首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cystic fibrosis (CF), a life‐shortening genetic disease, is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene that codes for the CFTR protein, the major chloride channel expressed at the apical membrane of epithelial cells. The development of an imaging probe capable of non‐invasively detect CFTR at the cell surface could be of great advantage for the management of CF. With that purpose, we synthesized the first extracellular loop of CFTR protein (ECL1) through fluorenylmethyloxycarbonyl (Fmoc)‐based microwave‐assisted solid‐phase peptide synthesis (SPPS), according to a reported methodology. However, aspartimide formation, a well‐characterized side reaction in Fmoc‐SPPS, prompted us to adopt a different side‐chain protection strategy for aspartic acid residues present in ECL1 sequence. The peptide was subsequently modified via PEGylation and biotinylation, and cyclized through disulfide bridge formation, mimicking the native loop conformation in CFTR protein. Herein, we report improvements in the synthesis of the first extracellular loop of CFTR, including peptide modifications that can be used to improve antigen presentation in phage display for selection of novel antibodies against plasma membrane CFTR.  相似文献   

2.
Today, Fmoc SPPS is the method of choice for peptide synthesis. Very‐high‐quality Fmoc building blocks are available at low cost because of the economies of scale arising from current multiton production of therapeutic peptides by Fmoc SPPS. Many modified derivatives are commercially available as Fmoc building blocks, making synthetic access to a broad range of peptide derivatives straightforward. The number of synthetic peptides entering clinical trials has grown continuously over the last decade, and recent advances in the Fmoc SPPS technology are a response to the growing demand from medicinal chemistry and pharmacology. Improvements are being continually reported for peptide quality, synthesis time and novel synthetic targets. Topical peptide research has contributed to a continuous improvement and expansion of Fmoc SPPS applications. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
The 4‐methoxybenzyloxymethyl (MBom) group was introduced at the Nπ‐position of the histidine (His) residue by using a regioselective procedure, and its utility was examined under standard conditions used for the conventional and the microwave (MW)‐assisted solid phase peptide synthesis (SPPS) with 9‐fluorenylmethyoxycarbonyl (Fmoc) chemistry. The Nπ‐MBom group fulfilling the requirements for the Fmoc strategy was found to prevent side‐chain‐induced racemization during incorporation of the His residue even in the case of MW‐assisted SPPS performed at a high temperature. In particular, the MBom group proved to be a suitable protecting group for the convergent synthesis because it remains attached to the imidazole ring during detachment of the protected His‐containing peptide segments from acid‐sensitive linkers by treatment with a weak acid such as 1% trifluoroacetic acid in dichloromethane. We also demonstrated the facile synthesis of Fmoc‐His(π‐MBom)‐OH with the aid of purification procedure by crystallization to effectively remove the undesired τ‐isomer without resorting to silica gel column chromatography. This means that the present synthetic procedure can be used for large‐scale production without any obstacles. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
Microwave energy represents an efficient manner to accelerate both the deprotection and coupling reactions in 9-fluorenylmethyloxycarbonyl (Fmoc) solid phase peptide synthesis (SPPS). Typical SPPS side reactions including racemization and aspartimide formation can occur with microwave energy but can easily be controlled by routine use of optimized methods. Cysteine, histidine, and aspartic acid were susceptible to racemization during microwave SPPS of a model 20mer peptide containing all 20 natural amino acids. Lowering the microwave coupling temperature from 80 degrees C to 50 degrees C limited racemization of histidine and cysteine. Additionally, coupling of both histidine and cysteine can be performed conventionally while the rest of the peptide is synthesized using microwave without any deleterious effect, as racemization during the coupling reaction was limited to the activated ester state of the amino acids up to 80 degrees C. Use of the hindered amine, collidine, in the coupling reaction also minimized formation of D-cysteine. Aspartimide formation and subsequent racemization of aspartic acid was reduced by the addition of HOBt to the deprotection solution and/or use of piperazine in place of piperidine.  相似文献   

5.
Mutter’s pseudoproline dipeptides and Sheppard’s Hmb derivatives are powerful tools for enhancing synthetic efficiency in Fmoc SPPS. They work by exploiting the natural propensity of N-alkyl amino acids to disrupt the formation of the secondary structures during peptide assembly. Their use results in better and more predictable acylation and deprotection kinetics, enhanced reaction rates, and improved yields of crude products. However, these approaches have certain limitations: pseudoproline dipeptides can only be used for sequences containing serine or threonine, and the coupling of the amino acid following the Hmb residue can be extremely difficult. To alleviate some of these shortcomings, we have prepared a range of Fmoc-Aaa-(Dmb)Gly-OH dipeptides and tested their efficacy in the synthesis of a number of challenging hydrophobic peptides. We also compared the efficiency of N-Dmb against N-Hmb backbone protection in preventing aspartimide formation in the Fmoc SPPS of peptides containing the Asp-Gly sequence.  相似文献   

6.
