 bp和1 236 bp;其编码蛋白的理论相对分子量分别为40.6 k D、34.1 k D和36.1 k D。AsGCS2被亚细胞定位于叶绿体中,而AsGCS3和As GCS4均被定位于细胞质中。氨基酸比对结果表明,AsGCS2与AsGCS3相似度为70%,与AsGCS4相似度为59%;而AsGCS3与As GCS4相似度为68%。进化分析图表明,AsGCS2属于Bsas2亚家族,AsGCS3属于Bsas1亚家族,AsGCS4属于Bsas6亚家族。荧光定量PCR结果表明,大蒜不同CSase的组织特异性是不同的,AsGCS2在叶中表达量最高,ASGCS3在根中表达量最高,而ASGCS4在叶和根中都有较高的表达量。3个半胱氨酸合成酶基因分别属于不同的Bsas亚家族,它们的组织表达特性也不相同,它们在大蒜不同组织中的半胱氨酸合成途径中起作用。  相似文献   

2.
西伯利亚蓼半胱氨酸合成酶基因的克隆与表达   总被引:1,自引:0,他引:1  
摘要: 半胱氨酸合成酶是植物半胱氨酸合成反应的关键限速酶。文中应用RACE技术从西伯利亚蓼中成功克隆了半胱氨酸合成酶基因(GenBank登录号: EU597481), 命名为PcCSase1, 该基因全长cDNA为1 260 bp, 编码382个氨基酸。经生物信息学分析, 初步确定PcCSase1的N端前16个氨基酸为信号肽, 并引导PcCSase1蛋白定位于胞质, 为胞质型半胱氨酸合成酶。同源序列分析表明, 此蛋白与其他植物半胱氨酸合成酶成熟蛋白序列高度保守, 氨基酸相似性达到90%左右。荧光定量RT-PCR分析表明, PcCSase1在西伯利亚蓼的叶、茎和地下茎中均有表达, 叶中表达最高, 茎和地下茎次之, 在3% NaHCO3胁迫过程中, 该基因在叶、茎和地下茎中均在第2 d表达量最高。将PcCSase1转入酿酒酵母INVSc1, 结果显示培养基中半胱氨酸和菌体中谷胱甘肽含量均有显著增加, 在10% NaHCO3和5 mol/L NaCl胁迫下, 转基因INVSc1-pYES2-PcCSase1菌株的存活率明显高于对照INVSc1-pYES2, 证明PcCSase1基因具有耐高盐的作用。  相似文献   

3.
目的:探讨红霉素对支气管上皮细胞16-HBE谷氨酰半胱氨酸合成酶(γ-GCS)和谷胱甘肽(GSH)的影响。方法:应用红霉素5μg/ml分别孵育细胞16-HBE细胞2h,8h,16h,24h。分别应用显色法,Westemblot和荧光定量PCR方法检测细胞内GSH,γ-GCS重链蛋白和mRNA的表达。结果:经红霉素孵育后,16、24h后,细胞内GSH、γ-GCS重链蛋白和mRNA的表达较对照组增加。结论:红霉素对支气管上皮细胞谷氨酰半胱氨酸合成酶(γ-GCS)和GSH的合成有上调作用。  相似文献   

4.
为研究微囊藻毒素合成酶基因的蛋白表达水平与环境因子间的关系,文章以位于微囊藻毒素合成基因簇两个操纵子中的mcyC和mcyI基因为代表,利用制备的高效McyC和McyI多克隆抗体,采用Western Blot技术检测了铁胁迫对微囊藻毒素合成酶McyC和McyI蛋白表达水平的影响。研究结果表明,在铁胁迫下,铜绿微囊藻PCC 7806藻细胞内McyC和McyI的蛋白水平变化趋势一致,且与相同条件下藻细胞内毒素的合成产量变化一致,暗示铁胁迫直接通过影响微囊藻毒素合成酶的表达水平调控毒素的合成。研究为进一步了解微囊藻毒素的合成机制提供了基础材料。  相似文献   

5.
【目的】稻纵卷叶螟Cnaphalocrocis medinalis(Guenee)是水稻上的四大害虫之一,危害较为严重,近年来以几丁质合成和代谢过程作为害虫防治的标靶研究已成为热点。为阐明几丁质合成酶及合成通路上关键酶的作用,本研究开展了对稻纵卷叶螟几丁质合成酶及合成相关通路上关键酶的克隆及时空表达分析。【方法】本研究基于稻纵卷叶螟转录组,结合PCR及RACE技术,克隆了几丁质合成酶代谢通路上的4条基因的c DNA全长;利用生物信息学软件对序列进行结构预测、序列比对和进化分析;采用实时定量PCR技术研究了4条基因在不同虫态和幼虫的不同组织中的表达情况。【结果】获得了2条几丁质合成酶序列及2条合成通路上的基因序列,包括几丁质合成酶A(Chitin synthase A,CHSA),几丁质合成酶B(Chitin synthase B,CHSB),N-乙酰葡糖胺磷酸变位酶(Phosphoacetylglucosamine mutase,PGM和UDP-N-乙酰葡萄糖焦磷酸化酶(UDP-N-acetylglucosamine pyrophosphorylase,UAP),并分别命名为Cm CHSA、Cm CHSB、Cm PGM和Cm UAP;序列分析显示Cm CHSA序列全长4 868 bp,编码1 564个氨基酸。Cm CHSB序列全长4 651 bp,编码1 525个氨基酸。Cm PGM全长1 934 bp,编码548个氨基酸。Cm UAP序列全长1 837 bp,编码487个氨基酸。实时定量研究表明,Cm UAP和Cm PGM在血淋巴中表达量最高,Cm CHSA在头部和表皮中表达量较高,而Cm CHSB在中肠中表达量最高。【结论】本研究得到了稻纵卷叶螟几丁质合成路径的4个关键酶基因c DNA全长,它们在稻纵卷叶螟的不同组织和虫态中呈现了差异显著的时空表达,本文为进一步探究稻纵卷叶螟的几丁质合成酶的生理功能和几丁质的合成代谢途径奠定了基础。  相似文献   

