首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethanol or acetaldehyde orally administered (15% and 2% respectively in drinking water) to male Wistar rats for three months induced alterations in the main liver enzymes responsible for ethanol metabolism, aspartate and alanine aminotransferases and NAD glutamate dehydrogenase. Ethanol produced a significant decrease in the activity of soluble alcohol dehydrogenase, while acetaldehyde induced alterations both in soluble and mitochondrial aldehyde dehydrogenases: soluble activity was significantly higher than in the control and ethanol-treated groups, and mitochondrial activity was significantly diminished. Both soluble aspartate and alanine aminotransferases showed pronounced increases by the chronic effect of acetaldehyde, while mitochondrial activities were practically unchanged by the effect of ethanol or acetaldehyde. Mitochondrial NAD glutamate dehydrogenase showed a rise in its activity both by the effect of chronic ethanol and acetaldehyde consumption. The level of metabolites assayed in liver extracts showed marked differences between ethanol and acetaldehyde treatment which indicates that ethanol produced a remarkable increase in glutamate, aspartate and free ammonia together with marked decrease in pyruvate and 2-oxoglutarate concentrations. Acetaldehyde consumption induced a significant decrease in 2-oxoglutarate and pyruvate concentrations. These observations suggest that ethanol has an important effect on the urea cycle enzymes, while the effect of acetaldehyde contributes to the impairment of the citric acid cycle.  相似文献   

2.
Lately the mechanism of craving for alcohol has been related to the local level of brain acetaldehyde occurring in ethanol consumption and depending on the activities of the brain and liver ethanol and acetaldehyde-metabolizing systems. In this connection, we studied the effect of chronic acetaldehyde intoxication on the activities of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), the microsomal ethanol oxidizing system (MEOS) and liver and brain catalase as well as ethanol and acetaldehyde levels in the blood. The results showed that the chronic acetaldehyde intoxication did not alter significantly the activities of liver ADH, MEOS and catalase as well as liver and brain ALDH. In parallel with this, the systemic acetaldehyde administration led to shortened time of ethanol narcosis and activation of catalase in the cerebellum and left hemisphere, which may indicate involvement of this enzyme into metabolic tolerance development.  相似文献   

3.
A single intraperitoneal administration of ethanol (3.5 g/kg) to rats induced a marked increase in lipid peroxidation and a decrease of antioxidative activity in the liver after 1 h when assessed by chemi-luminescence in liver homogenates. The pretreatment with aldehyde dehydrogenase inhibitor, disulfiram (200 mg/kg 24 hr before ethanol), caused a 10-fold elevation of the blood acetaldehyde levels, with no effect on the hepatic lipid peroxidation compared to control. Cyanamide (50 mg/kg, 2 h before the ethanol) increased approximately 100-fold the acetaldehyde levels, however, the changes in lipid peroxidation were not significantly different from that produced by ethanol alone. The present results suggest, that the metabolism of acetaldehyde and not acetaldehyde itself is responsible for the in vivo activation of lipid peroxidation during acute alcohol intoxication. Disulfiram prevents the ethanol-induced lipid peroxidation in the rat liver.  相似文献   

4.
Four isoenzymes of aldehyde dehydrogenase were partially purified from rat liver mitochondria by hydroxylapatite chromatography and gel filtration. While three forms display low affinity for acetaldehyde, the fourth is active at extremely low aldehyde concentrations (Km less than or equal to 2 microM) and allows the oxidation of the acetaldehyde formed by catalysis of alcohol dehydrogenase at pH 7.4. Different models of alcohol dehydrogenase have been examined by analysis of progress curves of ethanol oxidation obtained in the presence of low-km aldehyde dehydrogenase. According to the only acceptable model, when the acetaldehyde concentration is kept low by the action of aldehyde dehydrogenase, NADH no longer binds to alcohol dehydrogenase, but acetaldehyde still competes with ethanol for the active site of the enzyme. The seven kinetic parameters of the two enzymes (four for alcohol dehydrogenase and three for aldehyde dehydrogenase) and the equilibrium constant of the reaction catalyzed by alcohol dehydrogenase have been determined by applying a new fitting procedure here described.  相似文献   

