首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Kazuki Takeda  Kunio Miki 《EMBO reports》2009,10(11):1228-1234
V‐type ATPases (V‐ATPases) are categorized as rotary ATP synthase/ATPase complexes. The V‐ATPases are distinct from F‐ATPases in terms of their rotation scheme, architecture and subunit composition. However, there is no detailed structural information on V‐ATPases despite the abundant biochemical and biophysical research. Here, we report a crystallographic study of V1‐ATPase, from Thermus thermophilus, which is a soluble component consisting of A, B, D and F subunits. The structure at 4.5 Å resolution reveals inter‐subunit interactions and nucleotide binding. In particular, the structure of the central stalk composed of D and F subunits was shown to be characteristic of V1‐ATPases. Small conformational changes of respective subunits and significant rearrangement of the quaternary structure observed in the three AB pairs were related to the interaction with the straight central stalk. The rotation mechanism is discussed based on a structural comparison between V1‐ATPases and F1‐ATPases.  相似文献   

3.
The proton‐driven flagellar motor of Salmonella enterica can accommodate a dozen MotA/B stators in a load‐dependent manner. The C‐terminal periplasmic domain of MotB acts as a structural switch to regulate the number of active stators in the motor in response to load change. The cytoplasmic loop termed MotAC is responsible for the interaction with a rotor protein, FliG. Here, to test if MotAC is responsible for stator assembly around the rotor in a load‐dependent manner, we analyzed the effect of MotAC mutations, M76V, L78W, Y83C, Y83H, I126F, R131L, A145E and E155K, on motor performance over a wide range of external load. All these MotAC mutations reduced the maximum speed of the motor near zero load, suggesting that they reduce the rate of conformational dynamics of MotAC coupled with proton translocation through the MotA/B proton channel. Dissociation of the stators from the rotor by decrease in the load was facilitated by the M76V, Y83H and A145E mutations compared to the wild‐type motor. The E155K mutation reduced the number of active stators in the motor from 10 to 6 under extremely high load. We propose that MotAC is responsible for load‐dependent assembly and disassembly dynamics of the MotA/B stator units.  相似文献   

4.
Vacuolar ATPases (V‐ATPases) are essential proton pumps that acidify the lumen of subcellular organelles in all eukaryotic cells and the extracellular space in some tissues. V‐ATPase activity is regulated by a unique mechanism referred to as reversible disassembly, wherein the soluble catalytic sector, V1, is released from the membrane and its MgATPase activity silenced. The crystal structure of yeast V1 presented here shows that activity silencing involves a large conformational change of subunit H, with its C‐terminal domain rotating ~150° from a position near the membrane in holo V‐ATPase to a position at the bottom of V1 near an open catalytic site. Together with biochemical data, the structure supports a mechanistic model wherein subunit H inhibits ATPase activity by stabilizing an open catalytic site that results in tight binding of inhibitory ADP at another site.  相似文献   

