共查询到20条相似文献,搜索用时 15 毫秒
1.
Manoj Tyagi Benjamin A. Shoemaker Stephen H. Bryant Anna R. Panchenko 《Protein science : a publication of the Protein Society》2009,18(8):1674-1683
Cellular processes are highly interconnected and many proteins are shared in different pathways. Some of these shared proteins or protein families may interact with diverse partners using the same interface regions; such multibinding proteins are the subject of our study. The main goal of our study is to attempt to decipher the mechanisms of specific molecular recognition of multiple diverse partners by promiscuous protein regions. To address this, we attempt to analyze the physicochemical properties of multibinding interfaces and highlight the major mechanisms of functional switches realized through multibinding. We find that only 5% of protein families in the structure database have multibinding interfaces, and multibinding interfaces do not show any higher sequence conservation compared with the background interface sites. We highlight several important functional mechanisms utilized by multibinding families. (a) Overlap between different functional pathways can be prevented by the switches involving nearby residues of the same interfacial region. (b) Interfaces can be reused in pathways where the substrate should be passed from one protein to another sequentially. (c) The same protein family can develop different specificities toward different binding partners reusing the same interface; and finally, (d) inhibitors can attach to substrate binding sites as substrate mimicry and thereby prevent substrate binding. 相似文献
2.
3.
Alberto Meseguer Lluis Dominguez Patricia M. Bota Joaquim Aguirre‐Plans Jaume Bonet Narcis Fernandez‐Fuentes Baldo Oliva 《Protein science : a publication of the Protein Society》2020,29(10):2112-2130
Protein–protein interactions (PPIs) in all the molecular aspects that take place both inside and outside cells. However, determining experimentally the structure and affinity of PPIs is expensive and time consuming. Therefore, the development of computational tools, as a complement to experimental methods, is fundamental. Here, we present a computational suite: MODPIN, to model and predict the changes of binding affinity of PPIs. In this approach we use homology modeling to derive the structures of PPIs and score them using state‐of‐the‐art scoring functions. We explore the conformational space of PPIs by generating not a single structural model but a collection of structural models with different conformations based on several templates. We apply the approach to predict the changes in free energy upon mutations and splicing variants of large datasets of PPIs to statistically quantify the quality and accuracy of the predictions. As an example, we use MODPIN to study the effect of mutations in the interaction between colicin endonuclease 9 and colicin endonuclease 2 immune protein from Escherichia coli. Finally, we have compared our results with other state‐of‐art methods. 相似文献
4.
5.
Target structure‐based virtual screening, which employs protein‐small molecule docking to identify potential ligands, has been widely used in small‐molecule drug discovery. In the present study, we used a protein–protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all‐to‐all protein–protein docking run on a large dataset was performed. The three‐dimensional rigid docking program SDOCK was used to examine protein–protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z‐score, and convergency of the low‐score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all‐to‐all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor‐α (TNFα), which is a well‐known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top‐ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein–protein docking for the discovery of novel binding proteins for specific protein targets. Proteins 2014; 82:2472–2482. © 2014 Wiley Periodicals, Inc. 相似文献
6.
Mark Nicholas Wass Carles Pons Florencio Pazos Alfonso Valencia 《Molecular systems biology》2011,7(1)
Deciphering the whole network of protein interactions for a given proteome (‘interactome’) is the goal of many experimental and computational efforts in Systems Biology. Separately the prediction of the structure of protein complexes by docking methods is a well‐established scientific area. To date, docking programs have not been used to predict interaction partners. We provide a proof of principle for such an approach. Using a set of protein complexes representing known interactors in their unbound form, we show that a standard docking program can distinguish the true interactors from a background of 922 non‐redundant potential interactors. We additionally show that true interactions can be distinguished from non‐likely interacting proteins within the same structural family. Our approach may be put in the context of the proposed ‘funnel‐energy model’; the docking algorithm may not find the native complex, but it distinguishes binding partners because of the higher probability of favourable models compared with a collection of non‐binders. The potential exists to develop this proof of principle into new approaches for predicting interaction partners and reconstructing biological networks. 相似文献
7.