5.
Summary In the final step of the pathway producing ethanol in anoxic crucian carp (Carassius carassius L.), acetaldehyde is reduced to ethanol by alcohol dehydrogenase. The presence of aldehyde dehydrogenase in the tissues responsible for ethanol production could cause an undesired oxidation of acetaldehyde to acetate coupled with a reduction of NAD+ to NADH. Moreover, acetaldehyde could competitively inhibit the oxidation of reactive biogenic aldehydes. In the present study, the distribution of aldehyde dehydrogenase (measured with a biogenic aldehyde) and alcohol dehydrogenase (measured with acetaldehyde) were studied in organs of crucian carp, common carp (Cyprinus carpio L.), rainbow trout (Salmo gairdneri Richardson), and Norwegian rat (Rattus norvegicus Berkenhout). The results showed that alcohol dehydrogenase and aldehyde dehydrogenase activities were almost completely spatially separated in the crucian carp. These enzymes occurred together in the other three vertebrates. In the crucian carp, alcohol dehydrogenase was only found in red and white skeletal muscle, while these tissues contained exceptionally low aldehyde dehydrogenase activities. Moreover, the low aldehyde dehydrogenase activity found in crucian carp red muscle was about 1000 times less sensitive to inhibition by acetaldehyde than that found in other tissues and other species. The results are interpreted as demonstrating adaptations to avoid a depletion of ethanol production, and possibly inhibition of biogenic aldehyde metabolism.Abbreviations ADH alcohol dehydrogenase - ALDH aldehyde dehydrogenase - DOPAL 3,4-dihydroxyphenylacetaldehyde - MAO monoamine oxidase - PCA perchloric acid  相似文献   

6.
Crotonaldehyde was oxidized by disrupted rat liver mitochondrial fractions or by intact mitochondria at rates that were only 10 to 15% that of acetaldehyde. Although a poor substrate for oxidation, crotonaldehyde is an effective inhibitor of the oxidation of acetaldehyde by mitochondrial aldehyde dehydrogenase, by intact mitochondria, and by isolated hepatocytes. Inhibition by crotonaldehyde was competitive with respect to acetaldehyde, and the Ki for crotonaldehyde was about 5 to 20 microM. Crotonaldehyde had no effect on the oxidation of glutamate or succinate. Very low levels of acetaldehyde were detected during the metabolism of ethanol. Crotonaldehyde increased the accumulation of acetaldehyde more than 10-fold, indicating that crotonaldehyde, besides inhibiting the oxidation of added acetaldehyde, also inhibited the oxidation of acetaldehyde generated by the metabolism of ethanol. Formaldehyde was a substrate for the low-Km mitochondrial aldehyde dehydrogenase, as well as for a cytosolic, glutathione-dependent formaldehyde dehydrogenase. Crotonaldehyde was a potent inhibitor of mitochondrial oxidation of formaldehyde, but had no effect on the activity of formaldehyde dehydrogenase. In hepatocytes, crotonaldehyde produced about 30 to 40% inhibition of formaldehyde oxidation, which was similar to the inhibition produced by cyanamide. This suggested that part of the formaldehyde oxidation occurred via the mitochondrial aldehyde dehydrogenase, and part via formaldehyde dehydrogenase. The fact that inhibition by crotonaldehyde is competitive may be of value since other commonly used inhibitors of aldehyde dehydrogenase are irreversible inhibitors of the enzyme.  相似文献   

7.
We measured the activities of the main alcohol-metabolizing enzymes (alcohol dehydrogenase, AlDH, and aldehyde dehydrogenase, AdhDH) in the blood serum, comparing these indices with the contents of ethanol and its main metabolite, acetaldehyde (AcAdh), in the blood, and also measured the contents of catecholamines (adrenaline, noradrenaline, and dopamine) in the blood and in different brain structures (hypothalamus, midbrain, and neocortex) of rats in the states of acute alcohol intoxication and chronic alcohol addiction. It was shown that, because of dissimilar changes in the activities of AlDH and AdhDH under conditions of alcohol intoxication, the dynamic balance between endogenous ethanol and AcAdh existing in the norm is disturbed, which results in an increase in the level of AcAdh. Such a phenomenon probably is one of the crucial factors underlying the development of alcohol addiction.  相似文献   