5.
Cdc25B phosphatases are involved in cell cycle checkpoints and have become a possible target for developing new anticancer drugs. A more rational design of Cdc25B ligands would benefit from detailed knowledge of its tertiary structure. The conformational flexibility of the C‐terminal region of the Cdc25B catalytic domain has been debated recently and suggested to play an important structural role. Here, a combination of experimental NMR measurements and molecular dynamics simulations for the complete catalytic domain of the Cdc25B phosphatase is presented. The stability of the C‐terminal α‐helix is confirmed, but the last 20 residues in the complete catalytic domain are very flexible, partially occlude the active site and may establish transient contacts with the protein core. This flexibility in the C‐terminal tail may modulate the molecular recognition of natural substrates and competitive inhibitors by Cdc25B. Proteins 2016; 84:1567–1575. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
Wenjun Zheng 《Proteins》2016,84(8):1055-1066
Membrane fusion in eukaryotes is driven by the formation of a four‐helix bundle by three SNARE proteins. To recycle the SNARE proteins, they must be disassembled by the ATPase NSF and four SNAP proteins which together form a 20S supercomplex. Recently, the first high‐resolution structures of the NSF (in both ATP and ADP state) and 20S (in four distinct states termed I, II, IIIa, and IIIb) were solved by cryo‐electron microscopy (cryo‐EM), which have paved the way for structure‐driven studies of the SNARE recycling mechanism. To probe the structural dynamics of SNARE disassembly at amino‐acid level of details, a systematic coarse‐grained modeling based on an elastic network model and related analyses were performed. Our normal mode analysis of NSF, SNARE, and 20S predicted key modes of collective motions that partially account for the observed structural changes, and illuminated how the SNARE complex can be effectively destabilized by untwisting and bending motions of the SNARE complex driven by the amino‐terminal domains of NSF in state II. Our flexibility analysis identified regions with high/low flexibility that coincide with key functional sites (such as the NSF‐SNAPs‐SNARE binding sites). A subset of hotspot residues that control the above collective motions, which will make promising targets for future mutagenesis studies were also identified. Finally, the conformational changes in 20S as induced by the transition of NSF from ATP to ADP state were modeled, and a concerted untwisting motion of SNARE/SNAPs and a sideway flip of two amino‐terminal domains were observed. In sum, the findings have offered new structural and dynamic details relevant to the SNARE disassembly mechanism, and will guide future functional studies of the SNARE recycling machinery. Proteins 2016; 84:1055–1066. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
F(1)-ATPase is a rotary motor protein in which 3 catalytic β-subunits in a stator α(3)β(3) ring undergo unidirectional and cooperative conformational changes to rotate the rotor γ-subunit upon adenosine triphosphate hydrolysis. The prevailing view of the mechanism behind this rotary catalysis elevated the γ-subunit as a "dictator" completely controlling the chemical and conformational states of the 3 catalytic β-subunits. However, our recent observations using high-speed atomic force microscopy clearly revealed that the 3 β-subunits undergo cyclic conformational changes even in the absence of the rotor γ-subunit, thus dethroning it from its dictatorial position. Here, we introduce our results in detail and discuss the possible operating principle behind the F(1)-ATPase, along with structurally related hexameric ATPases, also mentioning the possibility of generating hybrid nanomotors. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

8.
The vacuolar (H+) ATPases (V-ATPases) are large, multimeric proton pumps that, like the related family of F1F0 ATP synthases, employ a rotary mechanism. ATP hydrolysis by the peripheral V1 domain drives rotation of a rotary complex (the rotor) relative to the stationary part of the enzyme (the stator), leading to proton translocation through the integral V0 domain. One mechanism of regulating V-ATPase activity in vivo involves reversible dissociation of the V1 and V0 domains. Unlike the corresponding domains in F1F0, the dissociated V1 domain does not hydrolyze ATP, and the free V0 domain does not passively conduct protons. These properties are important to avoid generation of an uncoupled ATPase activity or an unregulated proton conductance upon dissociation of the complex in vivo. Previous results (Parra, K. J., Keenan, K. L., and Kane, P. M. (2000) J. Biol. Chem. 275, 21761-21767) showed that subunit H (part of the stator) inhibits ATP hydrolysis by free V1. To test the hypothesis that subunit H accomplishes this by bridging rotor and stator in free V1, cysteine-mediated cross-linking studies were performed. Unique cysteine residues were introduced over the surface of subunit H from yeast by site-directed mutagenesis and used as the site of attachment of the photo-activated cross-linking reagent maleimido benzophenone. After UV-activated cross-linking, cross-linked products were identified by Western blot using subunit-specific antibodies. The results indicate that the subunit H mutant S381C shows cross-linking between subunit H and subunit F (a rotor subunit) in the free V1 domain but not in the intact V1V0 complex. These results indicate that subunits H and F are proximal in free V1, supporting the hypothesis that subunit H inhibits free V1 by bridging the rotary and stator domains.  相似文献   