Cells are interactive living systems where proteins movements, interactions and regulation are substantially free from centralized management. How protein physico‐chemical and geometrical properties determine who interact with whom remains far from fully understood. We show that characterizing how a protein behaves with many potential interactors in a complete cross‐docking study leads to a sharp identification of its cellular/true/native partner(s). We define a sociability index, or S‐index, reflecting whether a protein likes or not to pair with other proteins. Formally, we propose a suitable normalization function that accounts for protein sociability and we combine it with a simple interface‐based (ranking) score to discriminate partners from non‐interactors. We show that sociability is an important factor and that the normalization permits to reach a much higher discriminative power than shape complementarity docking scores. The social effect is also observed with more sophisticated docking algorithms. Docking conformations are evaluated using experimental binding sites. These latter approximate in the best possible way binding sites predictions, which have reached high accuracy in recent years. This makes our analysis helpful for a global understanding of partner identification and for suggesting discriminating strategies. These results contradict previous findings claiming the partner identification problem being solvable solely with geometrical docking. Proteins 2016; 85:137–154. © 2016 Wiley Periodicals, Inc. 相似文献
8.
9.
Li C. Xue Rafael A. Jordan EL‐Manzalawy Yasser Drena Dobbs Vasant Honavar 《Proteins》2014,82(2):250-267
Selecting near‐native conformations from the immense number of conformations generated by docking programs remains a major challenge in molecular docking. We introduce DockRank, a novel approach to scoring docked conformations based on the degree to which the interface residues of the docked conformation match a set of predicted interface residues. DockRank uses interface residues predicted by partner‐specific sequence homology‐based protein–protein interface predictor (PS‐HomPPI), which predicts the interface residues of a query protein with a specific interaction partner. We compared the performance of DockRank with several state‐of‐the‐art docking scoring functions using Success Rate (the percentage of cases that have at least one near‐native conformation among the top m conformations) and Hit Rate (the percentage of near‐native conformations that are included among the top m conformations). In cases where it is possible to obtain partner‐specific (PS) interface predictions from PS‐HomPPI, DockRank consistently outperforms both (i) ZRank and IRAD, two state‐of‐the‐art energy‐based scoring functions (improving Success Rate by up to 4‐fold); and (ii) Variants of DockRank that use predicted interface residues obtained from several protein interface predictors that do not take into account the binding partner in making interface predictions (improving success rate by up to 39‐fold). The latter result underscores the importance of using partner‐specific interface residues in scoring docked conformations. We show that DockRank, when used to re‐rank the conformations returned by ClusPro, improves upon the original ClusPro rankings in terms of both Success Rate and Hit Rate. DockRank is available as a server at http://einstein.cs.iastate.edu/DockRank/ . Proteins 2014; 82:250–267. © 2013 Wiley Periodicals, Inc. 相似文献
10.
Yaqin Hou Haihua Quan Weiwei Xu Yongli Bao Yuxin Li Yuan Fu Shuxue Zou 《Protein science : a publication of the Protein Society》2013,22(8):1060-1070
A plethora of both experimental and computational methods have been proposed in the past 20 years for the identification of hot spots at a protein–protein interface. The experimental determination of a protein–protein complex followed by alanine scanning mutagenesis, though able to determine hot spots with much precision, is expensive and has no guarantee of success while the accuracy of the current computational methods for hot‐spot identification remains low. Here, we present a novel structure‐based computational approach that accurately determines hot spots through docking into a set of proteins homologous to only one of the two interacting partners of a compound capable of disrupting the protein–protein interaction (PPI). This approach has been applied to identify the hot spots of human activin receptor type II (ActRII) critical for its binding toward Cripto‐I. The subsequent experimental confirmation of the computationally identified hot spots portends a potentially accurate method for hot‐spot determination in silico given a compound capable of disrupting the PPI in question. The hot spots of human ActRII first reported here may well become the focal points for the design of small molecule drugs that target the PPI. The determination of their interface may have significant biological implications in that it suggests that Cripto‐I plays an important role in both activin and nodal signal pathways. 相似文献
11.
