首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Culture of isolated rodent islets is widely used in diabetes research to assess different endpoints, including outcomes requiring histochemical staining. As islet yields during isolation are limited, we determined the number of islets required to obtain reliable data by histology. We found that mean values for insulin-positive β-cell area/islet area, thioflavin S-positive amyloid area/islet area and β-cell apoptosis do not vary markedly when more than 30 islets are examined. Measurement variability declines as more islets are quantified, so that the variability of the coefficient of variation (CV) in human islet amyloid polypeptide (hIAPP) transgenic islets for β-cell area/islet area, amyloid area/islet area and β-cell apoptosis are 13.20% ± 1.52%, 10.03% ± 1.76% and 6.78% ± 1.53%, respectively (non-transgenic: 7.65% ± 1.17% β-cell area/islet area and 8.93% ± 1.56% β-cell apoptosis). Increasing the number of islets beyond 30 had marginal effects on the CV. Using 30 islets, 6 hIAPP-transgenic preparations are required to detect treatment effects of 14% for β-cell area/islet area, 30% for amyloid area/islet area and 23% for β-cell apoptosis (non-transgenic: 9% for β-cell area/islet area and 45% for β-cell apoptosis). This information will be of value in the design of studies using isolated islets to examine β cells and islet amyloid.  相似文献   

2.
3.
Glycerol was used as the sole carbon and energy source for growingRhodotorula lactosa. The maximum biomass yield (0.53 g/g substrate) was obtained after 20 h with 21.5 g glycerol/l; growth was inhibited with 28.0 g glycerol/l and cell morphology was changed. At this time, the cells were not pigmented. After 48 h of cultivation, -carotene was at 1.8 mg/g dry cells, yielding 22.0 mg/l. When cells were grown for 20 h, washed, suspended in distilled water and aerated for 24 hours, more -carotene (2.66 mg/g dry cells or 28.0 mg/l of the original culture) was produced. Cell protein content after 48 h was 36 to 38% (w/w) before extraction and 45 to 47% (w/w) for acetone-extracted cells.  相似文献   

4.

Background

Apoptosis is a hallmark of β-cell death in both type 1 and type 2 diabetes mellitus. Understanding how apoptosis contributes to β-cell turnover may lead to strategies to prevent progression of diabetes. A key mediator of apoptosis, mitochondrial function, and cell survival is apoptosis inducing factor (AIF). In the present study, we investigated the role of AIF on β-cell mass and survival using the Harlequin (Hq) mutant mice, which are hypomorphic for AIF.

Methodology/Principal Findings

Immunohistochemical evaluation of pancreata from Hq mutant mice displayed much smaller islets compared to wild-type mice (WT). Analysis of β-cell mass in these mice revealed a greater than 4-fold reduction in β-cell mass together with an 8-fold increase in β-cell apoptosis. Analysis of cell cycle dynamics, using BrdU pulse as a marker for cells in S-phase, did not detect significant differences in the frequency of β-cells in S-phase. In contrast, double staining for phosphorylated Histone H3 and insulin showed a 3-fold increase in β-cells in the G2 phase in Hq mutant mice, but no differences in M-phase compared to WT mice. This suggests that the β-cells from Hq mutant mice are arrested in the G2 phase and are unlikely to complete the cell cycle. β-cells from Hq mutant mice display increased sensitivity to hydrogen peroxide-induced apoptosis, which was confirmed in human islets in which AIF was depleted by siRNA. AIF deficiency had no effect on glucose stimulated insulin secretion, but the impaired effect of hydrogen peroxide on β-cell function was potentiated.

Conclusions/Significance

Our results indicate that AIF is essential for maintaining β-cell mass and for oxidative stress response. A decrease in the oxidative phosphorylation capacity may counteract the development of diabetes, despite its deleterious effects on β-cell survival.  相似文献   

5.

Aims

The gastrointestinal hormone GIP promotes pancreatic islet function and exerts pro-survival actions on cultured β-cells. However, GIP also promotes lipogenesis, thus potentially restricting its therapeutic use. The current studies evaluated the effects of a truncated GIP analog, D-Ala2-GIP1–30 (D-GIP1–30), on glucose homeostasis and β-cell mass in rat models of diabetes.

Materials and Methods

The insulinotropic and pro-survival potency of D-GIP1–30 was evaluated in perfused pancreas preparations and cultured INS-1 β-cells, respectively, and receptor selectivity evaluated using wild type and GIP receptor knockout mice. Effects of D-GIP1–30 on β-cell function and glucose homeostasis, in vivo, were determined using Lean Zucker rats, obese Vancouver diabetic fatty rats, streptozotocin treated rats, and obese Zucker diabetic fatty rats, with effects on β-cell mass determined in histological studies of pancreatic tissue. Lipogenic effects of D-GIP1–30 were evaluated on cultured 3T3-L1 adipocytes.

