首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pemetrexed (Pem) is a novel antimetabolite type of anticancer drug that demonstrated promising clinical activity in a wide variety of solid tumors, including non‐small cell lung carcinoma and malignant pleural mesothelioma. It inhibits enzymes involved in the folate pathway, for which the presence of its free carboxylic groups is necessary. The heteroaromatic ring system of Pem has a modifiable amino group, which opens a possibility to apply a new strategy to conjugate Pem to carrier molecules. Considering this as well as the necessity of untouched carboxylic groups of Pem in the new conjugates, we developed a new synthesis strategy. Here, we describe the synthesis and the characterization of new Pem‐peptide conjugates in which cell‐penetrating octaarginine or/and lung‐targeting H‐Ile‐Glu‐Leu‐Leu‐Gln‐Ala‐Arg‐NH2 peptide is attached to the drug by thioether bond. The conjugates characterized by RP‐HPLC and MS exhibited cytostatic effect in vitro on non‐small cell lung carcinoma as well as on human leukemia cell lines. The IC50 values of the conjugates were similar, but the conjugates with H‐Ile‐Glu‐Leu‐Leu‐Gln‐Ala‐Arg‐NH2 sequence were slightly more effective. Our data show that the in vitro cytostatic effect of the free Pem was essentially maintained after conjugation with cell‐penetrating or cell‐targeting peptides. Thus, the conjugation strategy reported could lead to the development of a new generation of active Pem conjugates. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
The first total synthesis of tasiamide B, an octapeptide bearing 4‐amino‐3‐hydroxy‐5‐phenylpentanoic acid unit isolated from the marine cyanobacteria Symploca sp. is described. A simple and efficient way was found to avoid the pyroglutamylation of Nα‐Me‐Gln and led to a reassignment of the Nα‐Me‐L ‐Phe of tasiamide B to be Nα‐Me‐D ‐Phe, which was also supported by 1D and 2D NMR. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
The total synthesis of a marine acyclic peptide tasiamide and three diastereomers was reported for the first time. The synthesis has led to a reassignment of the Nα‐Me‐L ‐Gln of tasiamide to be Nα‐Me‐D ‐Gln, which was supported by 1H NMR, 13C NMR, COSY, HMQC, HMBC, and optical rotation. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
Cocoyam (Xanthosoma sagittifolium (L.)), an important tuber crop in the tropics, is severely affected by the cocoyam root rot disease (CRRD) caused by Pythium myriotylum. The white cocoyam genotype is very susceptible while the red cocoyam has some field tolerance to CRRD. Fluorescent Pseudomonas isolates obtained from the rhizosphere of healthy red and white cocoyams from three different fields in Cameroon were taxonomically characterized. The cocoyam rhizosphere was enriched with P. fluorescens complex and P. putida isolates independent of the plant genotype. LC–MS and NMR analyses revealed that 50% of the Pseudomonas isolates produced cyclic lipopeptides (CLPs) including entolysin, lokisin, WLIP, putisolvin and xantholysin together with eight novel CLPs. In general, CLP types were linked to specific taxonomic groups within the fluorescent pseudomonads. Representative CLP-producing bacteria showed effective control against CRRD while purified CLPs caused hyphal branching or hyphal leakage in P. myriotylum. The structure of cocoyamide A, a CLP which is predominantly produced by P. koreensis group isolates within the P. fluorescens complex is described. Compared with the white cocoyam, the red cocoyam rhizosphere appeared to support a more diverse CLP spectrum. It remains to be investigated whether this contributes to the field tolerance displayed by the red cocoyam.  相似文献   

5.
We investigated the role of common β2‐adrenergic receptor (ADRB2) rs1042714 (Gln27Glu) and rs1042713 (Arg16Gly) polymorphisms on body weight and body composition response to 12‐week energy‐restricted diet in women. The study comprised 78 Spanish obese (BMI: 34.0 ± 2.8 kg/m2) women (age: 36.7 ± 7 years). We measured (before and after the dietary intervention) weight and height, and BMI calculated. Moreover, body fat mass and lean mass (LM) were measured by dual energy X‐ray absorptiometry. We observed an interaction effect between the Gln27Glu polymorphism and diet‐induced changes on body weight (P = 0.006), BMI (P = 0.004), and LM (P = 0.001). Women carrying the Glu allele had a greater reduction in body weight than non‐Glu allele carriers (9.5 ± 2.9 vs. 7.0 ± 3.5%, respectively, P = 0.002). Moreover, women with the Glu allele lost more LM than the Gln27Gln group (5.9 ± 2.7 vs. 4.0 ± 2.7%, respectively, P = 0.001). We did not find any significant interaction effect between the Arg16Gly polymorphism and diet‐induced changes on the outcome variables (all P > 0.1). The results suggest that the ADRB2 Gln27Glu polymorphism has a modulating effect on diet‐induced changes on body weight and body composition, and should be considered in future obesity treatments. These findings should be taken as preliminary and be replicated in further energy restriction studies with larger sample sizes.  相似文献   

