首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Human cytomegalovirus (HCMV) pp65 protein is the major constituent of viral dense bodies but is dispensable for viral growth in vitro. pp65 copurifies with a S/T kinase activity and has been implicated in phosphorylation of HCMV IE1 immediate-early protein and its escape from major histocompatibility complex 1 presentation. Furthermore, the presence of pp65 correlates with a virion-associated kinase activity. To clarify the role of pp65, yeast two-hybrid system (THS) screening was performed to identify pp65 cellular partners. A total of 18 out of 48 yeast clones harboring cDNAs for putative pp65 binding proteins encoded the Polo-like kinase 1 (Plk1) C-terminal domain. Plk1 behaved as a bona fide pp65 partner in THS control crosses, and the interaction was confirmed by in vitro binding experiments. Endogenous Plk1 was coimmunoprecipitated with pp65 from transiently transfected COS7 cells. In infected fibroblasts, Plk1 was coimmunoprecipitated with pp65 at late infection stages. Furthermore, Plk1 was detected within wild-type HCMV particles but not within the particles of a pp65-negative mutant (RVAd65). The hydrophilic region of pp65 was phosphorylated in vitro by Plk1. These results suggest that one function of pp65 may be to capture a cell kinase, perhaps in order to alter its activity, nucleotide preference, substrate specificity, or subcellular localization to the advantage of HCMV.  相似文献   

3.
4.
Kamil JP  Coen DM 《Journal of virology》2007,81(19):10659-10668
UL97 is a protein kinase encoded by human cytomegalovirus (HCMV) and is an important target for antiviral drugs against this ubiquitous herpesvirus, which is a major cause of life-threatening opportunistic infections in the immunocompromised host. In an effort to better understand the function(s) of UL97 during HCMV replication, a recombinant HCMV, NTAP97, which expresses a tandem affinity purification (TAP) tag at the amino terminus of UL97, was used to obtain UL97 protein complexes from infected cells. pp65 (also known as UL83), the 65-kDa virion tegument phosphoprotein, specifically copurified with UL97 during TAP, as shown by mass spectrometry and Western blot analyses. Reciprocal coimmunoprecipitation experiments using lysates of infected cells also indicated an interaction between UL97 and pp65. Moreover, in a glutathione S-transferase (GST) pull-down experiment, purified GST-pp65 fusion protein specifically bound in vitro-translated UL97, suggesting that UL97 and pp65 do not require other viral proteins to form a complex and may directly interact. Notably, pp65 has been previously reported to form unusual aggregates during viral replication when UL97 is pharmacologically inhibited or genetically ablated, and a pp65 deletion mutant was observed to exhibit modest resistance to a UL97 inhibitor (M. N. Prichard, W. J. Britt, S. L. Daily, C. B. Hartline, and E. R. Kern, J. Virol. 79:15494-15502, 2005). A stable protein-protein interaction between pp65 and UL97 may be relevant to incorporation of these proteins into HCMV particles during virion morphogenesis, with potential implications for immunomodulation by HCMV, and may also be a mechanism by which UL97 is negatively regulated during HCMV replication.  相似文献   

5.
Herpesvirus nucleocapsids traverse the nuclear envelope into the cytoplasm in a process called nuclear egress that includes disruption of the nuclear lamina. In several herpesviruses, a key player in nuclear egress is a complex of two proteins, whose homologs in human cytomegalovirus (HCMV) are UL50 and UL53. However, their roles in nuclear egress during HCMV infection have not been shown. Based largely on transfection studies, UL50 and UL53 have been proposed to facilitate disruption of the nuclear lamina by recruiting cellular protein kinase C (PKC), as occurs with certain other herpesviruses, and/or the viral protein kinase UL97 to phosphorylate lamins. To investigate these issues during HCMV infection, we generated viral mutants null for UL50 or UL53. Correlative light electron microscopic analysis of null mutant-infected cells showed the presence of intranuclear nucleocapsids and the absence of cytoplasmic nucleocapsids. Confocal immunofluorescence microscopy revealed that UL50 and UL53 are required for disruption of the nuclear lamina. A subpopulation of UL97 colocalized with the nuclear rim, and this was dependent on UL50 and, to a lesser extent, UL53. However, PKC was not recruited to the nuclear rim, and its localization was not affected by the absence of UL50 or UL53. Immunoprecipitation from cells infected with HCMV expressing tagged UL53 detected UL97 but not PKC. In summary, HCMV UL50 and UL53 are required for nuclear egress and disruption of nuclear lamina during HCMV infection, and they recruit UL97, not PKC, for these processes. Thus, despite the strong conservation of herpesvirus nuclear egress complexes, a key function can differ among them.  相似文献   

6.
