首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Intrinsically disordered proteins are very common in the eukaryotic proteome, and many of them are associated with diseases. Disordered proteins usually undergo a coupled binding and folding reaction and often interact with many different binding partners. Using double mutant cycles, we mapped the energy landscape of the binding interface for two interacting disordered domains and found it to be largely suboptimal in terms of interaction free energies, despite relatively high affinity. These data depict a frustrated energy landscape for interactions involving intrinsically disordered proteins, which is likely a result of their functional promiscuity.  相似文献   

3.
Determining the energetics of the unfolded state of a protein is essential for understanding the folding mechanics of ordered proteins and the structure–function relation of intrinsically disordered proteins. Here, we adopt a coil‐globule transition theory to develop a general scheme to extract interaction and free energy information from single‐molecule fluorescence resonance energy transfer spectroscopy. By combining protein stability data, we have determined the free energy difference between the native state and the maximally collapsed denatured state in a number of systems, providing insight on the specific/nonspecific interactions in protein folding. Both the transfer and binding models of the denaturant effects are demonstrated to account for the revealed linear dependence of inter‐residue interactions on the denaturant concentration, and are thus compatible under the coil‐globule transition theory to further determine the dimension and free energy of the conformational ensemble of the unfolded state. The scaling behaviors and the effective θ‐state are also discussed.  相似文献   

4.
Protein–protein interactions play key roles in many cellular processes and their affinities and specificities are finely tuned to the functions they perform. Here, we present a study on the relationship between binding affinity and the size and chemical nature of protein–protein interfaces. Our analysis focuses on heterodimers and includes curated structural and thermodynamic data for 113 complexes. We observe a direct correlation between binding affinity and the amount of surface area buried at the interface. For a given amount of surface area buried, the binding affinity spans four orders of magnitude in terms of the dissociation constant (Kd). Across the entire dataset, we observe no obvious relationship between binding affinity and the chemical composition of the interface. We also calculate the free energy per unit surface area buried, or “surface energy density,” of each heterodimer. For interfacial surface areas between 500 and 2000 Å2, the surface energy density decreases as the buried surface area increases. As the buried surface area increases beyond about 2000 Å2, the surface energy density levels off to a constant value. We believe that these analyses and data will be useful for researchers with an interest in understanding, designing or inhibiting protein–protein interfaces.  相似文献   

5.
The E. coli single strand DNA binding protein (SSB) is essential to viability where it functions in two seemingly disparate roles: it binds to single stranded DNA (ssDNA) and to target proteins that comprise the SSB interactome. The link between these roles resides in a previously under‐appreciated region of the protein known as the intrinsically disordered linker (IDL). We present a model wherein the IDL is responsible for mediating protein–protein interactions critical to each role. When interactions occur between SSB tetramers, cooperative binding to ssDNA results. When binding occurs between SSB and an interactome partner, storage or loading of that protein onto the DNA takes place. The properties of the IDL that facilitate these interactions include the presence of repeats, a putative polyproline type II helix and, PXXP motifs that may facilitate direct binding to the OB‐fold in a manner similar to that observed for SH3 domain binding of PXXP ligands in eukaryotic systems.  相似文献   