6.
The relationship between nitrate influx, BnNrt2 nitrate transporter gene expression and amino acid composition of phloem exudate was investigated during N‐deprivation (short‐term experiment) and over a growth cycle (long‐term experiment) in Brassica napus L. The data showed a positive correlation between γ‐aminobutyric acid (GABA) in phloem exudate and nitrate uptake in the short‐ and the long‐term experiments. The hypothesis that this non‐protein amino acid could up‐regulate nitrate uptake via a long‐distance signalling pathway was tested by providing an exogenous GABA supply to the roots. The effect of GABA was compared with the effects of Gln, Glu and Asn, each known to be inhibitors of nitrate uptake. The results showed that GABA treatment induced a significant increase of BnNrt2 mRNA expression, but had less effect on nitrate influx. By contrast, Gln, Glu and Asn significantly reduced nitrate influx and BnNrt2 mRNA expression compared with the control plants. This study provides the first evidence that GABA may act as a putative long‐distance inter‐organ signal molecule in plants in conjunction with negative control exerted by Gln. The up‐regulation effect of GABA on nitrate uptake is discussed in the context of its role in N metabolism, nutritional stress and the recent discovery of a putative role of GABA as a signal molecule in plant development.  相似文献   

7.
The involvement of nitrogenous substances in the transition to flowering was investigated in Sinapis alba and Arabidopsis thaliana (Columbia). Both species grown in short days (SD) are induced to flower by one long day (LD). In S. alba, the phloem sap (leaf and apical exudates) and the xylem sap (root exudate) were analysed in LD versus SD. In A. thaliana, only the leaf exudate could be analysed but an alternative system for inducing flowering without day‐length extension was used: the displaced SD (DSD). Significant results are: (i) in both species, the leaf exudate was enriched in Gln during the inductive LD, at a time compatible with export of the floral stimulus; (ii) in S. alba, the root export of amino acids decreased in LD, whereas the nitrate remained unchanged – thus the extra‐Gln found in the leaf exudate should originate from the leaves; (iii) extra‐Gln was also found very early in the apical exudate of S. alba in LD, together with more Glu; (iv) in A. thaliana induced by one DSD, the leaf export of Asn increased sharply, instead of Gln in LD. This agrees with Asn prevalence in C‐limited plants. The putative role of amino acids in the transition to flowering is discussed.  相似文献   

