首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To investigate West Nile virus (WNV) circulation in rural populations in Gabon, we undertook a large serological survey focusing on human rural populations, using two different ELISA assays. A sample was considered positive when it reacted in both tests. A total of 2320 villagers from 115 villages were interviewed and sampled. Surprisingly, the WNV-specific IgG prevalence was high overall (27.2%) and varied according to the ecosystem: 23.7% in forested regions, 21.8% in savanna, and 64.9% in the lakes region. The WNV-specific IgG prevalence rate was 30% in males and 24.6% in females, and increased with age. Although serological cross-reactions between flaviviruses are likely and may be frequent, these findings strongly suggest that WNV is widespread in Gabon. The difference in WNV prevalence among ecosystems suggests preferential circulation in the lakes region. The linear increase with age suggests continuous exposure of Gabonese populations to WNV. Further investigations are needed to determine the WNV cycle and transmission patterns in Gabon.  相似文献   

2.
Xu C  Bai T  Iuliano AD  Wang M  Yang L  Wen L  Zeng Y  Li X  Chen T  Wang W  Hu Y  Yang L  Li Z  Zou S  Li D  Wang S  Feng Z  Zhang Y  Yu H  Yang W  Wang Y  Widdowson MA  Shu Y 《PloS one》2011,6(4):e17919

Background

Mainland China experienced pandemic influenza H1N1 (2009) virus (pH1N1) with peak activity during November-December 2009. To understand the geographic extent, risk factors, and attack rate of pH1N1 infection in China we conducted a nationwide serological survey to determine the prevalence of antibodies to pH1N1.

Methodology/Principal Findings

Stored serum samples (n = 2,379) collected during 2006-2008 were used to estimate baseline serum reactogenicity to pH1N1. In January 2010, we used a multistage-stratified random sampling method to select 50,111 subjects who met eligibility criteria and collected serum samples and administered a standardized questionnaire. Antibody response to pH1N1 was measured using haemagglutination inhibition (HI) assay and the weighted seroprevalence was calculated using the Taylor series linearization method. Multivariable logistic regression analyses were used to examine risk factors for pH1N1 seropositivity. Baseline seroprevalence of pH1N1 antibody (HI titer ≥40) was 1.2%. The weighted seroprevalence of pH1N1 among the Chinese population was 21.5%(vaccinated: 62.0%; unvaccinated: 17.1%). Among unvaccinated participants, those aged 6-15 years (32.9%) and 16-24 years (30.3%) had higher seroprevalence compared with participants aged 25–59 years (10.7%) and ≥60 years (9.9%, P<0.0001). Children in kindergarten and students had higher odds of seropositivity than children in family care (OR: 1.36 and 2.05, respectively). We estimated that 207.7 million individuals (15.9%) experienced pH1N1 infection in China.

Conclusions/Significance

The Chinese population had low pre-existing immunity to pH1N1 and experienced a relatively high attack rate in 2009 of this virus. We recommend routine control measures such as vaccination to reduce transmission and spread of seasonal and pandemic influenza viruses.  相似文献   

3.
A novel H1N1 influenza virus emerged in 2009 (pH1N1) to become the first influenza pandemic of the 21st century. This virus is now cocirculating with highly pathogenic H5N1 avian influenza viruses in many parts of the world, raising concerns that a reassortment event may lead to highly pathogenic influenza strains with the capacity to infect humans more readily and cause severe disease. To investigate the virulence of pH1N1-H5N1 reassortant viruses, we created pH1N1 (A/California/04/2009) viruses expressing individual genes from an avian H5N1 influenza strain (A/Hong Kong/483/1997). Using several in vitro models of virus replication, we observed increased replication for a reassortant CA/09 virus expressing the hemagglutinin (HA) gene of HK/483 (CA/09-483HA) relative to that of either parental CA/09 virus or reassortant CA/09 expressing other HK/483 genes. This increased replication correlated with enhanced pathogenicity in infected mice similar to that of the parental HK/483 strain. The serial passage of the CA/09 parental virus and the CA/09-483HA virus through primary human lung epithelial cells resulted in increased pathogenicity, suggesting that these viruses easily adapt to humans and become more virulent. In contrast, serial passage attenuated the parental HK/483 virus in vitro and resulted in slightly reduced morbidity in vivo, suggesting that sustained replication in humans attenuates H5N1 avian influenza viruses. Taken together, these data suggest that reassortment between cocirculating human pH1N1 and avian H5N1 influenza strains will result in a virus with the potential for increased pathogenicity in mammals.  相似文献   