9.
Wenjun Zheng 《Proteins》2009,76(3):747-762
F1 ATPase, a rotary motor comprised of a central stalk ( γ subunit) enclosed by three α and β subunits alternately arranged in a hexamer, features highly cooperative binding and hydrolysis of ATP. Despite steady progress in biophysical, biochemical, and computational studies of this fascinating motor, the structural basis for cooperative ATPase involving its three catalytic sites remains not fully understood. To illuminate this key mechanistic puzzle, we have employed a coarse‐grained elastic network model to probe the allosteric couplings underlying the cyclic conformational transition in F1 ATPase at a residue level of detail. We will elucidate how ATP binding and product (ADP and phosphate) release at two catalytic sites are coupled with the rotation of γ subunit via various domain motions in α 3 β 3 hexamer (including intrasubunit hinge‐bending motions in β subunits and intersubunit rigid‐body rotations between adjacent α and β subunits). To this end, we have used a normal‐mode‐based correlation analysis to quantify the allosteric couplings of these domain motions to local motions at catalytic sites and the rotation of γ subunit. We have then identified key amino acid residues involved in the above couplings, some of which have been validated against past studies of mutated and γ ‐truncated F1 ATPase. Our finding strongly supports a binding change mechanism where ATP binding to the empty catalytic site triggers a series of intra‐ and intersubunit domain motions leading to ATP hydrolysis and product release at the other two closed catalytic sites. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Translocation of virulence effector proteins through the type III secretion system (T3SS) is essential for the virulence of many medically relevant Gram‐negative bacteria. The T3SS ATPases are conserved components that specifically recognize chaperone–effector complexes and energize effector secretion through the system. It is thought that functional T3SS ATPases assemble into a cylindrical structure maintained by their N‐terminal domains. Using size‐exclusion chromatography coupled to multi‐angle light scattering and native mass spectrometry, we show that in the absence of the N‐terminal oligomerization domain the Salmonella T3SS ATPase InvC can form monomers and dimers in solution. We also present for the first time a 2.05 å resolution crystal structure of InvC lacking the oligomerization domain (InvCΔ79) and map the amino acids suggested for ATPase intersubunit interaction, binding to other T3SS proteins and chaperone–effector recognition. Furthermore, we validate the InvC ATP‐binding site by co‐crystallization of InvCΔ79 with ATPγS (2.65 å) and ADP (2.80 å). Upon ATP‐analogue recognition, these structures reveal remodeling of the ATP‐binding site and conformational changes of two loops located outside of the catalytic site. Both loops face the central pore of the predicted InvC cylinder and are essential for the function of the T3SS ATPase. Our results present a fine functional and structural correlation of InvC and provide further details of the homo‐oligomerization process and ATP‐dependent conformational changes underlying the T3SS ATPase activity.  相似文献   

11.
Ryota Iino  Hiroyuki Noji 《BBA》2012,1817(10):1732-1739
F1-ATPase is a rotary motor protein in which 3 catalytic β-subunits in a stator α3β3 ring undergo unidirectional and cooperative conformational changes to rotate the rotor γ-subunit upon adenosine triphosphate hydrolysis. The prevailing view of the mechanism behind this rotary catalysis elevated the γ-subunit as a “dictator” completely controlling the chemical and conformational states of the 3 catalytic β-subunits. However, our recent observations using high-speed atomic force microscopy clearly revealed that the 3 β-subunits undergo cyclic conformational changes even in the absence of the rotor γ-subunit, thus dethroning it from its dictatorial position. Here, we introduce our results in detail and discuss the possible operating principle behind the F1-ATPase, along with structurally related hexameric ATPases, also mentioning the possibility of generating hybrid nanomotors. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

12.
The V-ATPase is a membrane-bound protein complex which pumps protons across the membrane to generate a large proton motive force through the coupling of an ATP-driven 3-stroke rotary motor (V1) to a multistroke proton pump (Vo). This is done with near 100% efficiency, which is achieved in part by flexibility within the central rotor axle and stator connections, allowing the system to flex to minimise the free energy loss of conformational changes during catalysis. We have used electron microscopy to reveal distinctive bending along the V-ATPase complex, leading to angular displacement of the V1 domain relative to the Vo domain to a maximum of ~30°. This has been complemented by elastic network normal mode analysis that shows both flexing and twisting with the compliance being located in the rotor axle, stator filaments, or both. This study provides direct evidence of flexibility within the V-ATPase and by implication in related rotary ATPases, a feature predicted to be important for regulation and their high energetic efficiencies.  相似文献   