8.
The synthesis of ‘head‐to‐tail’ cyclized peptides requires orthogonal protecting groups. Herein, we report on the introduction of bis(2‐pyridylmethyl)amine (Bpa) as a new protecting group for carboxylic functions in SPPS. The synthesis of the Bpa‐protected aspartic acid was straightforward, and its utility was investigated under standard peptide synthesis conditions. The new protecting group was cleaved in a very mild way using Cu(OAc)2 and 2‐(trimethylsilyl)ethanol as nucleophile in a microwave oven without affecting other groups. Hence, the new group is ideally suited for the synthesis of ‘head‐to‐tail’ cyclic peptides, as demonstrated for a cyclic pentapeptide and cyclic hexapeptides. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
The design and synthesis of cyclic mimetics of VCAM‐1 protein that reproduce the integrin‐binding domain are presented. The unprotected peptide precursor 37 – 43 , Thr‐Gln‐Ile‐Asp‐Ser‐Pro‐Leu, was grafted onto functional templates of type naphthalene, biphenyl and benzyl through the chemoselective formation of C‐ and N‐terminal oximes resulting in a mixture of four isomeric forms due to synanti isomerism of the oxime bonds. Some isomers could be monitored by HPLC and identified by NMR. The molecule containing a naphthalene‐derived template was found to inhibit the VCAM‐1/VLA‐4 interaction more efficiently than previously reported for sulfur‐bridged cyclic peptides containing similar sequences. The finding confirms the importance of incorporating conformational constraints between the terminal ends of the peptide loop 37 – 43 in the design of synthetic inhibitors of the VCAM‐1/integrin interaction. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
We prepared, by solution‐phase methods, and fully characterized three analogs of the membrane‐active peptaibiotic alamethicin F50/5, bearing a single trifluoroacetyl (Tfa) label at the N‐terminus, at position 9 (central region) or at position 19 (C‐terminus), and with the three Gln at positions 7, 18, and 19 replaced by Glu(OMe) residues. To add the Tfa label at position 9 or 19, a γ‐trifluoroacetylated α,γ‐diaminobutyric acid (Dab) residue was incorporated as a replacement for the original Val9 or Glu(OMe)19 amino acid. We performed a detailed conformational analysis of the three analogs (using FT‐IR absorption, CD, 2D‐NMR, and X‐ray diffraction), which clearly showed that Tfa labeling does not introduce any dramatic backbone modification in the predominantly α‐helical structure of the parent peptaibiotic. The results of an initial solid‐state 19F‐NMR study on one of the analogs favor the conclusion that the Tfa group is a very promising reporter for the analysis of peptaibiotic? membrane interactions. Finally, we found that the antimicrobial activities of the three newly synthesized analogs depend on the position of the Tfa label in the peptide sequence.  相似文献   

11.
In this study, concentrations of free amino acids (FAA) and amino group containing compounds (AGCC) following graded diffuse traumatic brain injury (mild TBI, mTBI; severe TBI, sTBI) were evaluated. After 6, 12, 24, 48 and 120 hr aspartate (Asp), glutamate (Glu), asparagine (Asn), serine (Ser), glutamine (Gln), histidine (His), glycine (Gly), threonine (Thr), citrulline (Cit), arginine (Arg), alanine (Ala), taurine (Tau), γ‐aminobutyrate (GABA), tyrosine (Tyr), S‐adenosylhomocysteine (SAH), l ‐cystathionine (l ‐Cystat), valine (Val), methionine (Met), tryptophane (Trp), phenylalanine (Phe), isoleucine (Ile), leucine (Leu), ornithine (Orn), lysine (Lys), plus N‐acetylaspartate (NAA) were determined in whole brain extracts (n = 6 rats at each time for both TBI levels). Sham‐operated animals (n = 6) were used as controls. Results demonstrated that mTBI caused modest, transient changes in NAA, Asp, GABA, Gly, Arg. Following sTBI, animals showed profound, long‐lasting modifications of Glu, Gln, NAA, Asp, GABA, Ser, Gly, Ala, Arg, Citr, Tau, Met, SAH, l ‐Cystat, Tyr and Phe. Increase in Glu and Gln, depletion of NAA and Asp increase, suggested a link between NAA hydrolysis and excitotoxicity after sTBI. Additionally, sTBI rats showed net imbalances of the Glu‐Gln/GABA cycle between neurons and astrocytes, and of the methyl‐cycle (demonstrated by decrease in Met, and increase in SAH and l ‐Cystat), throughout the post‐injury period. Besides evidencing new potential targets for novel pharmacological treatments, these results suggest that the force acting on the brain tissue at the time of the impact is the main determinant of the reactions ignited and involving amino acid metabolism.  相似文献   

12.
Hypoxia is involved in many neuronal and non‐neuronal diseases, and defining the mechanisms for tissue adaptation to hypoxia is critical for the understanding and treatment of these diseases. One mechanism for tissue adaptation to hypoxia is increased glutamine and/or glutamate (Gln/Glu) utilization. To address this mechanism, we determined incorporation of Gln/Glu and other lipogenic substrates into lipids and fatty acids in both primary neurons and a neuronal cell line under normoxic and hypoxic conditions and compared this to non‐neuronal primary cells and non‐neuronal cell lines. Incorporation of Gln/Glu into total lipids was dramatically and specifically increased under hypoxia in neuronal cells including both primary (2.0‐ and 3.0‐fold for Gln and Glu, respectively) and immortalized cultures (3.5‐ and 8.0‐fold for Gln and Glu, respectively), and 90% to 97% of this increase was accounted for by incorporation into fatty acids (FA) depending upon substrate and cell type. All other non‐neuronal cells tested demonstrated decreased or unchanged FA synthesis from Gln/Glu under hypoxia. Consistent with these data, total FA mass was also increased in neuronal cells under hypoxia that was mainly accounted for by the increase in saturated and monounsaturated FA with carbon length from 14 to 24. Incorporation of FA synthesized from Gln/Glu was increased in all major lipid classes including cholesteryl esters, triacylglycerols, diacylglycerols, free FA, and phospholipids, with the highest rate of incorporation into triacylglycerols. These results indicate that increased FA biosynthesis from Gln/Glu followed by esterification may be a neuronal specific pathway for adaptation to hypoxia.