4.
At this critical juncture when the world has not yet recovered from the threat of avian influenza, the virus has returned in the disguise of swine influenza, a lesser known illness common in pigs. It has reached pandemic proportions in a short time span with health personnel still devising ways to identify the novel H1N1 virus and develop vaccines against it. The H1N1 virus has caused a considerable number of deaths within the short duration since its emergence. Presently, there are no effective methods to contain this newly emerged virus. Therefore, a proper and clear insight is urgently required to prevent an outbreak in the future and make preparations that may be planned well in advance. This review is an attempt to discuss the historical perspective of the swine flu virus, its epidemiology and route of transmission to better understand the various control measures that may be taken to fight the danger of a global pandemic.  相似文献   

5.
Comment on: Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove MD, Hollingsworth TD, et al. WHO Rapid Pandemic Assessment Collaboration. Pandemic potential of a strain of influenza A (H1N1): early findings. Science 2009; 324:1557-61.  相似文献   

6.
Journal of Mathematical Biology - A recent parameter identification technique, the local lagged adapted generalized method of moments, is used to identify the time-dependent disease transmission...  相似文献   

7.

Introduction

Several aspects of the epidemiology of 2009 (H1N1) pandemic influenza have not been accurately determined. We sought to study whether the age distribution of cases differs in comparison with seasonal influenza.

Methods

We searched for official, publicly available data through the internet from different countries worldwide on the age distribution of cases of influenza during the 2009 (H1N1) pandemic influenza period and most recent seasonal influenza periods. Data had to be recorded through the same surveillance system for both compared periods.

Results

For 2009 pandemic influenza versus recent influenza seasons, in USA, visits for influenza-like illness to sentinel providers were more likely to involve the age groups of 5–24, 25–64 and 0–4 years compared with the reference group of >64 years [odds ratio (OR) (95% confidence interval (CI)): 2.43 (2.39–2.47), 1.66 (1.64–1.69), and 1.51 (1.48–1.54), respectively]. Pediatric deaths were less likely in the age groups of 2–4 and <2 years than the reference group of 5–17 years [OR (95% CI): 0.46 (0.25–0.85) and 0.49 (0.30–0.81), respectively]. In Australia, notifications for laboratory-confirmed influenza were more likely in the age groups of 10–19, 5–9, 20–44, 45–64 and 0–4 years than the reference group of >65 years [OR (95% CI): 7.19 (6.67–7.75), 5.33 (4.90–5.79), 5.04 (4.70–5.41), 3.12 (2.89–3.36) and 1.89 (1.75–2.05), respectively]. In New Zealand, consultations for influenza-like illness by sentinel providers were more likely in the age groups of <1, 1–4, 35–49, 5–19, 20–34 and 50–64 years than the reference group of >65 years [OR (95% CI): 2.38 (1.74–3.26), 1.99 (1.62–2.45), 1.57 (1.30–1.89), 1.57 (1.30–1.88), 1.40 (1.17–1.69) and 1.39 (1.14–1.70), respectively].