Protein structure docking is the process in which the quaternary structure of a protein complex is predicted from individual tertiary structures of the protein subunits. Protein docking is typically performed in two main steps. The subunits are first docked while keeping them rigid to form the complex, which is then followed by structure refinement. Structure refinement is crucial for a practical use of computational protein docking models, as it is aimed for correcting conformations of interacting residues and atoms at the interface. Here, we benchmarked the performance of eight existing protein structure refinement methods in refinement of protein complex models. We show that the fraction of native contacts between subunits is by far the most straightforward metric to improve. However, backbone dependent metrics, based on the Root Mean Square Deviation proved more difficult to improve via refinement. 相似文献
12.
Protein‐protein interactions control a large range of biological processes and their identification is essential to understand the underlying biological mechanisms. To complement experimental approaches, in silico methods are available to investigate protein‐protein interactions. Cross‐docking methods, in particular, can be used to predict protein binding sites. However, proteins can interact with numerous partners and can present multiple binding sites on their surface, which may alter the binding site prediction quality. We evaluate the binding site predictions obtained using complete cross‐docking simulations of 358 proteins with 2 different scoring schemes accounting for multiple binding sites. Despite overall good binding site prediction performances, 68 cases were still associated with very low prediction quality, presenting individual area under the specificity‐sensitivity ROC curve (AUC) values below the random AUC threshold of 0.5, since cross‐docking calculations can lead to the identification of alternate protein binding sites (that are different from the reference experimental sites). For the large majority of these proteins, we show that the predicted alternate binding sites correspond to interaction sites with hidden partners, that is, partners not included in the original cross‐docking dataset. Among those new partners, we find proteins, but also nucleic acid molecules. Finally, for proteins with multiple binding sites on their surface, we investigated the structural determinants associated with the binding sites the most targeted by the docking partners. 相似文献
13.
Tanggis Bohnuud Lingqi Luo Shoshana J. Wodak Alexandre M. J. J. Bonvin Zhiping Weng Sandor Vajda Ora Schueler‐Furman Dima Kozakov 《Proteins》2017,85(1):10-16
Protein docking procedures carry out the task of predicting the structure of a protein–protein complex starting from the known structures of the individual protein components. More often than not, however, the structure of one or both components is not known, but can be derived by homology modeling on the basis of known structures of related proteins deposited in the Protein Data Bank (PDB). Thus, the problem is to develop methods that optimally integrate homology modeling and docking with the goal of predicting the structure of a complex directly from the amino acid sequences of its component proteins. One possibility is to use the best available homology modeling and docking methods. However, the models built for the individual subunits often differ to a significant degree from the bound conformation in the complex, often much more so than the differences observed between free and bound structures of the same protein, and therefore additional conformational adjustments, both at the backbone and side chain levels need to be modeled to achieve an accurate docking prediction. In particular, even homology models of overall good accuracy frequently include localized errors that unfavorably impact docking results. The predicted reliability of the different regions in the model can also serve as a useful input for the docking calculations. Here we present a benchmark dataset that should help to explore and solve combined modeling and docking problems. This dataset comprises a subset of the experimentally solved ‘target’ complexes from the widely used Docking Benchmark from the Weng Lab (excluding antibody–antigen complexes). This subset is extended to include the structures from the PDB related to those of the individual components of each complex, and hence represent potential templates for investigating and benchmarking integrated homology modeling and docking approaches. Template sets can be dynamically customized by specifying ranges in sequence similarity and in PDB release dates, or using other filtering options, such as excluding sets of specific structures from the template list. Multiple sequence alignments, as well as structural alignments of the templates to their corresponding subunits in the target are also provided. The resource is accessible online or can be downloaded at http://cluspro.org/benchmark , and is updated on a weekly basis in synchrony with new PDB releases. Proteins 2016; 85:10–16. © 2016 Wiley Periodicals, Inc. 相似文献
14.