6.
【背景】柠檬酸合成酶是碳代谢途径的中心酶,其在三羧酸循环(tricarboxylic acid cycle,TCA)、氨基酸合成和乙醛酸循环中发挥着重要作用,是柠檬酸合成的关键酶。本论文所选用的是一株高产柠檬酸的黑曲霉菌株CGMCC10142。【目的】克隆柠檬酸合成酶关键基因,构建柠檬酸合成酶的敲除菌株并鉴定其在黑曲霉菌株高产柠檬酸过程中的功能及影响。【方法】采用根癌农杆菌转化方法并利用同源重组原理,采用抗性筛选和致死型反向筛选的双重筛选方法获得正确敲除株。对转化子在不同碳源下的生长情况进行观察并对柠檬酸发酵过程中菌丝球变化和产酸量进行分析,最后通过荧光定量PCR分析柠檬酸合成酶基因对黑曲霉积累柠檬酸的影响,及其对主要代谢途径中重要酶相关基因和其他的表达量的影响。【结果】以柠檬酸高产菌株黑曲霉CGMCC10142为出发菌,构建一株遗传稳定的柠檬酸合成酶敲除的菌株T1-2。结果发现该菌株在以葡萄糖为碳源的培养基上生长缓慢并且产生孢子量减少。通过摇瓶发酵产酸实验,结果表明敲除菌在84 h产酸量为64.3 g/L,相对于出发菌的98.7g/L降低了34.85%。通过荧光定量PCR发现柠檬酸合成酶的表达量是下降的,同时重要酶的表达量都下降。【结论】该菌株的柠檬酸合成酶基因对柠檬酸积累具有重要作用,但存在其他同工酶基因,该基因敲除仅使产酸合成降低34.85%,同时发现该柠檬酸合成酶的顺畅表达有助于主代谢途径中各关键酶的高效表达,本研究可为研究黑曲霉高产柠檬酸机理奠定基础。  相似文献   

7.
Methanopyrus sp.SNP6是一株极端嗜热产甲烷菌,本文将其黄素腺嘌呤二核苷酸合成酶基因(fads)进行生物信息学分析并在大肠杆菌中加以表达。生物信息学分析发现,FAD合成酶由150个氨基酸残基组成,理论分子量为17 049.93,等电点为8.95;三级结构为同源二聚体,每个单体含有五股平行的(折叠,比典型的核苷酸结合折叠少一个β折叠。扩增fads基因,构建重组表达质粒p ET28b(+)-fads,在大肠杆菌BL21(DE3)中诱导表达。实验结果显示,该FAD合成酶能在大肠杆菌中高效表达,但部分蛋白以包涵体形式存在。本研究对Methanopyrus sp.SNP6源FAD合成酶进行了蛋白质序列和结构的分析,并首次实现了其在大肠杆菌中的稳定高效表达,为后续该酶的研究和开发提供了基础。  相似文献   

8.
海藻糖主要作用是作为生物体的结构组分、以及保护生物膜和保护蛋白质。在灰树花中 ,海藻糖在干重中所占比例最高可达到 1 5 %~ 1 7% ,说明灰树花合成海藻糖的能力很强。将灰树花海藻糖合成酶基因克隆 ,并在大肠杆菌表达系统里表达。表达量为 1 90mg L。通过活性测定 ,证明在大肠杆菌中表达的海藻糖合成酶具有酶活性 ,结合基因工程和酶工程方法 ,为合成海藻糖的研究提供了新的方向  相似文献   

9.
大肠杆菌BL21(pTrc-gsh)与酵母耦联合成谷胱甘肽的研究   总被引:5,自引:0,他引:5  
谷胱甘肽 (GSH)广泛存在于动、植物和微生物细胞内 ,有参与氨基酸的跨膜运输、维持细胞的还原状态等重要生理功能 ,在临床、保健品、食品等行业有广泛用途 ,如 :重金属解毒、抗氧化延缓衰老等 ,我国基本靠进口。开发高效、低成本的GSH生产工艺势在必行。谷胱甘肽的制备有化学合成法[1 ] 、提取法[2 ] 、微生物发酵法[3] 、酶法[4] 等。由于酶法合成GSH的产率高、后续的分离提取较简单而倍受关注。它是以ATP为能量供体、由γ 谷氨酰半胱氨酸合成酶 (GSHI)和谷胱甘肽合成酶 (GSHII)连续催化合成的 :谷氨酸 半胱氨酸 A…  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号