Conclusions

The greatest increase in influenza cases during 2009 (H1N1) pandemic influenza period, in comparison with most recent seasonal influenza periods, was seen for school-aged children, adolescents, and younger adults.  相似文献   

8.
刘超  陈薇  李艳梅 《生命科学》2011,(10):1034-1039
2009年4月初,在墨西哥和美国出现一种新型甲型(H1N1)流感病毒。该病毒通过人-人传播迅速在全球范围蔓延。该病毒拥有来自人流感病毒、禽流感病毒和猪流感病毒的基因片段,其HA基因与引发1918年大流行的流感病毒株的HA基因同源性很高。该病毒倾向于感染儿童、青少年、孕妇,以及具有心肺疾病的人。据观察,它在人群中的传播能力高于季节性流感。部分感染患者具有在季节性流感中罕见的呕吐和腹泻症状。先前的流感病毒大流行和2009年爆发的甲型H1N1流感病毒大流行表明,由于流感病毒变异速度快、容易发生基因重排,新产生的变异毒株很可能造成新的大流行,威胁人类健康。由于禽流感病毒和人流感病毒都能感染猪,猪被认为是通过基因重排生成新的大流行病毒的"混合容器"。  相似文献   

9.
10.
11.
Huo X  Qi X  Tang F  Zu R  Li L  Wu B  Qin Y  Ji H  Fu J  Wang S  Tian H  Hu Z  Yang H  Zhou M  Wang H  Zhu F 《PloS one》2011,6(3):e17995

Background

We investigated the seropositive rates and persistence of antibody against pandemic (H1N1) 2009 virus (pH1N1) in pregnant women and voluntary blood donors after the second wave of the pandemic in Nanjing, China.

Methodology/Principal Findings

Serum samples of unvaccinated pregnant women (n = 720) and voluntary blood donors (n = 320) were collected after the second wave of 2009 pandemic in Nanjing. All samples were tested against pH1N1 strain (A/California/7/2009) with hemagglutination inhibition assay. A significant decline in seropositive rates, from above 50% to about 20%, was observed in pregnant women and voluntary blood donors fifteen weeks after the second wave of the pandemic. A quarter of the samples were tested against a seasonal H1N1 strain (A/Brisbane/59/2007). The antibody titers against pH1N1 strain were found to correlate positively with those against seasonal H1N1 strain. The correlation was modest but statistically significant.

Conclusions and Significance

The high seropositive rates in both pregnant women and voluntary blood donors suggested that the pH1N1 virus had widely spread in these two populations. Immunity derived from natural infection seemed not to be persistent well.  相似文献   

12.

Background

Pandemic influenza A(H1N1) (pH1N1) was first identified in North America in April 2009. Vaccination against pH1N1 commenced in the U.S. in October 2009 and continued through January 2010. The objective of this study was to evaluate the cost-effectiveness of pH1N1 vaccination.

Methodology

A computer simulation model was developed to predict costs and health outcomes for a pH1N1 vaccination program using inactivated vaccine compared to no vaccination. Probabilities, costs and quality-of-life weights were derived from emerging primary data on pH1N1 infections in the US, published and unpublished data for seasonal and pH1N1 illnesses, supplemented by expert opinion. The modeled target population included hypothetical cohorts of persons aged 6 months and older stratified by age and risk. The analysis used a one-year time horizon for most endpoints but also includes longer-term costs and consequences of long-term sequelae deaths. A societal perspective was used. Indirect effects (i.e., herd effects) were not included in the primary analysis. The main endpoint was the incremental cost-effectiveness ratio in dollars per quality-adjusted life year (QALY) gained. Sensitivity analyses were conducted.

Results

For vaccination initiated prior to the outbreak, pH1N1 vaccination was cost-saving for persons 6 months to 64 years under many assumptions. For those without high risk conditions, incremental cost-effectiveness ratios ranged from $8,000–$52,000/QALY depending on age and risk status. Results were sensitive to the number of vaccine doses needed, costs of vaccination, illness rates, and timing of vaccine delivery.