Recombinant human cytomegaloviruses that do not express UL97 kinase activity exhibit a distinctive plaque morphology characterized by the formation of highly refractile bodies late in infection. These structures were also observed in infected cells treated with the UL97 kinase inhibitor maribavir. Nuclear inclusions were purified to near homogeneity, and the constituent proteins were identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. This analysis demonstrated that the aggregates were formed principally of the tegument proteins pp65 and ppUL25 but also contained additional virion structural proteins including the major capsid protein. Immunoblotting experiments confirmed these results and identified a number of additional viral proteins present in the purified tegument aggregates. Interestingly, the formation of these structures appeared to be dependent on pp65, since it was not induced in cells infected with a recombinant virus with this open reading frame deleted. Morphologically similar aggregates could be reproduced in nuclei of uninfected cells by overexpressing pp65, and their formation was prevented by coexpressing the UL97 kinase. Inhibition of UL97 kinase activity with maribavir or mutation of an essential amino acid in the kinase abolished its ability to prevent aggregate formation. These data taken together suggest that the UL97 kinase impacts the aggregation of pp65 in the nuclei of infected cells. We propose that the kinase plays an important role in the acquisition of tegument during virion morphogenesis in the nucleus and that this activity represents an important step in the production of mature virus particles.  相似文献   

7.
8.
9.
10.
Thirteen point mutations targeting predicted domains conserved in homologous protein kinases were introduced into the UL97 coding region of the human cytomegalovirus. All mutagenized proteins were expressed in cells infected with recombinant vaccinia viruses (rVV). Several mutations drastically reduced ganciclovir (GCV) phosphorylation. Mutations at amino acids G340, A442, L446, and F523 resulted in a complete loss of pUL97 phosphorylation, which was strictly associated with a loss of GCV phosphorylation. Our results confirm that in rVV-infected cells pUL97 phosphorylation is due to autophosphorylation and show that several amino acids conserved within domains of protein kinases are essential for this pUL97 phosphorylation. GCV phosphorylation is dependent on pUL97 phosphorylation.  相似文献   

11.
The tegument protein pp65 of human cytomegalovirus (HCMV) represents the major component of mature virus particles. Nevertheless, deletion of pp65 has been shown to have no effects on virus replication and morphogenesis in fibroblasts in vitro. We have studied the HCMV virion composition in the absence of pp65 and viral growth of a pp65 stop mutant in different cell types, including monocyte-derived macrophages. Two stop codons at amino acids 11 and 12 of pp65 were introduced by bacterial artificial chromosome mutagenesis into the endotheliotropic strain TB40/E. Clear changes of the tegument composition could be observed in purified mutant virus particles, where the amount of tegument protein pUL25 was drastically reduced. In addition, pUL69 and the virally encoded protein kinase UL97 were undetectable in the pp65 stop mutant. Expression of pUL69 in infected cells was unaltered while pUL25 accumulated in the absence of pp65, thus demonstrating that only incorporation into virus particles is dependent on pp65. Coimmunoprecipitation experiments using lysates of infected cells revealed an interaction between pUL69 and pp65. This interaction was verified in pull-down experiments using transfected cells, which showed that pp65 and pUL69 do not require the presence of other viral proteins for their interaction. We conclude that pp65 is required for the incorporation of other viral proteins into the virus particle and thus is involved in the protein-protein interaction network leading to normal tegument formation. When studying growth kinetics of the pp65 stop mutant in different cell types, we found a severe impairment of viral growth in monocyte-derived macrophages, showing for the first time a strong cell-specific role of pp65 in viral growth.Human cytomegalovirus (HCMV), a member of the Betaherpesvirinae subfamily, is a threatening pathogen for immunocompromised patients, such as transplant recipients, AIDS patients, and conatally infected infants (15). HCMV infection of individuals with a compromised immune system causes considerable morbidity and mortality after primary infection or reactivation from latency.Mature HCMV virions comprise four distinct structures: core, capsid, tegument, and envelope. The nucleocapsid consists of the core containing the approximately 240-kb linear double-stranded DNA genome, which is embedded in an icosahedral capsid. Between the envelope, a cellularly derived lipid membrane containing viral glycoproteins, and the nucleocapsid, a protein layer called tegument (26), is located. The tegument of HCMV is composed of at least 25 viral proteins. Tegument proteins have been proposed to act in several processes, such as immune evasion (reviewed in reference 30), release of viral DNA into the nucleus (6), and initiation and regulation