Results

Acutely, D-GIP1–30 improved glucose tolerance and insulin secretion. Chronic treatment with D-GIP1–30 reduced levels of islet pro-apoptotic proteins in Vancouver diabetic fatty rats and preserved β-cell mass in streptozotocin treated rats and Zucker diabetic fatty rats, resulting in improved insulin responses and glycemic control in each animal model, with no change in body weight. In in vitro studies, D-GIP1–30 exhibited equivalent potency to GIP1–42 on β-cell function and survival, but greatly reduced action on lipoprotein lipase activity in 3T3-L1 adipocytes.

Conclusions

These findings demonstrate that truncated forms of GIP exhibit potent anti-diabetic actions, without pro-obesity effects, and that the C-terminus contributes to the lipogenic actions of GIP.  相似文献   

6.
7.

Background

Glucose modulates β-cell mass and function through an initial depolarization and Ca2+ influx, which then triggers a number of growth regulating signaling pathways. One of the most important downstream effectors in Ca2+ signaling is the calcium/Calmodulin activated serine threonine phosphatase, calcineurin. Recent evidence suggests that calcineurin/NFAT is essential for β-cell proliferation, and that in its absence loss of β-cells results in diabetes. We hypothesized that in contrast, activation of calcineurin might result in expansion of β-cell mass and resistance to diabetes.

Methodology/Principal Findings

To determine the role of activation of calcineurin signaling in the regulation of pancreatic β-cell mass and proliferation, we created mice that expressed a constitutively active form of calcineurin under the insulin gene promoter (caCnRIP). To our surprise, these mice exhibited glucose intolerance. In vitro studies demonstrated that while the second phase of Insulin secretion is enhanced, the overall insulin secretory response was conserved. Islet morphometric studies demonstrated decreased β-cell mass suggesting that this was a major component responsible for altered Insulin secretion and glucose intolerance in caCnRIP mice. The reduced β-cell mass was accompanied by decreased proliferation and enhanced apoptosis.

Conclusions

Our studies identify calcineurin as an important factor in controlling glucose homeostasis and indicate that chronic depolarization leading to increased calcineurin activity may contribute, along with other genetic and environmental factors, to β-cell dysfunction and diabetes.  相似文献   

8.
Chronic ethanol consumption is known as an independent risk factor for type 2 diabetes, which is characterized by impaired glucose homeostasis and insulin resistance; however, there is a great deal of controversy concerning the relationships between alcohol consumption and the development of type 2 diabetes. We investigated the effects of chronic ethanol consumption on pancreatic β-cell dysfunction and whether generated peroxynitrite participates in the impaired glucose homeostasis. Here we show that chronic ethanol feeding decreases the ability of pancreatic β-cells to mediate insulin secretion and ATP production in coordination with the decrease of glucokinase, Glut2, and insulin expression. Specific blockade of ATF3 using siRNA or C-terminally deleted ATF3(ΔC) attenuated ethanol-induced pancreatic β-cell apoptosis or dysfunction and restored the down-regulation of glucokinase (GCK), insulin, and pancreatic duodenal homeobox-1 induced by ethanol. GCK inactivation and down-regulation were predominantly mediated by ethanol metabolism-generated peroxynitrite, which were suppressed by the peroxynitrite scavengers Nγ-monomethyl-l-arginine, uric acid, and deferoxamine but not by the S-nitrosylation inhibitor DTT, indicating that tyrosine nitration is the predominant modification associated with GCK down-regulation and inactivation rather than S-nitrosylation of cysteine. Tyrosine nitration of GCK prevented its association with pBad, and GCK translocation into the mitochondria results in subsequent proteasomal degradation of GCK following ubiquitination. This study identified a novel and efficient pathway by which chronic ethanol consumption may induce GCK down-regulation and inactivation by inducing tyrosine nitration of GCK, resulting in pancreatic β-cell apoptosis and dysfunction. Peroxynitrite-induced ATF3 may also serve as a potent upstream regulator of GCK down-regulation and β-cell apoptosis.  相似文献   