Conclusions

Vaccination for pH1N1 for children and working-age adults is cost-effective compared to other preventive health interventions under a wide range of scenarios. The economic evidence was consistent with target recommendations that were in place for pH1N1 vaccination. We also found that the delays in vaccine availability had a substantial impact on the cost-effectiveness of vaccination.  相似文献   

13.
The emergence of the influenza (H1N1) 2009 virus provided a unique opportunity to study the evolution of a pandemic virus following its introduction into the human population. Virological and clinical surveillance in the UK were comprehensive during the first and second waves of the pandemic in 2009, with extensive laboratory confirmation of infection allowing a detailed sampling of representative circulating viruses. We sequenced the complete coding region of the haemagglutinin (HA) segment of 685 H1N1 pandemic viruses selected without bias during two waves of pandemic in the UK (April-December 2009). Phylogenetic analysis showed that although temporal accumulation of amino acid changes was observed in the HA sequences, the overall diversity was less than that typically seen for seasonal influenza A H1N1 or H3N2. There was co-circulation of multiple variants as characterised by signature amino acid changes in the HA. A specific substitution (S203T) became predominant both in UK and global isolates. No antigenic drift occurred during 2009 as viruses with greater than four-fold reduction in their haemagglutination inhibition (HI) titre ("low reactors") were detected in a low proportion (3%) and occurred sporadically. Although some limited antigenic divergence in viruses with four-fold reduction in HI titre might be related to the presence of 203T, additional studies are needed to test this hypothesis.  相似文献   

14.

Background:

Because many Aboriginal Canadians had severe cases of pandemic (H1N1) 2009 influenza, they were given priority access to vaccine. However, it was not known if the single recommended dose would adequately protect people at high risk, prompting our study to assess responses to the vaccine among Aboriginal Canadians.

Methods:

We enrolled First Nations and Métis adults aged 20–59 years in our prospective cohort study. Participants were given one 0.5-mL dose of ASO3-adjuvanted pandemic (H1N1) 2009 vaccine (Arepanrix, GlaxoSmithKline Canada). Blood samples were taken at baseline and 21–28 days after vaccination. Paired sera were tested for hemagglutination-inhibiting antibodies at a reference laboratory. To assess vaccine safety, we monitored the injection site symptoms of each participant for seven days. We also monitored patients for general symptoms within 7 days of vaccination and any use of the health care system for 21–28 days after vaccination.

Results:

We enrolled 138 participants in the study (95 First Nations, 43 Métis), 137 of whom provided all safety data and 136 of whom provided both blood samples. First Nations and Métis participants had similar characteristics, including high rates of chronic health conditions (74.4%–76.8%). Pre-existing antibody to the virus was detected in 34.3% of the participants, all of whom boosted strongly with vaccination (seroprotection rate [titre ≥ 40] 100%, geometric mean titre 531–667). Particpants with no pre-existing antibody also responded well. Fifty-eight of 59 (98.3%) First Nations participants showed seroprotection and a geometric mean titre of 353.6; all 30 Métis participants with no pre-existing antibody showed seroprotection and a geometric mean titre of 376.2. Pain at the injection site and general symptoms frequently occurred but were short-lived and generally not severe, although three participants (2.2%) sought medical attention for general symptoms.

Interpretation:

First Nations and Métis adults responded robustly to ASO3-adjuvanted pandemic (H1N1) 2009 vaccine. Virtually all participants showed protective titres, including those with chronic health conditions.