8.
1. Ethanol induces a decrease in GSH (reduced glutathione) concentration is isolated hepatocytes. Maximal effects appear at 20 mM-ethanol. The concentration-dependence of this decrease is paralleled by the concentration-dependence of the activity of alcohol dehydrogenase. 2. Pyrazole, a specific inhibitor of alcohol dehydrogenase, prevents the ethanol-induced GSH depletion. 3. Acetaldehyde, above 0.05 mM, also promotes a decrease in GSH concentration in hepatocytes. 4. Disulfiram (0.05 mM), an inhibitor of aldehyde dehydrogenase, potentiates the fall in GSH concentration caused by acetaldehyde. 5. The findings support the hypothesis that acetaldehyde is responsible for the depletion of GSH induced by ethanol. 6. Methionine prevents the effect of alcohol or acetaldehyde on GSH concentration in hepatocytes.  相似文献   

9.
Differences in the pharmacokinetics of alcohol absorption and elimination are, in part, genetically determined. There are polymorphic variants of the two main enzymes responsible for ethanol oxidation in liver, alcohol dehydrogenase and aldehyde dehydrogenase. The frequency of occurrence of these variants, which have been shown to display strikingly different catalytic properties, differs among different racial populations. Since the activity of alcohol dehydrogenase in liver is a rate-limiting factor for ethanol metabolism in experimental animals, it is likely that the type and content of the polymorphic isoenzyme subunit encoded at ADH2, beta-subunit, and at ADH3, the gamma-subunit, are contributing factors to the genetic variability in ethanol elimination rate. The recent development of methods for genotyping individuals at these loci using white cell DNA will allow us to test this hypothesis as well as any relationship between ADH genotype and the susceptibility to alcoholism or alcohol-related pathology. A polymorphic variant of human liver mitochondrial aldehyde dehydrogenase, ADLH2, which has little or no acetaldehyde oxidizing activity has been identified. Individuals with the deficient ALDH2 phenotype do not have altered ethanol elimination rates but they do exhibit high blood acetaldehyde levels and dysphoric symptoms such as facial flushing, nausea and tachycardia, after drinking alcohol. Because acetaldehyde is so reactive, it binds to free amino groups of proteins including a 37 kilodalton hepatic protein-acetaldehyde adduct and may elicit an antibody response. We would predict that individuals who have low ALDH2 activity because of liver disease or because they have the inactive ALDH2 variant isoenzyme might form more protein-acetaldehyde adducts and elicit a greater immune response. These adducts may represent good biological markers of alcohol abuse and may also play a role in liver injury due to chronic alcohol consumption.  相似文献   

10.
To study the severity and degree of in utero alcohol effects in relation to the rate of maternal alcohol damage, multiparous 1-year alcohol-fed rats were used, with an appropriate pair-fed control group. During pregnancy, alcoholic dams showed relatively high acetaldehyde levels (41 +/- 19 mumol/l) and blood alcohol levels of 22.8 +/- 14 mmol/l. They also showed marked histological alterations in liver as well as high serum aspartate-aminotransferase, alanine-aminotransferase, alkaline phosphatase, glutamate dehydrogenase, and gamma-glutamyltransferase activities. The increase in serum enzyme levels did not correlate with an increase in hepatic enzyme levels since only glutamate dehydrogenase was enhanced in liver after 1 year of alcohol intake. In addition, except for an increase in low Km aldehyde dehydrogenase activity, there were no changes in liver alcohol metabolizing enzymes in chronic alcohol vs. pair-fed females. Alcoholic rats showed a high incidence of damage in their progeny (resorptions, immature fetuses, decrease in fetal weight, etc.), and rats with the highest serum levels of the above enzymes (especially glutamate dehydrogenase and gamma-glutamyl transferase) had severely affected progeny. Rats with minimal histological liver damage, in contrast, did not show resorptions. Thus, the results presented suggest that the stage of maternal alcohol illness, as indicated mainly by the extent of liver damage, plays an important role in the frequency and severity of in utero alcohol effects in the rat.  相似文献   