of the viral replication cycle (3, 7, 16, 31, 41). However, for many of the tegument proteins, the morphogenetic or regulatory functions are unknown. An increasing number of host cell proteins, e.g., cytoskeletal proteins such as α- and β-actin, have also been detected in HCMV particles (4, 39). In addition to infectious virions, HCMV-infected cells generate two types of aberrant particles: noninfectious enveloped particles (NIEPs) and dense bodies (DBs) (18). The protein composition and morphology of NIEPs are nearly identical to those of mature virions; however, their lack of an electron-dense DNA-containing core allows discrimination of NIEPs from infectious virions by electron microscopy (18). DBs are fusion-competent enveloped particles lacking a nucleocapsid. They are composed primarily of the tegument protein pp65 (ppUL83) (4, 18, 39).For a long time, the herpesvirus tegument has been considered to be unstructured. Data mainly from alphaherpesviruses indicate that morphogenesis depends on an intricate network of tegument protein-protein interactions (reviewed in reference 23). Interestingly, for most tegument proteins of alphaherpesviruses relevant for primary tegumentation and envelopment, homologues have been found in HCMV, whereas there is much less homology between the proteins involved in secondary tegumentation and envelopment. Cryoelectron microscopic analyses of herpesvirus particles, including HCMV, provide evidence for an icosahedral symmetry and protein-protein complexes forming substructures, at least for the innermost part of the tegument (11).Remarkably, the most abundant tegument protein and major constituent of extracellular virions, pp65, is not essential for virus replication in fibroblasts in vitro. Deletion of pp65 in HCMV strain AD169 causes a complete loss of DB formation, while production of infectious virus in fibroblasts appears to be unaffected (34). Wild-type virus particle-associated pp65 is rapidly translocated to the nuclei of infected cells after penetration of the incoming virus (4, 33). Newly synthesized pp65 accumulates in both nucleus and cytoplasm at later stages of infection. In all, the precise function of pp65 during infection is not clear.During HCMV infection, pp65 is a major antigen for cellular immune responses. Besides its function as a structural component of the virus, pp65 seems to be involved in manipulation of the host''s immune system. Recent reports provide evidence that pp65 is involved in subverting the host immune response by mediating a decreased expression of major histocompatibility complex class II molecules (27). Microarray studies demonstrating an increase in the cellular antiviral cytokine response during infection with a pp65 deletion mutant suggested that pp65 is involved in downmodulation of beta interferon and of a number of chemokines (1, 8). However, most recent work demonstrates that not pp65 but the immediate-early 2 (IE2) gene product IE86 is responsible for the block of beta interferon induction during HCMV infection and that IE86 expression is delayed in the pp65 deletion mutant due to a decreased expression of pp71 (36). It has also been shown that pp65 can directly interact with NKp30, the natural killer (NK) cell-activating receptor, and that this interaction leads to a general inhibition of the killing ability of NK cells (2). Because of the requirement of cell-free pp65, the relevance of this interaction during HCMV infection in vivo is not entirely clear and needs to be investigated in more detail.Another feature of pp65 is the ability to interact with cellular as well as viral proteins. The interaction of pp65 with the cellular Polo-like kinase 1 (Plk1) results in an incorporation of Plk1 into virus particles. Plk1 is able to phosphorylate pp65 in vitro (14). Recently, it has been shown that pp65 interacts directly with the viral protein kinase pUL97 (20). pUL97 seems to be required for normal intranuclear distribution of pp65. Inhibition of the pUL97 kinase activity with maribavir or mutation of an essential amino acid in the kinase domain results in accumulation of pp65 in characteristic inclusions in the nuclei of infected as well as transfected cells (28).To extend our knowledge about pp65 and its function, we investigated the composition of endotheliotropic HCMV particles in the absence of the most abundant tegument protein, pp65. We hypothesized that other viral or cellular proteins might compensate for the lack of pp65 in virus particles, as described for tegument mutants of pseudorabies virus (25). The results presented here, using a pp65 stop codon mutant of the endotheliotropic HCMV strain TB40/E, demonstrate that in contrast to our hypothesis, incorporation of at least three other HCMV tegument proteins, pUL25, pUL69, and pUL97, is severely impaired when pp65 is lacking. For pUL69, a direct interaction with pp65 could be shown in infected as well as transfected cells. These results show that pp65 interacts with other viral tegument proteins during infection, which in turn is important for the incorporation of these proteins into mature virus particles. Finally, for the first time, we could show a cell-specific biological relevance of pp65 for growth of HCMV in monocyte-derived macrophages (MDM).  相似文献   

12.