Trial registration:

ClinicalTrials.gov trial register no. NCT.01001026.During the first wave of the H1N1 pandemic in Canada in 2009, some First Nations communities were severely affected, with younger adults and children most at risk for severe disease.1,2 Whereas Aboriginal Canadians make up 3.4% of the population (with 1.14 million people), they accounted for 16% of admissions to hospital during the first wave of the pandemic, and 43% of Aboriginal patients had underlying medical conditions.3 The increased rate of severe disease might have resulted from residential crowding, prevalence of chronic health conditions, delayed access to health care or suboptimal immune responses to infection.4 When a federally funded, ASO3-adjuvanted (squalene/tocopherol) pandemic vaccine became available for Canadians later in 2009,5 Aboriginal people were given priority access to it.3 However, dosing requirements at the time were tentative. Previous studies of an ASO3-adjuvanted influenza A (H5N1) vaccine established that two doses were needed for immunity in adults.6 Because the 2009 influenza (H1N1) pandemic occurred without warning, no prepandemic studies had been done with vaccines based on this novel swine-derived virus.7The ASO3-adjuvanted pandemic (H1N1) 2009 vaccine manufactured in Canada (Arepanrix, GlaxoSmithKline, Laval, Quebec) was released for public use as soon as it was available, unstudied, to mitigate morbidity during the pandemic’s second wave, which was already in progress. A single 3.75-μg dose of hemagglutinin was recommended for adults using the preliminary results of a European trial of another ASO3-adjuvanted vaccine (Pandemrix, GlaxoSmithKline, Rixensart, Belgium) given to 65 adults aged 18–60 years.8 The European product was believed to be equivalent to the Canadian-made vaccine, but this had not yet been shown.We wondered if the recommended single dose would be adequate for Aboriginal Canadian adults given their heightened risk of severe influenza during the first wave. We were unable to identify any previous studies of influenza vaccines involving Aboriginal Canadians to determine if their responses would be similar to other Canadians or to the healthy European study participants on whom the dosing recommendation was based. Consequently, we undertook a study involving First Nations and Métis adults to assess their responses to the pandemic vaccine.  相似文献   

15.

Background

In Finland, the first infections caused by the 2009 pandemic influenza A(H1N1) virus were identified on May 10. During the next three months almost all infections were found from patients who had recently traveled abroad. In September 2009 the pandemic virus started to spread in the general population, leading to localized outbreaks and peak epidemic activity was reached during weeks 43–48.

Methods/Results

The nucleotide sequences of the hemagglutinin (HA) and neuraminidase (NA) genes from viruses collected from 138 patients were determined. The analyzed viruses represented mild and severe infections and different geographic regions and time periods. Based on HA and NA gene sequences, the Finnish pandemic viruses clustered in four groups. Finnish epidemic viruses and A/California/07/2009 vaccine virus strain varied from 2–8 and 0–5 amino acids in HA and NA molecules, respectively, giving a respective maximal evolution speed of 1.4% and 1.1%. Most amino acid changes in HA and NA molecules accumulated on the surface of the molecule and were partly located in antigenic sites. Three severe infections were detected with a mutation at HA residue 222, in two viruses with a change D222G, and in one virus D222Y. Also viruses with change D222E were identified. All Finnish pandemic viruses were sensitive to oseltamivir having the amino acid histidine at residue 275 of the neuraminidase molecule.

Conclusions

The Finnish pandemic viruses were quite closely related to A/California/07/2009 vaccine virus. Neither in the HA nor in the NA were changes identified that may lead to the selection of a virus with increased epidemic potential or exceptionally high virulence. Continued laboratory-based surveillance of the 2009 pandemic influenza A(H1N1) is important in order to rapidly identify drug resistant viruses and/or virus variants with potential ability to cause severe forms of infection and an ability to circumvent vaccine-induced immunity.  相似文献   

16.
Riley S  Kwok KO  Wu KM  Ning DY  Cowling BJ  Wu JT  Ho LM  Tsang T  Lo SV  Chu DK  Ma ES  Peiris JS 《PLoS medicine》2011,8(6):e1000442

Background

While patterns of incidence of clinical influenza have been well described, much uncertainty remains over patterns of incidence of infection. The 2009 pandemic provided both the motivation and opportunity to investigate patterns of mild and asymptomatic infection using serological techniques. However, to date, only broad epidemiological patterns have been defined, based on largely cross-sectional study designs with convenience sampling frameworks.

