首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peptide chemical ligation chemistries, which allow the chemoselective coupling of unprotected peptide fragments, are useful tools for synthesizing native polypeptides or unnatural peptide‐based macromolecules. We show here that the phenylthiocarbonyl group can be easily introduced into peptides on α or ε amino groups using phenylthiochloroformate and standard solid‐phase method. It reacts chemoselectively with cysteinyl peptides to give an alkylthiocarbamate bond. S,N‐shift of the alkylaminocarbonyl group from the Cys side chain to the α‐amino group did not occur. The method was used for linking two peptide chains through their N‐termini, for the synthesis of a cyclic peptide or for the synthesis of di‐ or tetravalent multiple antigenic peptides (MAPs). Thiocarbamate ligation is thus complementary to thioether, thioester or disulfide ligation methods. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
The proteomic mapping of enzyme–substrate interactions is challenged by their transient nature. A method to capture interacting protein kinases in complexes with a single substrate of interest would provide a new tool for mapping kinase signaling networks. Here, we describe a nucleotide‐based substrate analog capable of reprogramming the wild‐type phosphoryl‐transfer reaction to produce a kinase‐acrylamide‐based thioether crosslink to mutant substrates with a cysteine nucleophile substituted at the native phosphorylation site. A previously reported ATP‐based methacrylate crosslinker (ATP‐MA) was capable of mediating kinase crosslinking to short peptides but not protein substrates. Exploration of structural variants of ATP‐MA to enable crosslinking of protein substrates to kinases led to the discovery that an ADP‐based methacrylate (ADP‐MA) crosslinker was superior to the ATP scaffold at crosslinking in vitro. The improved efficiency of ADP‐MA over ATP‐MA is due to reduced inhibition of the second step of the kinase–substrate crosslinking reaction by the product of the first step of the reaction. The new probe, ADP‐MA, demonstrated enhanced in vitro crosslinking between the Src tyrosine kinase and its substrate Cortactin in a phosphorylation site‐specific manner. The kinase–substrate crosslinking reaction can be carried out in a complex mammalian cell lysate setting, although the low abundance of endogenous kinases remains a significant challenge for efficient capture.  相似文献   

3.
The formation mechanism of Maillard peptides was explored in Maillard reaction through diglycine/glutathione(GSH)/(Cys‐Glu‐Lys‐His‐Ile‐Met)–xlyose systems by heating at 120 °C for 30–120 min. Maximum fluorescence intensity of Maillard reaction products (MRPs) with an emission wavelength of 420~430 nm in all systems was observed, and the intensity values were proportional to the heating time. Taken diglycine/GSH–[13C5]xylose systems as a control, it was proposed that the compounds with high m/z values of 379 and 616 have the high molecular weight (HMW) products formed by cross‐linking of peptides and sugar. In (Cys‐Glu‐Lys‐His‐Ile‐Met)–xylose system, the m/z value of HMW MRPs was not observed, which might be due to the weak signals of these products. According to the results of gel permeation chromatography, HMW MRPs were formed by Maillard reaction, especially in (Cys‐Glu‐Lys‐His‐Ile‐Met)–xylose system, the percentage of Maillard peptides reached 52.90%. It was concluded that Maillard peptides can be prepared through the cross‐linking of sugar and small peptides with a certain MW range. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
Cyclic peptides are attractive candidates for synthetic affinity ligands due to their favorable properties, such as resistance to proteolysis, and higher affinity and specificity relative to linear peptides. Here we describe the discovery, synthesis and characterization of novel cyclic peptide affinity ligands that bind the Fc portion of human Immunoglobulin G (IgG; hFc). We generated an mRNA display library of cyclic pentapeptides wherein peptide cyclization was achieved with high yield and selectivity, using a solid‐phase crosslinking reaction between two primary amine groups, mediated by a homobifunctional linker. Subsequently, a pool of cyclic peptide binders to hFc was isolated from this library and chromatographic resins incorporating the selected cyclic peptides were prepared by on‐resin solid‐phase peptide synthesis and cyclization. Significantly, this approach results in resins that are resistant to harsh basic conditions of column cleaning and regeneration. Further studies identified a specific cyclic peptide—cyclo[Link‐M‐WFRHY‐K]—as a robust affinity ligand for purification of IgG from complex mixtures. The cyclo[Link‐M‐WFRHY‐K] resin bound selectively to the Fc fragment of IgG, with no binding to the Fab fragment, and also bound immunoglobulins from a variety of mammalian species. Notably, while the recovery of IgG using the cyclo[Link‐M‐WFRHY‐K] resin was comparable to a Protein A resin, elution of IgG could be achieved under milder conditions (pH 4 vs. pH 2.5). Thus, cyclo[Link‐M‐WFRHY‐K] is an attractive candidate for developing a cost‐effective and robust chromatographic resin to purify monoclonal antibodies (mAbs). Finally, our approach can be extended to efficiently generate and evaluate cyclic peptide affinity ligands for other targets of interest. Biotechnol. Bioeng. 