  相似文献   


13.
A series of peptide–peptoid hybrids, containing N‐substituted glycines, were synthesized based on the H‐Aib‐Val‐Aib‐Glu‐Ile‐Gln‐Leu‐Nle‐His‐Gln‐Har‐NH2 (Har = Homoarginine) as the parent parathyroid hormone (1–11) analog. The compounds were pharmacologically characterized in their agonistic activity at the parathyroid hormone 1 receptor. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
Six 9‐(heteroarylmethylidene)amino derivatives, 2a – 2f , of homocamptothecin were synthesized for the first time by total synthesis in 22 steps and biologically evaluated as inhibitors of topoisomerase I. Moreover, the antitumor activities of 2a – 2f against three human tumor cell lines, i.e., A‐549, MDA‐MB‐435, and HCT‐116, were determined and the results showed that compound 2c was the most active homocamptothecin derivative against the A‐549 (IC50=0.046 μM ) and HTC‐116 tumor cells (IC50=3.67 μM ), with a ca. 50 times higher activity than the reference drug topotecan (TPT) against the lung cancer cell line A‐549.  相似文献   

15.
Using multiple peptide synthesis in parallel, a series of 24 compounds analogues of tripeptide sequence Z-Leu-Phe-Gln-H, modified by imidazole moiety were synthesized. An effective and simple scheme for including imidazole heterocycle to C- and/or N-terminus of Gln residue was created by means of allyl group as α-COOH protecting group for Fmoc-Glu. The approach using Fmoc-Glu-1-OAll as a first amino acid linked to the resin could be useful for the synthesis of a large number of amino acids and/or heterocyclic moieties including compounds. Based on the preliminary biological trials we could conclude that the presence of imidazole heterocycle affect positively the antiviral activity against Coxsackieviruses B1 and Poliovirus type 1.  相似文献   

16.
Nannochloropsis oculata (strain CCAP 849/1) was sampled at least every 12 h over a 26-d period of batch culture growth in a 12 h/12 h light/dark illumination cycle. Exponential cell-specific growth rate was 0.5 d–1. Cell division occurred during the dark phase, while ammonium uptake, pigment synthesis and cell volume increase occurred mainly during the light. Stationary phase cells were on average larger that the largest exponentially growing cells. The lag phase prior to cell division was short with the C/N ratio returning to 6.25 (from 28) within 2 d of refeeding with ammonium. Significant Chl.a synthesis commenced after this period; net synthesis of Chl.a ceased on exhaustion of the N-source with a 40% fall in levels by the end of the stationary phase. Levels of carotenoids per cell also declined during N-deprivation although per ml of culture levels remained constant. Ammonium-refeeding of N-deprived cells resulted in a very rapid rise in glutamine (Gln) and very high ratios of glutamine/glutamate (Gln/Glu peaking at 35 within 1 h); peak Gln/Glu was lower in cells refed in the dark or after a shorter period of N-deprivation. The major intracellular amino acids during exponential phase were Glu, Gln, alanine and arginine, but on exhaustion of the N-source, levels of Gln fell rapidly (Gln/Glu falling to below 0.1 from 0.5–0.9 in the light and 0.3 in darkness during exponential growth). During N-deprivation tyrosine accumulated within the cells. Comparisons are drawn with the growth ofIsochrysis galbana, another alga used in aquaculture, under identical conditions.Author for correspondence  相似文献   