Methods and Findings

We conducted a paired serological survey of a cohort of households in Hong Kong, recruited using random digit dialing, and gathered data on severe confirmed cases from the public hospital system (>90% inpatient days). Paired sera were obtained from 770 individuals, aged 3 to 103, along with detailed individual-level and household-level risk factors for infection. Also, we extrapolated beyond the period of our study using time series of severe cases and we simulated alternate study designs using epidemiological parameters obtained from our data. Rates of infection during the period of our study decreased substantially with age: for 3–19 years, the attack rate was 39% (31%–49%); 20–39 years, 8.9% (5.3%–14.7%); 40–59 years, 5.3% (3.5%–8.0%); and 60 years or older, 0.77% (0.18%–4.2%). We estimated parameters for a parsimonious model of infection in which a linear age term and the presence of a child in the household were used to predict the log odds of infection. Patterns of symptom reporting suggested that children experienced symptoms more often than adults. The overall rate of confirmed pandemic (H1N1) 2009 influenza (H1N1pdm) deaths was 7.6 (6.2–9.5) per 100,000 infections. However, there was substantial and progressive increase in deaths per 100,000 infections with increasing age from 0.66 (0.65–0.86) for 3–19 years up to 220 (50–4,000) for 60 years and older. Extrapolating beyond the period of our study using rates of severe disease, we estimated that 56% (43%–69%) of 3–19 year olds and 16% (13%–18%) of people overall were infected by the pandemic strain up to the end of January 2010. Using simulation, we found that, during 2009, larger cohorts with shorter follow-up times could have rapidly provided similar data to those presented here.

Conclusions

Should H1N1pdm evolve to be more infectious in older adults, average rates of severe disease per infection could be higher in future waves: measuring such changes in severity requires studies similar to that described here. The benefit of effective vaccination against H1N1pdm infection is likely to be substantial for older individuals. Revised pandemic influenza preparedness plans should include prospective serological cohort studies. Many individuals, of all ages, remained susceptible to H1N1pdm after the main 2009 wave in Hong Kong. Please see later in the article for the Editors'' Summary  相似文献   

17.

Background

In October 2009, the French government organized a national-wide, free of charge vaccination campaign against pandemic H1N1 influenza virus, especially targeting pregnant women, a high risk group for severe illness. The study objective was to evaluate pandemic flu vaccine uptake and factors associated with non-vaccination in a population of pregnant women.

Methodology/Principal Findings

In a prospective cohort conducted in 3 maternity hospitals in Paris, 882 pregnant women were randomly included between October 12, 2009 and February 3, 2010, with the aim to study characteristics of pandemic influenza during pregnancy. At inclusion, socio-demographic, medical, obstetrical factors and those associated with a higher risk of flu exposition and disease-spreading were systematically collected. Pandemic flu vaccine uptake was checked until delivery. 555 (62.9%) women did not get vaccinated. Determinants associated with non-vaccination in a multivariate logistic regression were: geographic origin (Sub-Saharan African origin, adjusted Odd Ratio aOR = 5.4[2.3–12.7], North African origin, aOR = 2.5[1.3–4.7] and Asian origin, aOR = 2.1[1.7–2.6] compared to French and European origin) and socio-professional categories (farmers, craftsmen and tradesmen, aOR = 2.3[2.0–2.6], intermediate professionals, aOR = 1.3[1.0–1.6], employees and manual workers, aOR = 2.5[1.4–4.4] compared to managers and intellectual professionals). The probability of not receiving pandemic flu vaccine was lower among women vaccinated against seasonal flu in the previous 5 years (aOR = 0.6[0.4–0.8]) and among those who stopped smoking before or early during pregnancy (aOR = 0.6[0.4–0.8]). Number of children less than 18 years old living at home, work in contact with children or in healthcare area, or professional contact with the public, were not associated with a higher vaccine uptake.