2013; 110: 857–870. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Synthetic mimics of discontinuous epitopes may have a wide range of potential applications, including synthetic vaccines and inhibition of protein–protein interactions. However, synthetic access to these relatively complex peptide molecular constructs is limited. This paper describes a versatile convergent strategy for the construction of protein mimics presenting three different cyclic peptides. Using an orthogonal alkyne protection strategy, peptide loops were introduced successively onto a triazacyclophane scaffold via Cu(I)‐catalyzed azide alkyne cycloaddition. This method provides rapid access to protein mimics requiring different peptide segments for their interaction and activity. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
The present study describes modification of asparagine–glycine–arginine (NGR) peptide at N‐terminally and C‐terminally by introduction of a tridentate chelating scaffold via click chemistry reaction. The N‐terminal and C‐terminal modified peptides were radiometalated with [99mTc(CO)3]+ precursor. The influence of these moieties at the two termini on the targeting properties of NGR peptide was determined by in vitro cell uptake studies and in vivo biodistribution studies. The two radiolabeled constructs did not exhibit any significant variation in uptake in murine melanoma B16F10 cells during in vitro studies. In vivo studies revealed nearly similar tumor uptake of N‐terminally modified peptide construct 5 and C‐terminally construct 6 at 2 h p.i. (1.9 ± 0.1 vs 2.4 ± 0.2% ID/g, respectively). The tumor‐to‐blood (T/B) and tumor‐to‐liver (T/L) ratios of the two radiometalated peptides were also quite similar. The two constructs cleared from all the major organs (heart, lungs, spleen, stomach, and blood) at 4 h p.i. (<1% ID/g). Blocking studies carried out by coinjection of cCNGRC peptide led to approximately 50% reduction in the tumor uptake at 2 h p.i. This work thus illustrates the possibility of convenient modification/radiometalation of NGR peptide at either N‐ or C‐terminus without hampering tumor targeting and pharmacokinetics.  相似文献   

7.
Orthogonal protection of amino acid side chains in solid phase peptide synthesis allows for selective deprotection of side chains and the formation of cyclic peptides on resin. Cyclizations are useful as they may improve the activity of the peptide or improve the metabolic stability of peptides in vivo. One cyclization method often used is the formation of a lactam bridge between an amine and a carboxylic acid. It is desirable to perform the cyclization on resin as opposed to in solution to avoid unwanted side reactions; therefore, a common strategy is to use –Alloc and –OAllyl protecting groups as they are compatible with Fmoc solid phase peptide synthesis conditions. Alloc and –OAllyl may be removed using Pd(PPh3)4 and phenylsilane in DMF. This method can be problematic as the reaction is most often performed at room temperature under argon gas. It is not usually done at higher temperatures because of the fear of poisoning the palladium catalyst. As a result, the reaction is long and reagent–intensive. Herein, we report the development of a method in which the –Alloc/–OAllyl groups are removed using a microwave synthesizer under atmospheric conditions. The reaction is much faster, allowing for the removal of the protecting groups before the catalyst is oxidized, as well as being less reagent–intensive. This method of deprotection was tested using a variety of amino acid sequences and side chain protecting groups, and it was found that after two 5‐min deprotections at 38°C, all –Alloc and –OAllyl groups were removed with >98% purity. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Cyclic tetra‐β‐peptides (CP4s) and a bis‐CP4 were synthesized to prepare peptide nanotubes (PNTs) by molecular stacking of cyclic peptides. The addition of bis‐CP4 to the PNT preparation afforded PNT bundles increasing the direct and converse piezoelectiric coefficients, which is ascribable to bis‐CP4 stapling PNTs into the parallel alignment of PNT dipoles.  相似文献   

9.