11.
The activity of a high-Km aldehyde dehydrogenase in the liver cytosol was increased by phenobarbital induction. No corresponding increase in the oxidation rate of acetaldehyde in vivo was found, and it is concluded that cytosolic aldehyde dehydrogenase plays only a minor role in the oxidation of acetaldehyde during ethanol metabolism.  相似文献   

12.
Alcohol and acetaldehyde in rat's milk following ethanol administration   总被引:1,自引:0,他引:1  
C Guerri  R Sanchis 《Life sciences》1986,38(17):1543-1556
Alcohol and acetaldehyde were measured in milk and peripheral blood in chronic alcoholic rats, at 5 and 15 days of lactation. Ethanol in blood increased throughout lactation and the levels of acetaldehyde were much higher than in nonlactating alcoholic rats. The concentration of acetaldehyde in milk was always ca. 50% of that in blood, whereas that of ethanol varied within the range of 44-80% of the blood levels. Blood alcohol levels in the corresponding sucking pups were much lower than in maternal blood and increased throughout lactation. The time course of ethanol and acetaldehyde concentration in blood and milk were determined in normal lactating rats after cyanamide (40 mg/kg) and ethanol administration (2 or 4 g/kg). Milk alcohol reached higher concentrations than in blood within the first hour of ethanol administration, decreasing and remaining constant thereafter at ca. 65% of those in blood. Acetaldehyde levels in milk were always 35-45% lower than in blood. No alcohol dehydrogenase activity was found in homogenates of mammary tissue; however there was some aldehyde dehydrogenase activity. A significant decrease in mammary tissue aldehyde dehydrogenase was found in chronic alcoholic rats. The role of this enzyme is discussed.  相似文献   

13.
Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (AdhB), butanol dehydrogenase (BdhA) and NAD(H)-dependent bifunctional aldehyde/alcohol dehydrogenase (AdhE), respectively. Here we observed that AdhE is an important enzyme responsible for ethanol production in T. mathranii based on the constructed adh knockout strains. An adhE knockout strain fails to produce ethanol as a fermentation product, while other adh knockout strains showed no significant difference from the wild type. Further analysis revealed that the ΔadhE strain was defective in aldehyde dehydrogenase activity, but still maintained alcohol dehydrogenase activity. This showed that AdhE is the major aldehyde dehydrogenase in the cell and functions predominantly in the acetyl-CoA reduction to acetaldehyde in the ethanol formation pathway. Finally, AdhE was conditionally expressed from a xylose-induced promoter in a recombinant strain (BG1E1) with a concomitant deletion of a lactate dehydrogenase. Overexpressions of AdhE in strain BG1E1 with xylose as a substrate facilitate the production of ethanol at an increased yield.  相似文献   

14.
Many diabetics who take chlorpropamide (a sulphonylurea compound) experience facial flushing after drinking even small amounts of alcohol. These flushers have a noticeably lower prevalence of late complications of diabetes (microangiopathy, macroangiopathy, and neuropathy) than non-flushers. This flush reaction is accompanied by increased blood acetaldehyde concentrations, suggesting an inhibition of aldehyde dehydrogenase activity. In the present study the activity of this enzyme in erythrocytes was assessed in the absence of chlorpropamide. Erythrocyte homogenates obtained from flushers and non-flushers were incubated with acetaldehyde and the rate of metabolism studies. Flushers eliminated acetaldehyde more slowly at a low range of concentrations (0--30 mumol/l), suggesting a difference in aldehyde dehydrogenase activity. Further studies are needed to clarify the role of this enzyme in the pathogenesis of diabetic complications.  相似文献   

15.
Different types of alcohol dehydrogenase and of aldehyde dehydrogenase lead to different blood acetaldehyde levels. With respect to acetaldehyde levels in human blood 3 types can be distinguished: (1) the normal range, (2) the acute aldehyde syndrome, and (3) the chronic aldehydism. Acetaldehyde is electrophilic and reacts with nucleophilic groups of various macromolecules including DNA. Acetyldehyde inhibits synthetic and metabolic pathways, it interferes with the polymerization of tubulin and stimulates collagen synthesis. By depletion of cellular glutathione levels, acetaldehyde leads to lipid peroxidation and to the formation of malonaldehyde. There are indications that acetaldehyde may play a role in positively reinforcing mood changes induced by alcohol in humans.  相似文献   