17.
Monellin, a sweet protein, consists of two noncovalently associated polypeptide chains: an A chain of 44 amino acid residues and a B chain of 50 residues. Microbial transglutaminase (MTGase) was used for ligation of the monellin subunits without any protecting groups, and without activation of the Cα‐carboxyl group at the C‐terminus. Since a peptide fragment LLQG is a good substrate for MTGase to form an amide bond between the γ‐amide group of the Gln residue and the ε‐amino group of Lys, a monellin B chain analogue in which LLQG was elongated at the C‐terminus (B‐LLQG) was synthesized by solid‐phase synthesis. The monellin A chain analogue in which KGK was elongated at the N‐terminus (KGK‐A) was synthesized by the same method as that of the B chain analogue. The KGK‐A chain and the B‐LLQG chain were coupled by MTGase to give single‐chain analogue of monellin. The single‐chain analogue of monellin was characterized by analytical reverse phase high performance liquid chromatography, electrospray ionization, and amino acid analyses. All analyses gave satisfactory results. The single‐chain analogue of monellin was more heat stable than natural monellin. © 1999 John Wiley & Sons, Inc. Biopoly 50: 193–200, 1999  相似文献   

18.
T. C. Ta  K. W. Joy 《Planta》1986,169(1):117-122
15N-labelled (amino group) asparagine (Asn), glutamate (Glu), alanine (Ala), aspartate (Asp) and serine (Ser) were used to study the metabolic role and the participation of each compound in the photorespiratory N cycle ofPisum sativum L. leaves. Asparagine was utilised as a nitrogen source by either deamidation or transamination, Glu was converted to Gln through NH3 assimilation and was a major amino donor for transamination, and Ala was utilised by transamination to a range of amino acids. Transamination also provided a pathway for Asp utilisation, although Asp was also used as a substrate for Asn synthesis. In the photorespiratory synthesis of glycine (Gly), Ser, Ala, Glu and Asn acted as sources of amino-N, contributing, in the order given, 38, 28, 23, and 7% of the N for glycine synthesis; Asp provided less than 4% of the amino-N in glycine. Calculations based on the incorporation of15N into Gly indicated that about 60% (Ser), 20% (Ala), 12% (Glu) and 11% (Asn) of the N metabolised from each amino acid was utilised in the photorespiratory nitrogen cycle.Abbreviations Ala alamine - Asn asparagine - Asp aspartate - Glu glutamate - MOA methoxylamine - Ser serine  相似文献   

19.
Liraglutide is a new generation lipopeptide drug used for the treatment of type II diabetes. In this work, we describe new approaches for its preparation fully by chemical methods. The key step of these strategies is the synthesis in solution of the Lys/γ‐Glu building block, Fmoc‐Lys‐(Pal‐γ‐Glu‐OtBu)‐OH, in which Lys and Glu residues are linked through their side chains and γ‐Glu is Nα‐palmitoylated. This dipeptide derivative is then inserted into the peptide sequence on solid phase. As liraglutide is obtained with great purity and high yield, our approach can be particularly attractive for an industrial production. We also report here the results of a circular dichroism conformational analysis in a membrane mimetic environment that offers new insights into the mechanism of action of liraglutide. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Despite significant influence of secondary bile acids on human health and disease, limited structural and biochemical information is available for the key gut microbial enzymes catalyzing its synthesis. Herein, we report apo‐ and cofactor bound crystal structures of BaiA2, a short chain dehydrogenase/reductase from Clostridium scindens VPI 12708 that represent the first protein structure of this pathway. The structures elucidated the basis of cofactor specificity and mechanism of proton relay. A conformational restriction involving Glu42 located in the cofactor binding site seems crucial in determining cofactor specificity. Limited flexibility of Glu42 results in imminent steric and electrostatic hindrance with 2′‐phosphate group of NADP(H). Consistent with crystal structures, steady state kinetic characterization performed with both BaiA2 and BaiA1, a close homolog with 92% sequence identity, revealed specificity constant (kcat/KM) of NADP+ at least an order of magnitude lower than NAD+. Substitution of Glu42 with Ala improved specificity toward NADP+ by 10‐fold compared to wild type. The cofactor bound structure uncovered a novel nicotinamide‐hydroxyl ion (NAD+‐OH?) adduct contraposing previously reported adducts. The OH? of the adduct in BaiA2 is distal to C4 atom of nicotinamide and proximal to 2′‐hydroxyl group of the ribose moiety. Moreover, it is located at intermediary distances between terminal functional groups of active site residues Tyr157 (2.7 Å) and Lys161 (4.5 Å). Based on these observations, we propose an involvement of NAD+‐OH? adduct in proton relay instead of hydride transfer as noted for previous adducts. Proteins 2014; 82:216–229. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号