Human cytomegalovirus (HCMV) virions are structurally complex, and the mechanisms by which they are assembled are poorly understood, especially with respect to the cytoplasmic phase of assembly, during which the majority of the tegument is acquired and final envelopment occurs. These processes occur at a unique cytoplasmic structure called the assembly complex, which is formed through a reorganization of the cellular secretory apparatus. The HCMV tegument protein UL99 (pp28) is essential for viral replication at the stage of secondary envelopment. We previously demonstrated that UL99 interacts with the essential tegument protein UL94 in infected cells as well as in the absence of other viral proteins. Here we show that UL94 and UL99 alter each other's localization and that UL99 stabilizes UL94 in a binding-dependent manner. We have mapped the interaction between UL94 and UL99 to identify the amino acids of each protein that are required for their interaction. Mutation of these amino acids in the context of the viral genome demonstrates that HCMV is completely defective for replication in the absence of the interaction between UL94 and UL99. Further, we demonstrate that in the absence of their interaction, both UL94 and UL99 exhibit aberrant localization and do not accumulate at the assembly complex during infection. Taken together, our data suggest that the interaction between UL94 and UL99 is essential for the proper localization of each protein to the assembly complex and thus for the production of infectious virus.  相似文献   

13.
Human cytomegalovirus (HCMV) has been indicated being a significant oncomodulator. Recent reports have suggested that an antiviral treatment alters the outcome of a glioblastoma. We analysed the performance of commercial HCMV-antibodies applying the immunohistochemical (IHC) methods on brain sample obtained from a subject with a verified HCMV infection, on samples obtained from 14 control subjects, and on a tissue microarray block containing cores of various brain tumours. Based on these trials, we selected the best performing antibody and analysed a cohort of 417 extra- and intra-axial brain tumours such as gliomas, medulloblastomas, primary diffuse large B-cell lymphomas, and meningiomas. HCMV protein pp65 immunoreactivity was observed in all types of tumours analysed, and the IHC expression did not depend on the patient''s age, gender, tumour type, or grade. The labelling pattern observed in the tumours differed from the labelling pattern observed in the tissue with an active HCMV infection. The HCMV protein was expressed in up to 90% of all the tumours investigated. Our results are in accordance with previous reports regarding the HCMV protein expression in glioblastomas and medulloblastomas. In addition, the HCMV protein expression was seen in primary brain lymphomas, low-grade gliomas, and in meningiomas. Our results indicate that the HCMV protein pp65 expression is common in intra- and extra-axial brain tumours. Thus, the assessment of the HCMV expression in tumours of various origins and pathologically altered tissue in conditions such as inflammation, infection, and even degeneration should certainly be facilitated.  相似文献   

14.