16.
The acetoin-synthesizing activity has been studied in the skeletal muscles, brain, liver and spleen homogenates (numbered as the activity decreases). The acetoin-synthesizing activity drastically increases in case of the acetaldehyde excess and alcohol intoxication. The acetaldehyde concentrations of above 1.10(-3) M inhibit the liver pyruvate dehydrogenase activity and increase the non-oxidative transformation of pyruvate. Acetoin is rapidly metabolized in the organism eliminating from blood 10 minutes after its injection. Acetoin is an effective precursor in the biosynthesis of lipids.  相似文献   

17.
As a result of the experiment on the laboratory animals under the continuous administration of acetaldehyde there has been revealed the latter as inducing the aldehyde dehydrogenase activity in the cytosol fraction of the cerebral structures/hypothalamus, mid-brain and new cerebrum cortex/as well as in the levels of biogenic amines/noradrenaline and 5-hydroxytryptamine/in the same structures while forming experimentally in the laboratory animals the alcoholic dependence under acetaldehyde alcoholic dependence. The work displays some changes of alcohol dehydrogenase and action.  相似文献   

18.
The objective of this study was to determine the effect of chronic maternal administration of moderate-dose ethanol on alcohol dehydrogenase, low Km aldehyde dehydrogenase, and high Km aldehyde dehydrogenase activities in the guinea pig at near-term pregnancy. The activity of each enzyme in the maternal liver, fetal liver, and placenta of the guinea pig at 59 days of gestation (term, 66 days) was determined spectrophotometrically following chronic daily oral administration of two doses of 1 g ethanol/kg maternal body weight or isocaloric sucrose solution. There was no experimental evidence of ethanol-induced malnutrition in the mother or growth retardation in the fetus. There was a statistically significant increase (65%) in the microsomal cytochrome P-450 content of the maternal liver for the ethanol treatment compared with the sucrose treatment. The alcohol dehydrogenase, low Km aldehyde dehydrogenase, and high Km aldehyde dehydrogenase activities in the maternal liver, fetal liver, and placenta were not statistically different for the ethanol-treated compared with the sucrose-treated animals. This also was the case for the maternal blood and fetal blood ethanol and acetaldehyde concentrations, determined at 2h after maternal administration of 1 g ethanol/kg maternal body weight. These data demonstrate that the ethanol- and acetaldehyde-oxidizing enzyme activities in the maternal-placental-fetal unit of the guinea pig at near-term pregnancy were not changed by chronic administration of moderate-dose ethanol.  相似文献   

19.
Acetaldehyde, the first metabolite of ethanol oxidation, in concentrations ranging from 100 microM to 400 microM caused a dose-dependent linear increase in the frequency of sister-chromatid exchanges (SCE) in cultured human peripheral lymphocytes. The SCE frequency was on an average 2-fold higher when the cells were exposed to the acetaldehyde after 24 h incubation instead of at the time of mitogen stimulation (0 h). When acetaldehyde was added together with the potent aldehyde dehydrogenase inhibitor 1-aminocyclopropanol (0.1 mM), the SCE response was significantly (p less than 0.05) increased. The present results indicate that acetaldehyde is metabolized within human lymphocytes, and, moreover, that alcohol consumption during treatment with drugs that inactivate aldehyde dehydrogenase may cause a further increased incidence of acetaldehyde-induced SCE and concomitant lesions.  相似文献   

20.
Both aldehyde dehydrogenase (ALDH, EC 1.2.1.3) and the aldehyde dehydrogenase activity of alcohol dehydrogenase (ADH, EC 1.1.1.1) were found to coexist in Drosophila melanogaster larvae. The enzymes, however, showed different inhibition patterns with respect to pyrazole, cyanamide and disulphiram. ALDH-1 and ALDH-2 isoenzymes were detected in larvae by electrophoretic methods. Nonetheless, in tracer studies in vivo, more than 75% of the acetaldehyde converted to acetate by the ADH ethanol-degrading pathway appeared to be also catalysed by the ADH enzyme. The larval fat body probably was the major site of this pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号