9.
In the early 1980s, we proposed a unifying model for β-cell damage (The OKAMOTO model), in which poly(ADP-ribose) synthetase/ polymerase (PARP) activation plays an essential role in the consumption of NAD+, which leads to energy depletion and necrotic cell death. In 1984, we demonstrated that the administration of PARP inhibitors to 90% depancreatized rats induces islet regeneration. From the regenerating islet-derived cDNA library we isolated Reg (Regenerating Gene) and demonstrated that Reg protein induces βcell replication via the Reg receptor and ameliorates experimental diabetes. More recently, we showed that the combined addition of IL-6 and dexamethasone induces the Reg gene expression in β-cells and that PARP inhibitors enhance the expression. In 1993, we found that cyclic ADP-ribose (cADPR), a product synthesized from NAD+, is a second messenger for intracellular Ca+ mobilization for insulin secretion by glucose, and proposed a novel mechanism of insulin secretion, the CD38-cADPR signal system. Therefore, PARP inhibitors prevent β-cell necrosis, induce β-cell replication and maintain insulin secretion. In this paper, we would like to present a perspective view based on our studies concerning cell death, cell regeneration, and cell function, especially on insulin-producing pancreatic βcells, in the processes of which poly(ADPribose) synthetase/polymerase (PARP) and cyclic ADP-ribose (cADPR) are functioning.  相似文献   

10.
11.
12.
13.
Accumulating clinical evidence suggests that hyperuricemia is associated with an increased risk of type 2 diabetes. However, it is still unclear whether elevated levels of uric acid can cause direct injury of pancreatic β-cells. In this study, we examined the effects of uric acid on β-cell viability and function. Uric acid solution or normal saline was administered intraperitoneally to mice daily for 4 weeks. Uric acid-treated mice exhibited significantly impaired glucose tolerance and lower insulin levels in response to glucose challenge than did control mice. However, there were no significant differences in insulin sensitivity between the two groups. In comparison to the islets in control mice, the islets in the uric acid–treated mice were markedly smaller in size and contained less insulin. Treatment of β-cells in vitro with uric acid activated the NF-κB signaling pathway through IκBα phosphorylation, resulting in upregulated inducible nitric oxide synthase (iNOS) expression and excessive nitric oxide (NO) production. Uric acid treatment also increased apoptosis and downregulated Bcl-2 expression in Min6 cells. In addition, a reduction in insulin secretion under glucose challenge was observed in the uric acid–treated mouse islets. These deleterious effects of uric acid on pancreatic β-cells were attenuated by benzbromarone, an inhibitor of uric acid transporters, NOS inhibitor L-NMMA, and Bay 11–7082, an NF-κB inhibitor. Further investigation indicated that uric acid suppressed levels of MafA protein through enhancing its degradation. Collectively, our data suggested that an elevated level of uric acid causes β-cell injury via the NF-κB-iNOS-NO signaling axis.  相似文献   

14.

Background

A reduction in adiposity may be associated with an improvement in insulin sensitivity and β-cell function as well as cardiovascular disease (CVD) risk factors; however, few studies have investigated these associations in a longitudinal setting.

Methods

To investigate these associations over a 1-year period, we conducted an observational analysis of 196 Japanese subjects with obesity in the Saku Control Obesity Program. We investigated the relations between changes in adiposity (body mass index [BMI], waist circumference, subcutaneous fat area [SFAT], and visceral fat area [VFAT]) and changes in HbA1c, fasting plasma glucose (FPG), insulin sensitivity index (ISI), the homeostasis model assessment β cell function (HOMA-β), lipids, and blood pressure.

Results

All adiposity changes were positively associated with HbA1c and FPG changes. Reductions in BMI and VFAT were associated with HOMA-β reduction. Reductions in all adiposity measures were associated with an improvement in the ISI. Changes in most adiposity measures were positively associated with changes in blood pressure and lipid levels, except for LDL.

Conclusion

The present findings provide additional supportive evidence indicating that a reduction in adiposity may lead to an improvement in insulin sensitivity and the reduction of CVD risk factors in obese individuals.  相似文献   

15.
Progression to type 1 diabetes is characterized by complex interactions of environmental, metabolic and immune system factors, involving both degenerative pathways leading to loss of pancreatic β-cells as well as protective pathways. The interplay between the degenerative and protective pathways may hold the key to disease outcomes, but no models have so far captured the two together. Here we propose a mathematical framework, an ordinary differential equation (ODE) model, which integrates metabolism and the immune system in early stages of disease process. We hypothesize that depending on the degree of regulation, autoimmunity may also play a protective role in the initial response to stressors. We assume that β-cell destruction follows two paths of loss: degenerative and autoimmune-induced loss. The two paths are mutually competing, leading to termination of the degenerative loss and further to elimination of the stress signal and the autoimmune response, and ultimately stopping the β-cell loss. The model describes well our observations from clinical and non-clinical studies and allows exploration of how the rate of β-cell loss depends on the amplitude and duration of autoimmune response.  相似文献   