6.
7.
The endonuclease activity of the bacterial colicin 9 enzyme is controlled by the specific and high‐affinity binding of immunity protein 9 (Im9). Molecular dynamics simulation studies in explicit solvent were used to investigate the free energy change associated with the mutation of two hot‐spot interface residues [tyrosine (Tyr): Tyr54 and Tyr55] of Im9 to Ala. In addition, the effect of several other mutations (Leu33Ala, Leu52Ala, Val34Ala, Val37Ala, Ser48Ala, and Ile53Ala) with smaller influence on binding affinity was also studied. Good qualitative agreement of calculated free energy changes and experimental data on binding affinity of the mutations was observed. The simulation studies can help to elucidate the molecular details on how the mutations influence protein–protein binding affinity. The role of solvent and conformational flexibility of the partner proteins was studied by comparing the results in the presence or absence of solvent and with or without positional restraints. Restriction of the conformational mobility of protein partners resulted in significant changes of the calculated free energies but of similar magnitude for isolated Im9 and for the complex and therefore in only modest changes of binding free energy differences. Although the overall binding free energy change was similar for the two Tyr–Ala mutations, the physical origin appeared to be different with solvation changes contributing significantly to the Tyr55Ala mutation and to a loss of direct protein–protein interactions dominating the free energy change due to the Tyr54Ala mutation. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
The organization and assembly of the cellulosome, an extracellular multienzyme complex produced by anaerobic bacteria, is mediated by the high‐affinity interaction of cohesin domains from scaffolding proteins with dockerins of cellulosomal enzymes. We have performed molecular dynamics simulations and free energy calculations on both the wild type (WT) and D39N mutant of the C. thermocellum Type I cohesin‐dockerin complex in aqueous solution. The D39N mutation has been experimentally demonstrated to disrupt cohesin‐dockerin binding. The present MD simulations indicate that the substitution triggers significant protein flexibility and causes a major change of the hydrogen‐bonding network in the recognition strips—the conserved loop regions previously proposed to be involved in binding—through electrostatic and salt‐bridge interactions between β‐strands 3 and 5 of the cohesin and α‐helix 3 of the dockerin. The mutation‐induced subtle disturbance in the local hydrogen‐bond network is accompanied by conformational rearrangements of the protein side chains and bound water molecules. Additional free energy perturbation calculations of the D39N mutation provide differences in the cohesin‐dockerin binding energy, thus offering a direct, quantitative comparison with experiments. The underlying molecular mechanism of cohesin‐dockerin complexation is further investigated through the free energy profile, that is, potential of mean force (PMF) calculations of WT cohesin‐dockerin complex. The PMF shows a high‐free energy barrier against the dissociation and reveals a stepwise pattern involving both the central β‐sheet interface and its adjacent solvent‐exposed loop/turn regions clustered at both ends of the β‐barrel structure.  相似文献   

9.
Protein–protein interactions are thought to be mediated by domains, which are autonomous folding units of proteins. Recently, a second type of interaction has been suggested, mediated by short segments termed linear motifs, which are related to recognition elements of intrinsically disordered regions. Here, we propose a third kind of protein–protein recognition mechanism, mediated by disordered regions longer than 20–30 residues. Bioinformatics predictions and well‐characterized examples, such as the kinase‐inhibitory domain of Cdk inhibitors and the Wiskott–Aldrich syndrome protein (WASP)‐homology domain 2 of actin‐binding proteins, show that these disordered regions conform to the definition of domains rather than motifs, i.e., they represent functional, evolutionary, and structural units. Their functions are distinct from those of short motifs and ordered domains, and establish a third kind of interaction principle. With these points, we argue that these long disordered regions should be recognized as a distinct class of biologically functional protein domains.  相似文献   

10.
Tau protein, the major constituent of paired helical filaments in Alzheimer's disease, belongs to the intrinsically disordered proteins (IDPs). IDPs are an emerging group in the protein kingdom characterized by the absence of a rigid three-dimensional structure. Disordered proteins usually acquire a "functional fold" upon binding to their interaction partner(s). This property of IDPs implies the need for innovative approaches to measure their binding affinity. We have mapped and measured the Alzheimer's-disease-associated epitope on intrinsically disordered tau protein with a novel two-step sandwich competitive enzyme-linked immunosorbent assay (ELISA). This approach allowed us to determine the binding affinity of disordered tau protein in liquid phase without any disturbance to the competitive equilibrium and without any need for covalent or noncovalent modification of tau protein. Furthermore, the global fitting method, used for the reconstruction of tau binding curves, significantly improved the assay readout. The proposed novel competitive ELISA allowed us to determine the changes in the standard Gibbs energy of binding, thus enabling measurement of tau protein conformation in the core of paired helical filaments. IDP competitive ELISA results showed, for the first time, that the tau protein C terminus of the Alzheimer's-disease-derived paired helical filaments core subunit adopts beta-turn type I' fold and is accessible from solution.  相似文献   