We present an updated version of the protein–RNA docking benchmark, which we first published four years back. The non‐redundant protein–RNA docking benchmark version 2.0 consists of 126 test cases, a threefold increase in number compared to its previous version. The present version consists of 21 unbound–unbound cases, of which, in 12 cases, the unbound RNAs are taken from another complex. It also consists of 95 unbound–bound cases where only the protein is available in the unbound state. Besides, we introduce 10 new bound–unbound cases where only the RNA is found in the unbound state. Based on the degree of conformational change of the interface residues upon complex formation the benchmark is classified into 72 rigid‐body cases, 25 semiflexible cases and 19 full flexible cases. It also covers a wide range of conformational flexibility including small side chain movement to large domain swapping in protein structures as well as flipping and restacking in RNA bases. This benchmark should provide the docking community with more test cases for evaluating rigid‐body as well as flexible docking algorithms. Besides, it will also facilitate the development of new algorithms that require large number of training set. The protein–RNA docking benchmark version 2.0 can be freely downloaded from http://www.csb.iitkgp.ernet.in/applications/PRDBv2 . Proteins 2017; 85:256–267. © 2016 Wiley Periodicals, Inc. 相似文献
15.
In order to generate protein assemblies with a desired function, the rational design of protein–protein binding interfaces is of significant interest. Approaches based on random mutagenesis or directed evolution may involve complex experimental selection procedures. Also, molecular modeling approaches to design entirely new proteins and interactions with partner molecules can involve large computational efforts and screening steps. In order to simplify at least the initial effort for designing a putative binding interface between two proteins the Match_Motif approach has been developed. It employs the large collection of known protein–protein complex structures to suggest interface modifications that may lead to improved binding for a desired input interaction geometry. The approach extracts interaction motifs based on the backbone structure of short (four residues) segments and the relative arrangement with respect to short segments on the partner protein. The interaction geometry is used to search through a database of such motifs in known stable bound complexes. All matches are rapidly identified (within a few seconds) and collected and can be used to guide changes in the interface that may lead to improved binding. In the output, an alternative interface structure is also proposed based on the frequency of occurrence of side chains at a given interface position in all matches and based on sterical considerations. Applications of the procedure to known complex structures and alternative arrangements are presented and discussed. The program, data files, and example applications can be downloaded from https://www.groups.ph.tum.de/t38/downloads/. 相似文献
16.
Mutations at protein–protein recognition sites alter binding strength by altering the chemical nature of the interacting surfaces. We present a simple surface energy model, parameterized with empirical values, yielding mean energies of ?48 cal mol?1 Å?2 for interactions between hydrophobic surfaces, ?51 to ?80 cal mol?1 Å?2 for surfaces of complementary charge, and 66–83 cal mol?1 Å?2 for electrostatically repelling surfaces, relative to the aqueous phase. This places the mean energy of hydrophobic surface burial at ?24 cal mol?1 Å?2. Despite neglecting configurational entropy and intramolecular changes, the model correlates with empirical binding free energies of a functionally diverse set of rigid‐body interactions (r = 0.66). When used to rerank docking poses, it can place near‐native solutions in the top 10 for 37% of the complexes evaluated, and 82% in the top 100. The method shows that hydrophobic burial is the driving force for protein association, accounting for 50–95% of the cohesive energy. The model is available open‐source from http://life.bsc.es/pid/web/surface_energy/ and via the CCharpPPI web server http://life.bsc.es/pid/ccharppi/ . Proteins 2015; 83:640–650. © 2015 Wiley Periodicals, Inc. 相似文献
17.