Cleavage reactions at backbone loci are one of the consequences of oxidation of proteins and peptides. During α‐amidation, the Cα–N bond in the backbone is cleaved under formation of an N‐terminal peptide amide and a C‐terminal keto acyl peptide. On the basis of earlier works, a facilitation of α‐amidation by the thioether group of adjacent methionine side chains was proposed. This reaction was characterized by using benzoyl methionine and benzoyl alanyl methionine as peptide models. The decomposition of benzoylated amino acids (benzoyl‐methionine, benzoyl‐alanine, and benzoyl‐methionine sulfoxide) to benzamide in the presence of different carbohydrate compounds (reducing sugars, Amadori products, and reductones) was studied during incubation for up to 48 h at 80 °C in acetate‐buffered solution (pH 6.0). Small amounts of benzamide (0.3–1.5 mol%) were formed in the presence of all sugars and from all benzoylated species. However, benzamide formation was strongly enhanced, when benzoyl methionine was incubated in the presence of reductones and Amadori compounds (3.5–4.2 mol%). The reaction was found to be intramolecular, because α‐amidation of a similar 4‐methylbenzoylated amino acid was not enhanced in the presence of benzoyl‐methionine and carbohydrate compounds. In the peptide benzoyl‐alanyl‐methionine, α‐amidation at the methionine residue is preferred over α‐amidation at the benzoyl peptide bond. We propose here a mechanism for the enhancement of α‐amidation at methionine residues. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
The increasing interest in peptidomimetics of biological relevance prompted us to synthesize a series of cyclic peptides comprising trans‐2‐aminocyclohexane carboxylic acid (Achc) or trans‐2‐aminocyclopentane carboxylic acid (Acpc). NMR experiments in combination with MD calculations were performed to investigate the three‐dimensional structure of the cyclic peptides. These data were compared to the conformational information obtained by electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) spectroscopy. Experimental VCD spectra were compared to theoretical VCD spectra computed quantum chemically at B3LYP/6‐31G(d) density functional theory (DFT) level. The good agreement between the structural features derived from the VCD spectra and the NMR‐based structures underlines the applicability of VCD in studying the conformation of small cyclic peptides. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
The purpose of this study was to examine the effects of structural parameters of peptides on their oxidation by DMSO, including location of cysteine, effect of adjunct group participation, molecular hydrophobicity, steric hindrance or the accessibility of thiol group and peptide conformation, on oxidation rates, dimer formation and associated side products. We designed and synthesized two series of linear cysteine‐containing analogues of human β‐defensin 3 (the C1‐peptides with cysteine at the N‐terminus residue 1, the C29‐peptides with cysteine located at residue 29 in the centre of peptide), which were used for preparation of disulphide‐linked homodimers. HPLC–ESI–MS was used to monitor the oxidation process and to characterize the molecular weights of dimers and side products of high oxidation. The formations of dimers and side products were dependent on the position of cysteines. Hydrophobicity generally rendered the thiol groups less accessible and hence exposed them to slow oxidation to form dimers (or even fail to form dimers during the timescale of observation). Molecular dynamics simulations showed that the exposure of cysteines (and sulphurs) of the C1‐peptides was much larger than for the C29‐peptides. The larger hydrophobic side chains tended to enable clustering of the side chains that sequester cysteine, particularly in the C29‐peptides, which provided a molecular explanation for the observed trends in oxidation rates. Together with molecular modelling, we propose a reaction mechanism to elucidate the oxidation results of these peptides. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
We have recently reported a series of synthetic anticancer heptapeptides (H‐KKWβ2,2WKK‐NH2) containing a central achiral and lipophilic β2,2‐amino acid that display low toxicity against non‐malignant cells and high proteolytic stability. In the present study, we have further investigated the effects of increasing the rigidity and amphipathicity of two of our lead heptapeptides by preparing a series of seven to five residue cyclic peptides containing the two most promising β2,2‐amino acid derivatives as part of the central lipophilic core. The peptides were tested for anticancer activity against human Burkitt's lymphoma (Ramos cells), haemolytic activity against human red blood cells (RBC) and cytotoxicity against healthy human lung fibroblast cells (MRC‐5). The results demonstrated a considerable increase in anticancer potency following head‐to‐tail peptide cyclization, especially for the shortest derivatives lacking a tryptophan residue. High‐resolution NMR studies and molecular dynamics simulations together with an annexin‐V‐FITC and propidium iodide fluorescent assay showed that the peptides had a membrane disruptive mode of action and that the more potent peptides penetrated deeper into the lipid bilayer. The need for new anticancer drugs with novel modes of action is demanding, and development of short cyclic anticancer peptides with an overall rigidified and amphipathic structure is a promising approach to new anticancer agents. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