Human cytomegalovirus (HCMV) virion assembly takes place in the nucleus and cytoplasm of infected cells. The HCMV virion tegument protein pp150 (ppUL32) is an essential protein of HCMV and has been suggested to play a role in the cytoplasmic phase of HCMV assembly. To further define its role in viral assembly and to identify host cell proteins that interact with pp150 during viral assembly, we utilized yeast two-hybrid analyses to detect an interaction between pp150 and Bicaudal D1 (BicD1), a protein thought to play a role in trafficking within the secretory pathway. BicD1 is known to interact with the dynein motor complex and the Rab6 GTPase. The interaction between pp150 and BicD1 was confirmed by coimmunoprecipitation and fluorescence resonance energy transfer. Depletion of BicD1 with short hairpin RNA (shRNA) caused decreased virus yield and a defect in trafficking of pp150 to the cytoplasmic viral assembly compartment (AC), without altering trafficking to the AC of another essential tegument protein, pp28, or the viral glycoprotein complex gM/gN. The C terminus of BicD1 has been previously shown to interact with the GTPase Rab6, suggesting a potential role for Rab6-mediated vesicular trafficking in HCMV assembly. Finally, overexpression of the N terminus of truncated BicD1 acts in a dominant-negative manner and leads to disruption of the AC and a decrease in the assembly of infectious virus. This phenotype was similar to that observed following overexpression of dynamitin (p50) and provided additional evidence that morphogenesis of the AC and virus assembly were dynein dependent.Human cytomegalovirus (HCMV) (human herpesvirus 5 [HHV-5]), the prototypical betaherpesvirus, is ubiquitous in humans and establishes a persistent infection in the host (19). HCMV also reinfects healthy seropositive individuals, suggesting another mechanism for maintaining persistence in a population (9). Intrauterine transmission and HCMV infection of the developing fetus constitute a leading viral cause of birth defects (32). HCMV is also a leading cause of opportunistic infections in immunocompromised patients, including transplant recipients and patients with AIDS (10, 20). HCMV infection has also been implicated as a cofactor in such diverse diseases as atherosclerosis and cancer (8, 17, 33, 66).HCMV replicates its genome in the nucleus, and acquisition of the final tegument and envelope is thought to occur in the cytoplasm of infected cells (73, 77). Envelopment of HCMV has been reported to occur by budding into cytoplasmic vacuoles that are composed of HCMV glycoproteins required for the assembly of infectious virions (37). The fully mature virus is released from the cell through either exocytosis or, possibly, lysis of the infected cells (56). The nucleic acid-containing capsid is embedded in a proteinaceous tegument layer that occupies the space between the nucleocapsid and the envelope. The tegument contains approximately 40% of the virion protein mass and approximately 20 to 25 known virion proteins, most of which are phosphorylated (40, 44). The assembly pathway and protein interactions required for formation of the tegument layer and the role of individual tegument proteins in the replication and assembly of infectious HCMV remain poorly understood. Deletion of viral genes encoding some tegument proteins results in varying levels of impairment in virus production (11-13, 35, 43, 45, 53, 68). Some tegument proteins, such as pp28 (pUL99) and ppUL25, are expressed only in the cytoplasm of infected cells during HCMV replication, whereas others, such as ppUL53 and pp65 (pUL83), are expressed in the nuclei of cells early in infection but are localized predominantly in the cytoplasm late in infection (68). Others, such as the tegument protein ppUL69, are expressed only in the nuclei of infected cells. Finally, the intracellular localization of other tegument proteins, such as pp150 (pUL32), is less well defined in that both nuclear and cytoplasmic localizations have been described (34, 68).HCMV pp150 (basic phosphoprotein [BPP], pUL32) is the 1,048-amino-acid product of the UL32 gene of HCMV and an abundant constituent of the HCMV virion. Homologues of pp150 are found in other betaherpesviruses, including chimpanzee CMV, rat CMV, mouse CMV, HHV-6, and HHV-7, but not in alpha- or gammaherpesviruses (2). It is expressed late in HCMV infection (15, 68). It comprises 9.1% of infectious virion mass and 2% of the mass of dense bodies, suggesting that it is preferentially incorporated into virions (87). It has an estimated molecular mass of 113 kDa and is posttranslationally modified by phosphorylation and glycosylation, resulting in a molecular mass of 150 kDa in purified virus preparations analyzed by SDS-PAGE (41, 42, 65). pp150 has been classified as a tegument protein based on its presence in virion preparation, noninfectious enveloped particles, and cytoplasmic nucleocapsids but not in immature nuclear capsids (27, 28, 40). It has been suggested that pp150 contacts the capsids through the distal end of the capsomeres or through the triplex subunits that interlink them (16, 86). It has been reported to bind HCMV capsids in vitro through its amino one-third (6). We have also noted association of pp150 with the virion capsid by cryo-immunoelectron microscopy (W. Britt and H. Zhou, UCLA, Los Angeles, CA, unpublished findings). In primary human foreskin fibroblast (HFF) cells infected