Samit Kumar Dutta Pedro Serrano Michael Geralt Herbert L. Axelrod Qingping Xu Scott A. Lesley Adam Godzik Ashley M. Deacon Marc‐André Elsliger Ian A. Wilson Kurt Wüthrich 《Protein science : a publication of the Protein Society》2015,24(10):1600-1608
Flavodoxins in combination with the flavin mononucleotide (FMN) cofactor play important roles for electron transport in prokaryotes. Here, novel insights into the FMN‐binding mechanism to flavodoxins‐4 were obtained from the NMR structures of the apo‐protein from Lactobacillus acidophilus (YP_193882.1) and comparison of its complex with FMN. Extensive reversible conformational changes were observed upon FMN binding and release. The NMR structure of the FMN complex is in agreement with the crystal structure (PDB ID: 3EDO ) and exhibits the characteristic flavodoxin fold, with a central five‐stranded parallel β–sheet and five α‐helices forming an α/β‐sandwich architecture. The structure differs from other flavoproteins in that helix α2 is oriented perpendicular to the β‐sheet and covers the FMN‐binding site. This helix reversibly unfolds upon removal of the FMN ligand, which represents a unique structural rearrangement among flavodoxins. 相似文献
18.
Protein-protein interfaces are regions between 2 polypeptide chains that are not covalently connected. Here, we have created a nonredundant interface data set generated from all 2-chain interfaces in the Protein Data Bank. This data set is unique, since it contains clusters of interfaces with similar shapes and spatial organization of chemical functional groups. The data set allows statistical investigation of similar interfaces, as well as the identification and analysis of the chemical forces that account for the protein-protein associations. Toward this goal, we have developed I2I-SiteEngine (Interface-to-Interface SiteEngine) [Data set available at http://bioinfo3d.cs.tau.ac.il/Interfaces; Web server: http://bioinfo3d.cs.tau.ac.il/I2I-SiteEngine]. The algorithm recognizes similarities between protein-protein binding surfaces. I2I-SiteEngine is independent of the sequence or the fold of the proteins that comprise the interfaces. In addition to geometry, the method takes into account both the backbone and the side-chain physicochemical properties of the interacting atom groups. Its high efficiency makes it suitable for large-scale database searches and classifications. Below, we briefly describe the I2I-SiteEngine method. We focus on the classification process and the obtained nonredundant protein-protein interface data set. In particular, we analyze the biological significance of the clusters and present examples which illustrate that given constellations of chemical groups in protein-protein binding sites may be preferred, and are observed in proteins with different structures and different functions. We expect that these would yield further information regarding the forces stabilizing protein-protein interactions. 相似文献
19.
Joël Janin 《Protein science : a publication of the Protein Society》2014,23(12):1813-1817
A minimal model of protein–protein binding affinity that takes into account only two structural features of the complex, the size of its interface, and the amplitude of the conformation change between the free and bound subunits, is tested on the 144 complexes of a structure‐affinity benchmark. It yields Kd values that are within two orders of magnitude of the experiment for 67% of the complexes, within three orders for 88%, and fails on 12%, which display either large conformation changes, or a very high or a low affinity. The minimal model lacks the specificity and accuracy needed to make useful affinity predictions, but it should help in assessing the added value of parameters used by more elaborate models, and set a baseline for evaluating their performances. 相似文献
20.
Protein–protein interactions (PPIs) are involved in diverse functions in a cell. To optimize functional roles of interactions, proteins interact with a spectrum of binding affinities. Interactions are conventionally classified into permanent and transient, where the former denotes tight binding between proteins that result in strong complexes, whereas the latter compose of relatively weak interactions that can dissociate after binding to regulate functional activity at specific time point. Knowing the type of interactions has significant implications for understanding the nature and function of PPIs. In this study, we constructed amino acid substitution models that capture mutation patterns at permanent and transient type of protein interfaces, which were found to be different with statistical significance. Using the substitution models, we developed a novel computational method that predicts permanent and transient protein binding interfaces (PBIs) in protein surfaces. Without knowledge of the interacting partner, the method uses a single query protein structure and a multiple sequence alignment of the sequence family. Using a large dataset of permanent and transient proteins, we show that our method, BindML+, performs very well in protein interface classification. A very high area under the curve (AUC) value of 0.957 was observed when predicted protein binding sites were classified. Remarkably, near prefect accuracy was achieved with an AUC of 0.991 when actual binding sites were classified. The developed method will be also useful for protein design of permanent and transient PBIs. © Proteins 2013. © 2012 Wiley Periodicals, Inc. 相似文献