13.
Sarco(endo)plasmic reticulum Ca2+‐ATPase transports two Ca2+ per ATP‐hydrolyzed across biological membranes against a large concentration gradient by undergoing large conformational changes. Structural studies with X‐ray crystallography revealed functional roles of coupled motions between the cytoplasmic domains and the transmembrane helices in individual reaction steps. Here, we employed “Motion Tree (MT),” a tree diagram that describes a conformational change between two structures, and applied it to representative Ca2+‐ATPase structures. MT provides information of coupled rigid‐body motions of the ATPase in individual reaction steps. Fourteen rigid structural units, “common rigid domains (CRDs)” are identified from seven MTs throughout the whole enzymatic reaction cycle. CRDs likely act as not only the structural units, but also the functional units. Some of the functional importance has been newly revealed by the analysis. Stability of each CRD is examined on the morphing trajectories that cover seven conformational transitions. We confirmed that the large conformational changes are realized by the motions only in the flexible regions that connect CRDs. The Ca2+‐ATPase efficiently utilizes its intrinsic flexibility and rigidity to response different switches like ligand binding/dissociation or ATP hydrolysis. The analysis detects functional motions without extensive biological knowledge of experts, suggesting its general applicability to domain movements in other membrane proteins to deepen the understanding of protein structure and function. Proteins 2015; 83:746–756. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
Most p53 mutations associated with cancer are located in its DNA binding domain (DBD). Many structures (X‐ray and NMR) of this domain are available in the protein data bank (PDB) and a vast conformational heterogeneity characterizes the various free and complexed states. The major difference between the apo and the holo‐complexed states appears to lie in the L1 loop. In particular, the conformations of this loop appear to depend intimately on the sequence of DNA to which it binds. This conclusion builds upon recent observations that implicate the tetramerization and the C‐terminal domains (respectively TD and Cter) in DNA binding specificity. Detailed PCA analysis of the most recent collection of DBD structures from the PDB have been carried out. In contrast to recommendations that small molecules/drugs stabilize the flexible L1 loop to rescue mutant p53, our study highlights a need to retain the flexibility of the p53 DNA binding surface (DBS). It is the adaptability of this region that enables p53 to engage in the diverse interactions responsible for its functionality. Proteins 2016; 84:1443–1461. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
《Molecular membrane biology》2013,30(4-6):147-159
Abstract

To operate as a rotary motor, the ATP-hydrolyzing domain of the vacuolar H+-ATPase must be connected to a fixed structure in its membrane-bound proton pump domain by a mechanical stator. Although low-resolution structural data and spectroscopic analysis indicate that a filament-like subunit E/subunit G heterodimer performs this role, more detailed information about the relative arrangement of these subunits is limited. We have used a site-directed cross-linking approach to show that, in both bacterial and yeast V-type ATPases, the N-terminal α-helical segments of the G and E subunits are closely aligned over a distance of up to 40 Å. Furthermore, cross-linking coupled to mass spectrometry shows that the C-terminal end of G is anchored at the C-terminal globular domain of subunit E. These data are consistent with a stator model comprising two ~ 150 Å long parallel α-helices linked to each other at both ends, stabilized by a coiled-coil arrangement and capped by the globular C-terminal domain of E that connects the cytoplasmic end of the helical structure to the V-ATPase catalytic domain.  相似文献   

16.
In groundbreaking work, Bhaskara et al. (2007) demonstrate in a recent issue of Molecular Cell that the Mre11/Rad50/Nbs1 (MRN) complex harbors distinct, yet chemically related, ATPase and adenylate kinase catalytic activities that together orchestrate multiple requisite MRN functional and conformational states in dsDNA break repair sensing and signaling with general implications for ABC ATPases.  相似文献   

17.
Human infections by the intracellular bacterial pathogen Legionella pneumophila result in a severe form of pneumonia, the Legionnaire's disease. L. pneumophila utilizes a Type IVb secretion (T4bS) system termed “dot/icm” to secrete protein effectors to the host cytoplasm. The dot/icm system is powered at least in part by a functionally critical AAA+ ATPase, a protein called DotB, thought to belong to the VirB11 family of proteins. Here we present the crystal structure of DotB at 3.19 Å resolution, in its hexameric form. We observe that DotB is in fact a structural intermediate between VirB11 and PilT family proteins, with a PAS‐like N‐terminal domain coupled to a RecA‐like C‐terminal domain. It also shares critical structural elements only found in PilT. The structure also reveals two conformers, termed α and β, with an αβαβαβ configuration. The existence of α and β conformers in this class of proteins was confirmed by solving the structure of DotB from another bacterial pathogen, Yersinia, where, intriguingly, we observed an ααβααβ configuration. The two conformers co‐exist regardless of the nucleotide‐bound states of the proteins. Our investigation therefore reveals that these ATPases can adopt a wider range of conformational states than was known before, shedding new light on the extraordinary spectrum of conformations these ATPases can access to carry out their function. Overall, the structure of DotB provides a template for further rational drug design to develop more specific antibiotics to tackle Legionnaire's disease. PDB Code(s): Will ; be ; provided  相似文献   