with HCMV, pp150 accumulates in a juxtanuclear structure that is termed the assembly compartment (AC), which colocalizes with markers of the distal secretory pathway and with other tegument proteins, including pp28 and pp65 and envelope glycoproteins gB, gH, and gM/gN (68). The virus-induced AC appears to overlap with microtubules emanating from the microtubule-organizing center (MTOC) and is proposed to be a cytoplasmic site of virion assembly (37, 68).The function of pp150 is unknown, although its close association with the nucleocapsid suggests potential involvement in nuclear targeting during entry and in nuclear targeting of the encapsidated viral DNA, capsid tegumentation, and/or envelopment late in infection. It is essential for production of infectious virus, since the deletion of the UL32 open reading frame (ORF) leads to loss of virus replication and has been reported to be important in cytoplasmic maturation of HCMV, especially in viral egress (2, 22, 84, 91, 92). In cells infected with ΔUL32 virus, which lacks pp150, fewer virus particles accumulated in the cytoplasm, although nuclear steps in virus assembly were not affected (84). It was also observed that in the absence of pp150, nucleocapsids were present in the viral assembly compartment but failed to proceed further to vesicle transport-associated release (84). These observations, together with pp150 abundance in the virion, suggest a primary contribution for this structural protein in the morphogenesis and/or cytoplasmic transport of progeny virion particles to sites of virion envelopment.Since pp150 has no predicted intracellular trafficking signals, its localization to the AC in virus-infected cells has been postulated to be dependent on interactions with cellular and/or viral proteins. Using yeast two-hybrid (Y2H) screening experiments we identified the cellular protein Bicaudal D1 (BicD1) as an interacting cellular protein. Bicaudal D was originally defined as a Drosophila protein that is involved in establishing the asymmetric cytoplasm in the developing oocyte (82, 89). Two homologues of Bicaudal D, BicD1 and BicD2, have been reported in humans, and these proteins have been reported to be involved in dynein-mediated microtubule transport as well as in COPI-independent Golgi-endoplasmic reticulum (ER) transport (38, 39, 55). Microtubule-dependent transport is an energy-dependent active transport system that includes both positive-end (directed away from the MTOC) and negative-end (directed toward the MTOC) transport. The direction of transport depends on cargo interactions with the molecular motors directing this transport, with dynein being associated with negative-end transport and kinesin with positive-end transport. BicD1 colocalizes with Rab6a in the trans-Golgi network and on cytoplasmic vesicles that associate with Golgi membranes in a Rab6-dependent manner secondary to a Rab6 binding domain at the C terminus of BicD1, suggesting an important role for BicD1 as an adaptor for dynein-dependent transport in the cell (55). In addition to having a role in the Golgi-ER trafficking, BicD1 has been shown to regulate anchoring of microtubules to the centrosome, as BICD1/2 knockdown induced microtubule unfocusing, with microtubules no longer appearing to radiate from the centrosome (26). BicD1 binds to its cargo via its C-terminal domain and to the dynein motor via its N-terminal domain (38). In this study we demonstrated that pp150 and BicD1 interact and that this interaction was required for localization of pp150 to the AC in virus-infected cells. In addition, we demonstrated that inhibition of BicD1 expression by short hairpin RNA (shRNA) led to a reduction in the yield of infectious virus. Finally, we demonstrated that formation of the AC and the assembly of infectious virions were dynein dependent, suggesting a critical role in microtubules in the production of infectious HCMV. Together, these results argue that HCMV replication is dependent on efficient localization of pp150 to the AC through its interaction with BicD1 and that pp150 localization to the AC is dynein dependent.  相似文献   

15.
16.
Human cytomegalovirus encodes a protein kinase (UL97) that confers sensitivity to ganciclovir by phosphorylating it to the monophosphate. The function of this unusual kinase in viral replication is unknown. We constructed two independent isolates of a recombinant virus, RCDelta97, that contain large deletions in this gene and carry a 4.8-kb insertion containing a selectable genetic marker. These mutant viruses were isolated by using a population of primary cells (HEL97) that express this gene from integrated copies of a defective retroviral vector. The recombinant viruses were severely impaired in their ability to replicate in primary fibroblasts, attaining virus titers that were 2 to 3 orders of magnitude lower than those produced by the parent virus. Despite the severe replication deficit, both of these viruses retained the ability to form small, slowly growing plaques in primary fibroblasts, demonstrating that UL97 is not absolutely essential for replication in cell culture. The replication deficit was relieved when UL97 was provided in trans in the complementing cell line, showing that the phenotype was due to a deficiency in UL97. Thus, the UL97 gene product plays a very important role in viral replication in tissue culture and may be a good target for antiviral chemotherapy.  相似文献   

17.