11.
We have developed a non‐redundant protein–RNA binding benchmark dataset derived from the available protein–RNA structures in the Protein Database Bank. It consists of 73 complexes with measured binding affinity. The experimental conditions (pH and temperature) for binding affinity measurements are also listed in our dataset. This binding affinity dataset can be used to compare and develop protein–RNA scoring functions. The predicted binding free energy of the 73 complexes from three available scoring functions for protein–RNA docking has a low correlation with the binding Gibbs free energy calculated from Kd. © 2013 The Protein Society  相似文献   

12.
Ganguly D  Chen J 《Proteins》2011,79(4):1251-1266
Coupled binding and folding is frequently involved in specific recognition of so-called intrinsically disordered proteins (IDPs), a newly recognized class of proteins that rely on a lack of stable tertiary fold for function. Here, we exploit topology-based Gō-like modeling as an effective tool for the mechanism of IDP recognition within the theoretical framework of minimally frustrated energy landscape. Importantly, substantial differences exist between IDPs and globular proteins in both amino acid sequence and binding interface characteristics. We demonstrate that established Gō-like models designed for folded proteins tend to over-estimate the level of residual structures in unbound IDPs, whereas under-estimating the strength of intermolecular interactions. Such systematic biases have important consequences in the predicted mechanism of interaction. A strategy is proposed to recalibrate topology-derived models to balance intrinsic folding propensities and intermolecular interactions, based on experimental knowledge of the overall residual structure level and binding affinity. Applied to pKID/KIX, the calibrated Gō-like model predicts a dominant multistep sequential pathway for binding-induced folding of pKID that is initiated by KIX binding via the C-terminus in disordered conformations, followed by binding and folding of the rest of C-terminal helix and finally the N-terminal helix. This novel mechanism is consistent with key observations derived from a recent NMR titration and relaxation dispersion study and provides a molecular-level interpretation of kinetic rates derived from dispersion curve analysis. These case studies provide important insight into the applicability and potential pitfalls of topology-based modeling for studying IDP folding and interaction in general.  相似文献   

13.
László Smeller 《Proteins》2016,84(7):1009-1016
This paper proposes a generalization of the well‐known folding funnel concept of proteins. In the funnel model the polypeptide chain is treated as an individual object not interacting with other proteins. Since biological systems are considerably crowded, protein–protein interaction is a fundamental feature during the life cycle of proteins. The folding superfunnel proposed here describes the folding process of interacting proteins in various situations. The first example discussed is the folding of the freshly synthesized protein with the aid of chaperones. Another important aspect of protein–protein interactions is the folding of the recently characterized intrinsically disordered proteins, where binding to target proteins plays a crucial role in the completion of the folding process. The third scenario where the folding superfunnel is used is the formation of aggregates from destabilized proteins, which is an important factor in case of several conformational diseases. The folding superfunnel constructed here with the minimal assumption about the interaction potential explains all three cases mentioned above. Proteins 2016; 84:1009–1016. © 2016 Wiley Periodicals, Inc.  相似文献   