Recently, there has been an increased interest in isotopical labeling of peptides. Although there are several techniques allowing for a complete labeling of all carboxyl groups in peptides, regioselective labeling would be beneficial in many situations. Such labeling requires the use of 18O‐labeled Fmoc amino acids. We have designed a method for such labeling that is an improvement on a technique proposed earlier. The new procedure is suitable for microscale synthesis and could be used in peptide and proteomics laboratories. Although for the majority of tested amino acids our method gives good labeling efficiency, it is time consuming. Therefore, we have decided to use microwave‐assisted procedure. This approach resulted in reduction of reaction time to 15 min and increased reaction efficiency. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
A considerable quantity of an alkylation by‐product is observed when using 3,6‐dioxa‐1,8‐octanedithiol as a scavenger during acidic release of peptides containing the thioether amino acid methionine from the solid support. Adjustment of the cleavage conditions by replacement of 3,6‐dioxa‐1,8‐octanedithiol with ethane dithiol or by using methionine sulfoxide as an alternative to methionine resulted in no such impurity. The by‐product was detectable by liquid chromatography and mass spectrometry and characterised by NMR spectroscopy of an isolated model peptide. It could be effectively removed in a separate post cleavage step by treatment with dilute aqueous acid at 37 °C. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Several perylene (Pery)‐doped 2‐naphthol (2‐NP) (Pery/2‐NP) luminophors were prepared using conventional solid‐state reaction techniques. Energy transfer in the excited state was examined using fluorescence spectroscopy and cyclic voltammetry. Fluorescence studies revealed exciplex formation by Pery in the form of structureless and broad spectra at higher concentrations with monomer quenching of 2‐NP; a broad green emission was observed in the range 500–650 nm, peaking at 575 nm. Structural properties and thermal stability were analyzed using X‐ray diffraction, scanning electron microscopy and TGA‐differential scanning calorimetry. Highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels were observed in the range 5.56–5.61 eV and 2.79–2.81 eV, respectively with a 2.77–2.82 eV band gap. The present study reveals these to be probable candidates for hole‐transporting materials suitable in optoelectronics.  相似文献   

16.
We are developing a rapid, time‐resolved method using laser‐activated cross‐linking to capture protein‐peptide interactions as a means to interrogate the interaction of serum proteins as delivery systems for peptides and other molecules. A model system was established to investigate the interactions between bovine serum albumin (BSA) and 2 peptides, the tridecapeptide budding‐yeast mating pheromone (α‐factor) and the decapeptide human gonadotropin‐releasing hormone (GnRH). Cross‐linking of α‐factor, using a biotinylated, photoactivatable p‐benzoyl‐L‐phenylalanine (Bpa)–modified analog, was energy‐dependent and achieved within seconds of laser irradiation. Protein blotting with an avidin probe was used to detect biotinylated species in the BSA‐peptide complex. The cross‐linked complex was trypsinized and then interrogated with nano‐LC–MS/MS to identify the peptide cross‐links. Cross‐linking was greatly facilitated by Bpa in the peptide, but some cross‐linking occurred at higher laser powers and high concentrations of a non‐Bpa–modified α‐factor. This was supported by experiments using GnRH, a peptide with sequence homology to α‐factor, which was likewise found to be cross‐linked to BSA by laser irradiation. Analysis of peptides in the mass spectra showed that the binding site for both α‐factor and GnRH was in the BSA pocket defined previously as the site for fatty acid binding. This model system validates the use of laser‐activation to facilitate cross‐linking of Bpa‐containing molecules to proteins. The rapid cross‐linking procedure and high performance of MS/MS to identify cross‐links provides a method to interrogate protein‐peptide interactions in a living cell in a time‐resolved manner.  相似文献   

17.