以病毒全基因组为模板,通过PCR技术扩增HCMV pp65基因编码序列,其产物连接到pMD18-T质粒,酶切并回收目的片段后克隆到表达载体pTO-T7,然后将重组质粒pTO-T7-pp65转化大肠杆菌ER2566,大量表达后将重组蛋白进行质谱法分析鉴定,再利用Western blot以及间接ELISA进行重组蛋白的活性及抗原性鉴定.结果显示:通过SDS-PAGE鉴定可知,大肠杆菌可能表达出了重组蛋白,质谱分析结果说明了重组蛋白为pp65蛋白,具有极高可信度,其相对分子质量约为63 kD,从Western blot和间接ELISA(enzyme linked immunosorbent assay)的结果可知,pp65蛋白作为抗原具有良好的免疫反应性与免疫原性,为制备相应的抗原诊断单克隆抗体打下了基础,同时也为开发HCMV IgG快速诊断ELISA试剂盒提供了可选原料.  相似文献   

18.
19.
CD8 T cells are the principal antiviral effectors controlling cytomegalovirus (CMV) infection. For human CMV, the virion tegument protein ppUL83 (pp65) has been identified as a source of immunodominant peptides and is regarded as a candidate for cytoimmunotherapy and vaccination. Two sequence homologs of ppUL83 are known for murine CMV, namely the virion protein ppM83 (pp105) expressed late in the viral replication cycle and the nonstructural protein pM84 (p65) expressed in the early phase. Here we show that ppM83, unlike ppUL83, is not delivered into the antigen presentation pathway after virus penetration before or in absence of viral gene expression, while other virion proteins of murine CMV are processed along this route. In cytokine secretion-based assays, ppM83 and pM84 appeared to barely contribute to the acute immune response and to immunological memory. Specifically, the frequencies of M83 and M84 peptide-specific CD8 T cells were low and undetectable, respectively. Nonetheless, in a murine model of cytoimmunotherapy of lethal CMV disease, M83 and M84 peptide-specific cytolytic T-cell lines proved to be highly efficient in resolving productive infection in multiple organs of cell transfer recipients. These findings demonstrate that proteins which fail to prime a quantitatively dominant immune response can nevertheless represent relevant antigens in the effector phase. We conclude that quantitative and qualitative immunodominance are not necessarily correlated. As a consequence of these findings, there is no longer a rationale for considering T-cell abundance as the key criterion for choosing specificities to be included in immunotherapy and immunoprophylaxis of CMV disease and of viral infections in general.  相似文献   

20.
Histone deacetylation plays a pivotal role in regulating human cytomegalovirus gene expression. In this report, we have identified candidate HDAC1-interacting proteins in the context of infection by using a method for rapid immunoisolation of an epitope-tagged protein coupled with mass spectrometry. Putative interactors included multiple human cytomegalovirus-coded proteins. In particular, the interaction of pUL38 and pUL29/28 with HDAC1 was confirmed by reciprocal immunoprecipitations. HDAC1 is present in numerous protein complexes, including the HDAC1-containing nucleosome remodeling and deacetylase protein complex, NuRD. pUL38 and pUL29/28 associated with the MTA2 component of NuRD, and shRNA-mediated knockdown of the RBBP4 and CHD4 constituents of NuRD inhibited HCMV immediate-early RNA and viral DNA accumulation; together this argues that multiple components of the NuRD complex are needed for efficient HCMV replication. Consistent with a positive acting role for the NuRD elements during viral replication, the growth of pUL29/28- or pUL38-deficient viruses could not be rescued by treating infected cells with the deacetylase inhibitor, trichostatin A. Transient expression of pUL29/28 enhanced activity of the HCMV major immediate-early promoter in a reporter assay, regardless of pUL38 expression. Importantly, induction of the major immediate-early reporter activity by pUL29/28 required functional NuRD components, consistent with the inhibition of immediate-early RNA accumulation within infected cells after knockdown of RBBP4 and CHD4. We propose that pUL29/28 modifies the NuRD complex to stimulate the accumulation of immediate-early RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号