14.
Compared to eukaryotes, the occurrence of "intrinsically disordered" or "natively unfolded" proteins in prokaryotes has not been explored extensively. Here, we report the occurrence of an intrinsically disordered protein from the mesophilic human pathogen Mycobacterium tuberculosis. The Histidine-tagged recombinant Rv3221c biotin-binding protein is intrinsically disordered at ambient and physiological growth temperatures as revealed by circular dichroism and Fourier transform infrared (FTIR) spectroscopic studies. However, an increase in temperature induces a transition from disordered to structured state with a folding temperature of approximately 53 degrees C. Addition of a structure inducing solvent trifluoroethanol (TFE) causes the protein to fold at lower temperatures suggesting that TFE fosters hydrophobic interactions, which drives protein folding. Differential Scanning Calorimetry studies revealed that folding is endothermic and the transition from a disordered to structured state is continuous (higher-order), implying existence of intermediates during folding process. Secondary structure analysis revealed that the protein has propensity to form beta-sheets. This is in conformity with FTIR spectrum that showed an absorption peak at wave number of 1636 cm(-1), indicative of disordered beta-sheet conformation in the native state. These data suggest that although Rv3221c may be disordered under ambient or optimal growth temperature conditions, it has the potential to fold into ordered structure at high temperature driven by increased hydrophobic interactions. In contrast to the generally known behavior of other intrinsically disordered proteins folding at high temperature, Rv3221c does not appear to oligomerize or aggregate as revealed through numerous experiments including Congo red binding, Thioflavin T-binding, turbidity measurements, and examining molar ellipticity as a function of protein concentration. The amino acid composition of Rv3221c reveals that it has 24% charged and 54.9% hydrophobic amino acid residues. In this respect, this protein, although belonging to the class of intrinsically disordered proteins, has distinct features. The intrinsically disordered state and the biotin-binding feature of this protein suggest that it may participate in many biochemical processes requiring biotin as a cofactor and adopt suitable conformations upon binding other folded targets.  相似文献   

15.
16.
It is important to identify hotspot residues that determine protein–protein interactions in interfaces of macromolecular complexes. We have applied a combination of ancestral sequence reconstruction and protein design to identify hotspots within imidazole glycerol phosphate synthase (ImGPS). ImGPS is a key metabolic enzyme complex, which links histidine and de novo purine biosynthesis and consists of the cyclase subunit HisF and the glutaminase subunit HisH. Initial fluorescence titration experiments showed that HisH from Zymomonas mobilis (zmHisH) binds with high affinity to the reconstructed HisF from the last universal common ancestor (LUCA‐HisF) but not to HisF from Pyrobaculum arsenaticum (paHisF), which differ by 103 residues. Subsequent titration experiments with a reconstructed evolutionary intermediate linking LUCA‐HisF and paHisF and inspection of the subunit interface of a contemporary ImGPS allowed us to narrow down the differences crucial for zmHisH binding to nine amino acids of HisF. Homology modeling and in silico mutagenesis studies suggested that at most two of these nine HisF residues are crucial for zmHisH binding. These computational results were verified by experimental site‐directed mutagenesis, which finally enabled us to pinpoint a single amino acid residue in HisF that is decisive for high‐affinity binding of zmHisH. Our work shows that the identification of protein interface hotspots can be very efficient when reconstructed proteins with different binding properties are included in the analysis. Proteins 2017; 85:312–321. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
In Sterkiella nova, alpha and beta telomere proteins bind cooperatively with single-stranded DNA to form a ternary alpha.beta.DNA complex. Association of telomere protein subunits is DNA-dependent, and alpha-beta association enhances DNA affinity. To further understand the molecular basis for binding cooperativity, we characterized several possible stepwise assembly pathways using isothermal titration calorimetry. In one path, alpha and DNA first form a stable alpha.DNA complex followed by the addition of beta in a second step. Binding energy accumulates with nearly equal free energy of association for each of these steps. Heat capacity is nonetheless dramatically different, with DeltaCp = -305 +/- 3 cal mol(-1) K(-1) for alpha binding with DNA and DeltaCp = -2010 +/- 20 cal mol(-1) K(-1) for the addition of beta to complete the alpha.beta.DNA complex. By examining alternate routes including titration of single-stranded DNA with a preformed alpha.beta complex, a significant portion of binding energy and heat capacity could be assigned to structural reorganization involving protein-protein interactions and repositioning of the DNA. Structural reorganization probably affords a mechanism to regulate high affinity binding of telomere single-stranded DNA with important implications for telomere biology. Regulation of telomere complex dissociation is thought to involve post-translational modifications in the lysine-rich C-terminal portion of beta. We observed no difference in binding energetics or crystal structure when comparing complexes prepared with full-length beta or a C-terminally truncated form, supporting interesting parallels between the intrinsically disordered regions of histones and this portion of beta.  相似文献   