18.
Maleylacetate reductase plays a crucial role in catabolism of resorcinol by catalyzing the NAD(P)H‐dependent reduction of maleylacetate, at a carbon–carbon double bond, to 3‐oxoadipate. The crystal structure of maleylacetate reductase from Rhizobium sp. strain MTP‐10005, GraC, has been elucidated by the X‐ray diffraction method at 1.5 Å resolution. GraC is a homodimer, and each subunit consists of two domains: an N‐terminal NADH‐binding domain adopting an α/β structure and a C‐terminal functional domain adopting an α‐helical structure. Such structural features show similarity to those of the two existing families of enzymes in dehydroquinate synthase‐like superfamily. However, GraC is distinct in dimer formation and activity expression mechanism from the families of enzymes. Two subunits in GraC have different structures from each other in the present crystal. One subunit has several ligands mimicking NADH and the substrate in the cleft and adopts a closed domain arrangement. In contrast, the other subunit does not contain any ligand causing structural changes and adopts an open domain arrangement. The structure of GraC reveals those of maleylacetate reductase both in the coenzyme, substrate‐binding state and in the ligand‐free state. The comparison of both subunit structures reveals a conformational change of the Tyr326 loop for interaction with His243 on ligand binding. Structures of related enzymes suggest that His243 is likely a catalytic residue of GraC. Mutational analyses of His243 and Tyr326 support the catalytic roles proposed from structural information. The crystal structure of GraC characterizes the maleylacetate reductase family as a third family in the dehydroquinate synthase‐like superfamily. Proteins 2016; 84:1029–1042. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
The actin capping protein (CP) binds to actin filaments to block further elongation. The capping activity is inhibited by proteins V‐1 and CARMIL interacting with CP via steric and allosteric mechanisms, respectively. The crystal structures of free CP, CP/V‐1, and CP/CARMIL complexes suggest that the binding of CARMIL alters the flexibility of CP rather than the overall structure of CP, and this is an allosteric inhibition mechanism. Here, we performed molecular dynamics (MD) simulations of CP in the free form, and in complex with CARMIL or V‐1. The resulting trajectories were analyzed exhaustively using Motion Tree, which identifies various rigid‐body motions ranging from small local motions to large domain motions. After enumerating all the motions, CP flexibilities with different ligands were characterized by a list of frequencies for 20 dominant rigid‐body motions, some of which were not identified in previous studies. The comparative analysis highlights the influence of the binding of the CARMIL peptide to CP flexibility. In free CP and the CP/V‐1 complex, domain motions around a large crevice between the N‐stalk and the CP‐S domain occur frequently. The CARMIL peptide binds the crevice and suppresses the motions effectively. In addition, the binding of the CARMIL peptide enhances and alters local motions around the pocket that participates in V‐1 binding. These newly identified motions are likely to suppress the binding of V‐1 to CP. The observed changes in CP motion provide insights that describe the mechanism of allosteric regulation by CARMIL through modulating CP flexibility. Proteins 2016; 84:948–956. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
DNA‐binding proteins play critical roles in biological processes including gene expression, DNA packaging and DNA repair. They bind to DNA target sequences with different degrees of binding specificity, ranging from highly specific (HS) to nonspecific (NS). Alterations of DNA‐binding specificity, due to either genetic variation or somatic mutations, can lead to various diseases. In this study, a comparative analysis of protein–DNA complex structures was carried out to investigate the structural features that contribute to binding specificity. Protein–DNA complexes were grouped into three general classes based on degrees of binding specificity: HS, multispecific (MS), and NS. Our results show a clear trend of structural features among the three classes, including amino acid binding propensities, simple and complex hydrogen bonds, major/minor groove and base contacts, and DNA shape. We found that aspartate is enriched in HS DNA binding proteins and predominately binds to a cytosine through a single hydrogen bond or two consecutive cytosines through bidentate hydrogen bonds. Aromatic residues, histidine and tyrosine, are highly enriched in the HS and MS groups and may contribute to specific binding through different mechanisms. To further investigate the role of protein flexibility in specific protein–DNA recognition, we analyzed the conformational changes between the bound and unbound states of DNA‐binding proteins and structural variations. The results indicate that HS and MS DNA‐binding domains have larger conformational changes upon DNA‐binding and larger degree of flexibility in both bound and unbound states. Proteins 2016; 84:1147–1161. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号