The sequence-dependent, acid- or base-catalysed aspartimide formation is one of the most serious side reactions in solid-phase synthesis of peptides containing aspartic acid. In the present work, we investigated the susceptibility of 4-(N-[1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-3-methylbutyl]amino)benzyl (Dmab), an aspartic acid beta-carboxy side-chain protecting group, for aspartimide formation. As a model, 15-amino acid-residue galanin fragment analogue containing the Asp-Ala motif was used during Fmoc-based solid-phase synthesis. Our study showed a strong tendency of Dmab-protected peptide to form aspartimide with unusual high efficiency. Furthermore, to investigate the susceptibility of Asp-Ala motif for aspartimide formation during the synthesis using Asp(ODmab), a 5-amino acid-residue galanin fragment LGPDA, different types of resin linkers, variety of Fmoc-deprotection conditions and coupling methods were applied.  相似文献   

7.
To prevent aspartimide formation and related side products in Asp‐Xaa, particularly Asp‐Gly‐containing peptides, usually the 2‐hydroxy‐4‐methoxybenzyl (Hmb) backbone amide protection is applied for peptide synthesis according to the Fmoc‐protocols. In the present study, the usefulness of the recently proposed acid‐labile dicyclopropylmethyl (Dcpm) protectant was analyzed. Despite the significant steric hindrance of this bulky group, N‐terminal H‐(Dcpm)Gly‐peptides are quantitatively acylated by potent acylating agents, and alternatively the dipeptide Fmoc‐Asp(OtBu)‐(Dcpm)Gly‐OH derivative can be used as a building block. In contrast to the Hmb group, Dcpm is inert toward acylations, but is readily removed in the acid deprotection and resin‐cleavage step. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
We report here the synthesis of the first selenocysteine SPPS derivatives which bear TFA‐labile sidechain protecting groups. New compounds Fmoc‐Sec(Xan)‐OH and Fmoc‐Sec(Trt)‐OH are presented as useful and practical alternatives to the traditional Fmoc‐Sec‐OH derivatives currently available to the peptide chemist. From a bis Fmoc‐protected selenocystine precursor, multiple avenues of diselenide reduction were attempted to determine the most effective method for subsequent attachment of the protecting group electrophiles. Our previously reported one‐pot reduction methodology was ultimately chosen as the optimal approach toward the synthesis of these novel building blocks, and both were easily obtained in high yield and purity. Fmoc‐Sec(Xan)‐OH was discovered to be bench‐stable for extended timeframes while the corresponding Fmoc‐Sec(Trt)‐OH derivative appeared to detritylate slowly when not stored at ?20 °C. Both Sec derivatives were incorporated into single‐ and multiple‐Sec‐containing test peptides in order to ascertain the peptides' deprotection behavior and final form upon TFA cleavage. Single‐Sec‐containing test peptides were always isolated as their corresponding diselenide dimers, while dual‐Sec‐containing peptide sequences were afforded exclusively as their intramolecular diselenides. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Attracted by the possibility to optimize time and yield of the synthesis of difficult peptide sequences by MW irradiation, we compared Fmoc/tBu MW‐assisted SPPS of 1–34 N‐terminal fragment of parathyroid hormone‐related peptide (PTHrP) with its conventional SPPS carried out at RT. MWs were applied in both coupling and deprotection steps of SPPS protocol. During the stepwise elongation of the resin‐bound peptide, monitoring was conducted by performing MW‐assisted mini‐cleavages and analyzing them by UPLC‐ESI‐MS. Identification of some deletion sequences was helpful to recognize critical couplings and as such helped to guide the introduction of MW irradiations to these stages. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
In this study, a novel N‐acetyl‐glucosaminylated asparagine derivative was developed. This derivative carried TFA‐sensitive protecting groups and was derived from commercially available compounds only in three steps. It was applicable to the ordinary 9‐fluorenylmethoxycarbonyl (Fmoc)‐based solid‐phase peptide synthesis (SPPS) method, and the protecting groups on the carbohydrate moiety could be removed by a single step of TFA cocktail treatment generally used for the final deprotection step in Fmoc‐SPPS. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