18.
Intrinsically disordered proteins/regions (IDPRs) are a very large and functionally important class of proteins that participate in weak multivalent interactions in protein complexes. They are recalcitrant for interrogations using X-ray crystallography and cryo-EM. The IDPRs observed at the interface of the photosynthetic pigment protein complexes (PPCs) remain much less clear, e.g., the major cyanobacterial light-harvesting complex (PBS) contains an unstructured PB-loop insertion in the phycocyanobilin domain (PB domain) of ApcE (the largest polypeptide in PBS). Here, a joint platform is built to probe such structural domains. This platform is characterized by two-round progressive justifications of in silico models by using the structural mass spectrometry data. First, the AlphaFold-generated 3D structure of the PB domain (containing PB-loop) was justified in the context of PBS. Second, docking the AlphaFold-generated ApcG (a ligand) into the first-step justified structure (a receptor). The final ligand-receptor complex was then subjected to a second-round justification, again, by using unequivocal isotopically-encoded cross-links identified in LC-MS/MS. This work reveals a full-length PB-loop structure modelled in the PBS basal cylinder, free from any spatial conflicts against the other subunits in PBS. The structure of PB domain highlights the close associations of the intrinsically disordered PB-loop with its binding partners in PBS, including ApcG, another IDPR. The PB-loop region involved in the binding of photosystem II (PSII) is also discussed in the context of excitation energy transfer regulation. This work calls attention to the highly disordered, yet interrogatable interface between the light-harvesting antenna complexes and the reaction centers.  相似文献   

19.
This paper reports the previously unknown interactions between eight low molecular weight commercially available drugs (130–800 Da) and DNA repair protein photolyase using computational docking simulations and surface plasmon resonance (SPR) experiments. Theoretical dissociation constants, Kd, obtained from molecular docking simulations were compared with the values found from SPR experiments. Among the eight drugs analyzed, computational and experimental values showed similar binding affinities between selected drug and protein pairs. We found no significant differences in binding interactions between pure and commercial forms of the drug lornoxicam and DNA photolyase. Among the eight drugs studied, prednisone, desloratadine, and azelastine exhibited the highest binding affinity (Kd = 1.65, 2.05, and 8.47 μM, respectively) toward DNA photolyase. Results obtained in this study are promising for use in the prediction of unknown interactions of common drugs with specific proteins such as human clock protein cryptochrome. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Efficient methods for quantifying dissociation constants have become increasingly important for high‐throughput mutagenesis studies in the postgenomic era. However, experimentally determining binding affinity is often laborious, requires large amounts of purified protein, and utilizes specialized equipment. Recently, pulse proteolysis has been shown to be a robust and simple method to determine the dissociation constants for a protein–ligand pair based on the increase in thermodynamic stability upon ligand binding. Here, we extend this technique to determine binding affinities for a protein–protein complex involving the β‐lactamase TEM‐1 and various β‐lactamase inhibitor protein (BLIP) mutants. Interaction with BLIP results in an increase in the denaturation curve midpoint, Cm, of TEM‐1, which correlates with the rank order of binding affinities for several BLIP mutants. Hence, pulse proteolysis is a simple, effective method to assay for mutations that modulate binding affinity in protein–protein complexes. From a small set (n = 4) of TEM‐1/BLIP mutant complexes, a linear relationship between energy of stabilization (dissociation constant) and ΔCm was observed. From this “calibration curve,” accurate dissociation constants for two additional BLIP mutants were calculated directly from proteolysis‐derived ΔCm values. Therefore, in addition to qualitative information, armed with knowledge of the dissociation constants from the WT protein and a limited number of mutants, accurate quantitation of binding affinities can be determined for additional mutants from pulse proteolysis. Minimal sample requirements and the suitability of impure protein preparations are important advantages that make pulse proteolysis a powerful tool for high‐throughput mutagenesis binding studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号