Celiac disease (CD) is characterized by abnormally high concentrations of certain peptides in the small bowel. These peptides can be grouped in ‘toxic’ and ‘immunogenic’ classes, which elicit an innate immune response and an HLA‐mediated adaptive response, respectively. It is not clear on which molecular mechanisms responses to these different classes are based, but the 31–43 (P31–43) and the 56–68 (P56–68) A‐gliadin fragments are usually adopted as sequence representatives of toxic and immunogenic peptides, respectively. Here we report fluorescence experiments aiming to mimic the interaction of these peptides with the cell membrane surface by using sodium dodecyl sulphate (SDS) as a membrane‐mimetic medium. We show that P31–43 is able to bind SDS micelles in a way that resembles mixed micelle formation. On the other hand, no binding at all could be detected for P56–68. This different behaviour could be related to the paracellular or transcellular route through which gluten peptides may cross the intestinal epithelium, and open new insights into the pathogenetic mechanisms of CD. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Synthetic peptides derived from GB virus C (GBV‐C) have previously been studied in our group for the development of new systems capable of diagnosing diseases caused by this humanotropic virus. We also recently described specific peptide domains of the E2 envelop protein of GBV‐C that have the capacity to interfere with the HIV‐1 fusion peptide, produce a notable decrease in cellular membrane fusion, and perturb HIV‐1 infectivity in a dose‐dependent manner. The present work discloses the design and synthesis of both linear and cyclic branched peptides based on a previously reported N‐terminal sequence of the GBV‐C E2 protein. Immunoassays and cell–cell fusion assays were performed to evaluate their diagnostic value to detect anti‐GBV‐C antibodies in HIV‐1 patients, as well as their putative anti‐HIV‐1 activity as entry inhibitors. Our results showed that chemical modifications of the selected E2(7–26) linear peptide to afford cyclic architecture do not result in an enhanced inhibition of gp41 HIV‐1‐mediated cell–cell fusion nor improved sensitivity in the detection of GBV‐C antibodies in HIV‐1 co‐infected patients. Thus, the ELISA data reinforce the potential utility of linear versions of the E2(7–26) region for the development of new peptide‐based immunosensor devices for the detection of anti‐GBV‐C antibodies in HIV‐1 co‐infected patients. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
The reaction of histidine‐containing polypeptides with toxic and essential metals and the molecular mechanism of complexation has yet to be determined, particularly with respect to the conformational changes of the interacting macromolecules. Therefore, a system of oligopeptides containing histidine residues in various positions of Ala or Gly sequences has been designed and used in heavy metal comparatively binding experiments. The role of spacing residues (Gly and Ala repeats) in selecting the various conformations was investigated. The newly synthesized peptides and metal ion adducts have been characterized by Fourier transform infrared spectroscopy (FTIR) as well as electrospray ion trap mass spectrometry (ESI–MS) and circular dichroism (CD). The analysis of CD‐spectra of the four peptides in water revealed that the secondary structure depends much on the position of each amino acid in the peptide backbone. Our peptides system reveals various binding mechanisms of metal ions to peptides depending on the position of histidine residue and the corresponding conformations of Ala or Gly sequences. Biological and medical consequences of conformational changes of metal‐bound peptides are further discussed. Thus, the binding of heavy metals to four peptides may serve as a model system with respect to the conformational consequences of the metal addition on the amino acid repeats situated in prion protein. © 2010 Wiley Periodicals, Inc. Biopolymers 93:497–508, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

20.
A novel amphiphilic cyclic peptide composed of two β‐glucosamino acids and one trans‐2‐aminocyclohexylcarboxylic acid was synthesized and investigated on assembly formation. The cyclic tri‐β‐peptide was self‐assembled into rodlike crystals or nanofibers depending on preparative conditions. The rodlike crystals showed a layer spacing of 4.8 Å along the long axis, and columnar spacings of 10.8 and 21.5 Å by electron diffraction analysis along the short axis. The former confirms the columnar structure upon molecular stacking, and the latter indicates triple bundle formation of the columnar assemblies. Fourier transform infrared (FT‐IR) measurement of the fibrous assembly showed formation of homogeneous hydrogen bonds among amide groups, also supporting the molecular stacking of cyclic β‐peptides. Straight nanofibers with uniform diameter were also uniquely obtained. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号