The 2‐(o‐nitrophenyl)‐propyl (NPP) group is used as caging group to mask the nucleobases adenine and cytosine in N‐(2‐aminoethyl)glycine peptide nucleic acids (aeg‐PNA). The adeninyl and cytosinyl nucleo amino acid building blocks Fmoc‐aNPP‐aeg‐OH and Fmoc‐cNPP‐aeg‐OH were synthesized and incorporated into PNA sequences by Fmoc solid phase synthesis relying on high stability of the NPP nucleobase protecting group toward Fmoc‐cleavage, coupling, capping, and resin cleavage conditions. Removal of the nucleobase caging group was achieved by UV‐LED irradiation at 365 nm. The nucleobase caging groups provided sterical crowding effecting the Watson–Crick base pairing, and thereby, the PNA double strand stabilities. Duplex formation can completely be suppressed for complementary PNA containing caging groups in both strands. PNA/PNA recognition can be completely restored by UV light‐triggered release of the photolabile protecting group. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
Growing interest in synthetic peptides carrying post‐traslational modifications, in general, and the Amadori modification in particular, raises the need for specific building blocks that can be used in stepwise peptide synthesis. Herein, we report the synthesis of Nα‐Fmoc‐Lys‐OH derivatives containing Nε‐1‐deoxyfructopyranosyl moiety. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
Obtaining homogenous aspartyl‐containing peptides via Fmoc/tBu chemistry is often an insurmountable obstacle. A generic solution for this issue utilising an optimised side‐chain protection strategy that minimises aspartimide formation would therefore be most desirable. To this end, we developed the following new derivatives: Fmoc‐Asp(OEpe)‐OH (Epe = 3‐ethyl‐3‐pentyl), Fmoc‐Asp(OPhp)‐OH (Php = 4‐n‐propyl‐4‐heptyl) and Fmoc‐Asp(OBno)‐OH (Bno = 5‐n‐butyl‐5‐nonyl). We have compared their effectiveness against that of Fmoc‐Asp(OtBu)‐OH and Fmoc‐Asp(OMpe)‐OH in the well‐established scorpion toxin II model peptide variants H‐Val‐Lys‐Asp‐Asn/Arg‐Tyr‐Ile‐OH by treatments of the peptidyl resins with the Fmoc removal reagents containing piperidine and DBU at both room and elevated temperatures. The new derivatives proved to be extremely effective in minimising aspartimide by‐products in each application. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
The Fmoc-based SPPS of H-Xaa-Asp(OBzl)-Yaa-Gly-NH(2) sequences results in side reactions yielding not only aspartimide peptides and piperidide derivatives, but also 1,4-diazepine-2,5-dione-peptides. Evidence is presented to show that the 1,4-diazepine-2,5-dione derivative is formed from the aspartimide peptide. The rate of this ring transformation depends primarily on the tendency to aspartimide and piperidide formation, which is influenced by the nature of the amino acid following the aspartic acid beta-benzyl ester (Xaa). However the bulkiness of the amino acid side chain preceeding the aspartic acid beta-benzyl ester (Yaa) is also important. Under certain conditions the 1,4-diazepine-2,5-dione peptide derivative may even be formed dominantly, which is a highly undesirable side reaction in peptide synthesis, but which provides a new way for the synthesis of diazepine peptide derivatives with targeted biological or pharmacological activity.  相似文献   

15.
Summary We have examined the sequence dependence of aspartimide formation during Fmoc-based solid-phase synthesis of the peptide Val-Lys-Asp-X-Tyr-Ile. The extent of aspartimide formation and subsequent conversion to the - or -piperidide was characterized and quantitated by analytical reversed-phase high-performance liquid chromatography and fast atom bombardment mass spectrometry. Aspartimide formation occurred for X=Arg(Pmc), Asn(Trt), Asp(OtBu), Cys(Acm), Gly, Ser, Thr and Thr(tBu). No single approach was found that could inhibit this side reaction for all sequences. The most effective combinations, in general, for minimization of aspartimide formation were (i) tert-butyl side-chain protection of aspartate, piperidine for removal of the Fmoc group, and either 1-hydroxybenzotriazole or 2,4-dinitrophenol as an additive to the piperidine solution; or (ii) 1-adamantyl side-chain protection of aspartate and 1,8-diazabicyclo[5.4.0]undec-7-ene for removal of the Fmoc group.  相似文献   

16.