16.
17.
Abnormally high levels of circulating free fatty acids can lead to pancreatic islet β-cell dysfunction and apoptosis, contributing to β-cell failure in Type 2 diabetes. The NAD+-dependent protein deacetylase Sirtuin-3 (SIRT3) has been implicated in Type 2 diabetes. In this study, we tested whether SIRT3 overexpression affects palmitate-induced β-cell dysfunction in cells of line NIT1, which are derived from mouse pancreatic β-cells. Two different lengths of SIRT3 were overexpressed: full length SIRT3 (SIRT3LF), which was preferentially targeted to mitochondria and partially to the nucleus, and its N-terminal truncated form (SIRT3SF), which was located in the nucleus and cytoplasm. Overexpression of SIRT3LF and SIRT3SF using an adenoviral system alleviated palmitate-induced lipotoxicity such as reduction of cell viability and mitogen-activated protein kinase (MAPK) activation. Chronic exposure to low concentrations of palmitate suppressed glucose-stimulated insulin secretion, but the suppression was effectively reversed by overexpression of SIRT3LF or SIRT3SF. The mRNA levels of the endoplasmic reticulum (ER) stress responsive genes ATF4, GRP94 and FKBP11 were increased by palmitate treatment, but the increases were completely inhibited by SIRT3LF overexpression and less effectively inhibited by SIRT3SF overexpression. This result suggests that overexpression of SIRT3 inhibits induction of ER stress by palmitate. Collectively, we conclude that overexpression of SIRT3 alleviates palmitate-induced β-cell dysfunction.  相似文献   

18.
The novel sodium glucose co-transporter 2 (SGLT2) inhibitor empagliflozin has recently been reported to improve glycemic control in streptozotocin-induced type 1 diabetic rats in an insulin-independent manner, via an increase in urinary glucose output. We investigated the potential of empagliflozin to recover insulin pathways in type 1 diabetes by improving pancreatic β-cell mass. Blood glucose homeostasis was assessed by an intraperitoneal glucose tolerance test. Serum insulin levels and insulin mRNA expression were determined using commercial insulin ELISA kits and real-time quantitative polymerase chain reaction, respectively. Immunohistochemistry was used to investigate β-cell areas, β-cell proliferation, apoptosis of pancreatic β-cells, and reactive oxygen species production in the pancreatic β-cells. Results showed that glucose tolerance was significantly improved in streptozotocin-induced type 1 diabetic mice treated with empagliflozin. Empagliflozin-treated mice also showed an increase in insulin mRNA expression. Higher serum insulin levels were detected in mice treated with empagliflozin compared with the vehicle group. Immunohistochemistry indicated that β-cell area/total pancreatic area and the expression of cell proliferation marker Ki-67 (co-stained with insulin) were significantly enhanced by empagliflozin treatment. These effects were due, probably, to a reduction in apoptosis and reactive oxygen species in the pancreatic β-cells. Taken together, the results of this study indicate that empagliflozin may have a beneficial effect on preserving β-cell regeneration, thus improving blood glucose homeostasis in type 1 diabetes mellitus, probably via the protection of pancreatic β-cell from glucotoxicity-induced oxidative stress.  相似文献   

19.
The human insulin-like growth factor 2 (IGF2) and insulin genes are located within the same genomic region. Although human genomic studies have demonstrated associations between diabetes and the insulin/IGF2 locus or the IGF2 mRNA-binding protein 2 (IGF2BP2), the role of IGF2 in diabetes pathogenesis is not fully understood. We previously described that transgenic mice overexpressing IGF2 specifically in β-cells (Tg-IGF2) develop a pre-diabetic state. Here, we characterized the effects of IGF2 on β-cell functionality. Overexpression of IGF2 led to β-cell dedifferentiation and endoplasmic reticulum stress causing islet dysfunction in vivo. Both adenovirus-mediated overexpression of IGF2 and treatment of adult wild-type islets with recombinant IGF2 in vitro further confirmed the direct implication of IGF2 on β-cell dysfunction. Treatment of Tg-IGF2 mice with subdiabetogenic doses of streptozotocin or crossing these mice with a transgenic model of islet lymphocytic infiltration promoted the development of overt diabetes, suggesting that IGF2 makes islets more susceptible to β-cell damage and immune attack. These results indicate that increased local levels of IGF2 in pancreatic islets may predispose to the onset of diabetes. This study unravels an unprecedented role of IGF2 on β-cells function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号