Conclusions/Significance

In this cohort of pregnant women, vaccine coverage against pandemic 2009 A/H1N1 flu was low, particularly in immigrant women and those having a low socio-economic status. To improve its effectiveness, future vaccination campaign for pregnant women should be more specifically tailored for these populations.  相似文献   

18.
In order to understand the evolution of the 2009 influenza A (H1N1) pandemic within local regions of Japan, we studied the significance of regional migration between these regions. For this purpose, we have employed an extended SEIR model to describe the immigration of infected people and the stochastic variation of the infectious efficiency. We then applied a data assimilation technique in order to study how the agreement of the simulation results with the observed data depends on the presence/absence of immigration and the degree of variation of the infectious efficiency. Reproducibility is evaluated by log-likelihood values. The log-likelihood does not indicate the significance of immigration. Although there are multiple waves in the time course of the number of reported infected individuals, these waves could be explained by the stochastic nature of infectious events.  相似文献   

19.

Background

In 2009, a novel influenza virus (2009 pandemic influenza A (H1N1) virus (pH1N1)) caused significant disease in the United States. Most states, including Florida, experienced a large fall wave of disease from September through November, after which disease activity decreased substantially. We determined the prevalence of antibodies due to the pH1N1 virus in Florida after influenza activity had peaked and estimated the proportion of the population infected with pH1N1 virus during the pandemic.

Methods

During November-December 2009, we collected leftover serum from a blood bank, a pediatric children''s hospital and a pediatric outpatient clinic in Tampa Bay Florida. Serum was tested for pH1N1 virus antibodies using the hemagglutination-inhibition (HI) assay. HI titers ≥40 were considered seropositive. We adjusted seroprevalence results to account for previously established HI assay specificity and sensitivity and employed a simple statistical model to estimate the proportion of seropositivity due to pH1N1 virus infection and vaccination.

Results

During the study time period, the overall seroprevalence in Tampa Bay, Florida was 25%, increasing to 30% after adjusting for HI assay sensitivity and specificity. We estimated that 5.9% of the population had vaccine-induced seropositivity while 25% had seropositivity secondary to pH1N1 virus infection. The highest cumulative incidence of pH1N1 virus infection was among children aged 5–17 years (53%) and young adults aged 18–24 years (47%), while adults aged ≥50 years had the lowest cumulative incidence (11–13%) of pH1N1 virus infection.

Conclusions

After the peak of the fall wave of the pandemic, an estimated one quarter of the Tampa Bay population had been infected with the pH1N1 virus. Consistent with epidemiologic trends observed during the pandemic, the highest burdens of disease were among school-aged children and young adults.  相似文献   

20.
Genetic mutation and reassortment of influenza virus gene segments, in particular those of hemagglutinin (HA) and neuraminidase (NA), that lead to antigenic drift and shift are the major strategies for influenza virus to escape preexisting immunity. The most recent example of such phenomena is the first pandemic of H1N1 influenza of the 21st century, which started in 2009. Cross-reactive antibodies raised against H1N1 viruses circulating before 1930 show protective activity against the 2009 pandemic virus. Cross-reactive T-cell responses can also contribute to protection, but in vivo support of this view is lacking. To explore the protection mechanisms in vivo, we primed mice with H1 and H3 influenza virus isolates and rechallenged them with a virus derived from the 2009 H1N1 A/CA/04/09 virus, named CA/E3/09. We found that priming with influenza viruses of both H1 and H3 homo- and heterosubtypes protected against lethal CA/E3/09 virus challenge. Convalescent-phase sera from these primed mice conferred no neutralization activity in vitro and no protection in vivo. However, T-cell depletion studies suggested that both CD4 and CD8 T cells contributed to the protection. Taken together, these results indicate that cross-reactive T cells established after initial priming with distally related viruses can be a vital component for prevention of disease and control of pandemic H1N1 influenza virus infection. Our results highlight the importance of establishing cross-reactive T-cell responses for protecting against existing or newly emerging pandemic influenza viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号