2‐(4‐Nitrophenyl)sulfonylethoxycarbonyl (Nsc) is an alternative base‐labile Nα‐protecting group to 9‐fluorenylmethoxycarbonyl (Fmoc) for amino acids. The UV spectrum of the Nsc group exhibits moderate absorption at 380 nm which is excellent for real‐time monitoring of the deprotection process. It also decreases the rearrangement of X‐Asp, which can be a serious problem in SPPS. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
We have been engaged in the microwave‐solid phase peptide synthesis (SPPS) synthesis of the phenylglycine (Phg)‐containing pentapeptide H‐Ala‐Val‐Pro‐Phg‐Tyr‐NH2 (1) previously demonstrated to bind to the so‐called BIR3 domain of the anti‐apoptotic protein XIAP. Analysis of the target peptide by a combination of RP‐HPLC, ESI‐MS, and NMR revealed the presence of two diastereoisomers arising out of the racemisation of the Phg residue, with the percentage of the LLLDL component assessed as 49%. We performed the synthesis of peptide (1) using different microwave and conventional stepwise SPPS conditions in attempts to reduce the level of racemisation of the Phg residue and to determine at which part of the synthetic cycle the epimerization had occurred. We determined that racemisation occurred mainly during the Fmoc‐group removal and, to a much lesser extent, during activation/coupling of the Fmoc‐Phg‐OH residue. We were able to obtain the desired peptide with a 71% diastereomeric purity (29% LLLDL as impurity) by utilizing microwave‐assisted SPPS at 50 °C and power 22 Watts, when the triazine‐derived coupling reagent DMTMM‐BF4 was used, together with NMM as an activator base, for the incorporation of this residue and 20% piperidine as an Fmoc‐deprotection base. In contrast, the phenylalanine analogue of the above peptide, H‐Ala‐Val‐Pro‐Phe‐Tyr‐NH2 (2), was always obtained as a single diastereoisomer by using a range of standard coupling and deprotection conditions. Our findings suggest that the racemisation of Fmoc‐Phg‐OH, under both microwave‐SPPS and stepwise conventional SPPS syntheses conditions, is very facile but can be limited through the use of the above stated conditions. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
Coagulation factor VII bound to its cofactor tissue factor is the physiological initiator of blood coagulation. The interaction between factor VII and tissue factor involves all four of the structural modules found in factor VII, with the most significant contribution coming from the first EGF‐like domain. In this study, the synthesis and biological activity of several analogues derived from the first EGF‐like domain of FVII comprising the sequence 45–83 are reported on. The six cysteine residues found in the native protein were replaced by Abu. The peptides were isolated from a multicomponent mixture following standard Fmoc solid phase synthesis. Purification and characterisation of the heterogeneous product showed that aspartimide formation was a major side‐reaction, occurring predominantly at the Asp46‐Gly47 and Asn57‐Gly58 dipeptides. Although relatively common in peptide synthesis, the extent to which this side‐reaction had taken place was considered surprising. Reported herein are the analytical methods used to isolate and characterise several of the modified products. Also, the inhibitory effect of these peptides on the formation and enzymatic activity of the factor VIIa/tissue factor complex have been compared. Surprisingly, the peptide containing an iso‐Asp residue at position 57 possessed 66‐fold higher inhibitory activity compared with the original target peptide. A possible explanation for this increase in observed activity is presented. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
A series of Fmoc‐Phe(4‐aza‐C60)‐OH of fullerene amino acid derived peptides have been prepared by solid phase peptide synthesis, in which the terminal amino acid, Phe(4‐aza‐C60)‐OH, is derived from the dipolar addition to C60 of the Fmoc‐Nα‐protected azido amino acids derived from phenylalanine: Fmoc‐Phe(4‐aza‐C60)‐Lys3‐OH ( 1 ), Fmoc‐Phe(4‐aza‐C60)‐Pro‐Hyp‐Lys‐OH ( 2 ), and Fmoc‐Phe(4‐aza‐C60)‐Hyp‐Hyp‐Lys‐OH ( 3 ). The inhibition constant of our fullerene aspartic protease PRIs utilized FRET‐based assay to evaluate the enzyme kinetics of HIV‐1 PR at various concentrations of inhibitors. Simulation of the docking of the peptide Fmoc‐Phe‐Pro‐Hyp‐Lys‐OH overestimated the inhibition, while the amino acid PRIs were well estimated. The experimental results show that C60‐based amino acids are a good base structure in the design of protease inhibitors and that their inhibition can be improved upon by the addition of designer peptide sequences. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Dendrimeric platforms such as MAPs can be synthesized either entirely by solid‐phase methods (SPPS, direct approach) or by conjugation in solution of preformed, SPPS‐made building blocks (indirect approach). Although MAPs and MAP‐like constructs have been extensively and successfully used for various biological (mainly immunological) applications, experimental reports are most often lacking in chemical detail about their preparation and characterization. Here, we provide complete accounts of the synthesis and analytical documentation of MAPs and similar dendrimers by either all‐SPPS (direct) or chemoselective thioether ligation (indirect) methods. We have chosen as model epitopes a 24‐residue sequence of the ectodomain of protein M2 from influenza virus (M2e), which is found to be a rather challenging peptide epitope, and a far more manageable, shortened (12‐residue) version of the same peptide. The advantages and shortcomings of both direct and indirect methods are discussed. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号