首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modern manufacturing systems are increasingly required to be flexible and adaptable to changing market demands, which adds to their structural and operational complexity. One of the major challenges at the early design stages is to select a manufacturing system configuration that both satisfies the production functional requirements and is easy to operate and manage. A new metric for assessing the structural complexity of manufacturing system configurations is presented in this paper. The proposed complexity metric incorporates the quantity of information using an entropy approach. It accounts for the complexity inherent in the various modules in the manufacturing system through the use of an index derived from a newly developed manufacturing systems classification code. The code captures the effect of various component types and technologies used in a manufacturing system on the system’s structural complexity. The presented metric would be helpful in selecting the least complex manufacturing system configuration that meets the requirements. An engine cylinder head production system is used to illustrate the application of the proposed methodology in comparing feasible but different manufacturing system configurations capable of producing the cylinder head based on their structurally inherent complexity.  相似文献   

2.
In a globally competitive market for products, manufacturers are faced with an increasing need to improve their flexibility, reliability, and responsiveness to meet the demands of their customers. Reconfigurable manufacturing systems (RMS) have become an important manufacturing paradigm, because they broadly encompass the ability to react efficiently to this environment by providing the exact capacity and functionality needed when needed. This paper studies how such new systems can manage their capacity scalability planning in a cost effective manner. An approach for modeling capacity scalability planning is proposed. The development of the model is based on set theory and the regeneration point theorem which is mapped to the reconfigurable manufacturing paradigm as the capacity scalability points of that system. The cost function of the model incorporates both the physical capacity cost based on capacity size and costs associated with the reconfiguration process which referred to as the scalability penalty cost and scalability effort cost. A dynamic programming (DP) approach is manipulated for the development of optimal capacity scalability plans. The effect of the reconfiguration costs on the capacity scalability planning horizon and overall cost is investigated. The results showed the relation between deciding on the optimal capacity scalability planning horizon and the different reconfiguration costs. Results also highlighted the fact that decreasing costs of reconfiguration will lead to cost effective implementation of reconfigurable manufacturing systems.  相似文献   

3.
The selection of Reconfigurable Manufacturing Systems (RMS) configurations that include arrangement of machines, equipment selection, and assignment of operations, has a significant impact on their performance. This paper reviews the relevant literature and highlights the gaps that exist in this area of research. A novel “RMS Configuration Selection Approach” is introduced. It consists of two phases; the first deals with the selection of the near-optimal alternative configurations for each possible demand scenario over the considered configuration periods. It uses a constraint satisfaction procedure and powerful meta-heuristics, real-coded Genetic Algorithms (GAs) and Tabu Search (TS), for the continuous optimization of capital cost and system availability. The second phase utilizes integer-coded GAs and TS to determine the alternatives, from those produced in the first phase, that would optimize the degree of transition smoothness over the planning horizon. It uses a stochastic model of the level of reconfiguration smoothness (RS) across all the configuration periods in the planning horizon according to the anticipated demand scenarios. This model is based on a RS metric and a reconfiguration planning procedure that guide the development of execution plans for reconfiguration. The developed approach is demonstrated and validated using a case study. It was shown that it is possible to provide the manufacturing capacity and functionality needed when needed while minimizing the reconfiguration effort. The proposed approach can provide decision support for management in selecting RMS configurations at the beginning of each configuration period.  相似文献   

4.
This paper develops and tests an efficient mixed integer programming model for capacitated lot sizing and scheduling with non-triangular and sequence-dependent setup times and costs incorporating all necessary features of setup carryover and overlapping on different machine configurations. The model’s formulation is based on the asymmetric travelling salesman problem and allows multiple lots of a product within a period. The model conserves the setup state when no product is being processed over successive periods, allows starting a setup in a period and ending it in the next period, permits ending a setup in a period and starting production in the next period(s), and enforces a minimum lot size over multiple periods. This new comprehensive model thus relaxes all limitations of physical separation between the periods. The model is first developed for a single machine and then extended to other machine configurations, including parallel machines and flexible flow lines. Computational tests demonstrate the flexibility and comprehensiveness of the proposed models.  相似文献   

5.
In this article we consider the problem of determining the minimum cost configuration (number of machines and pallets) for a flexible manufacturing system with the constraint of meeting a prespecified throughput, while simultaneously allocating the total workload among the machines (or groups of machines). Our procedure allows consideration of upper and lower bounds on the workload at each machine group. These bounds arise as a consequence of precedence constraints among the various operations and/or limitations on the number or combinations of operations that can be assigned to a machine because of constraints on tool slots or the space required to store assembly components. Earlier work on problems of this nature assumes that the workload allocation is given. For the single-machine-type problem we develop an efficient implicit enumeration procedure that uses fathoming rules to eliminate dominated configurations, and we present computational results. We discuss how this procedure can be used as a building block in solving the problem with multiple machine types.  相似文献   

6.
Production lead-time performance in flexible manufacturing systems is influenced by several factors which include: machine groupings, demand rates, machine processing rates, product batching, material handling system capacity, and so on. Hence, control of lead-time performance can be affected through the manipulation of one or more of these variables. In this article, we investigate the potential of batch sizing as a control variable for lead-time performance through the use of a queueing network model. We establish a functional relationship between the two variables, and incorporate the relationship in an optimization model to determine the optimal batch size(s) which minimizes the sum of annual work-in-process inventory and final inventory costs. The nonlinear batch sizing problem which results is solved by discrete optimization via marginal analysis. Results show that batch sizing can be a cheap and effective variable for controlling flexible manufacturing system throughput.  相似文献   

7.
Due to their increasing applicability in modern industry, flexible manufacturing systems (FMSs), their design, and their control have been studied extensively in the recent literature. One of the most important issues that has arisen in this context is the FMS scheduling problem. This article is concerned with a new model of an FMS system, motivated by the practical application that takes into account both machine and vehicle scheduling. For the case of a given machine schedule, a simple polynomial-time algorithm is presented that checks the feasibility of a vehicle schedule and constructs it whenever one exists. Then a dynamic programming approach to construct optimal machine and vehicle schedules is proposed. This technique results in a pseudopolynomialtime algorithm for a fixed number of machines.  相似文献   

8.
Brain-computer interface (BCI) systems are a promising means for restoring communication to patients suffering from “locked-in” syndrome. Research to improve system performance primarily focuses on means to overcome the low signal to noise ratio of electroencephalogric (EEG) recordings. However, the literature and methods are difficult to compare due to the array of evaluation metrics and assumptions underlying them, including that: 1) all characters are equally probable, 2) character selection is memoryless, and 3) errors occur completely at random. The standardization of evaluation metrics that more accurately reflect the amount of information contained in BCI language output is critical to make progress. We present a mutual information-based metric that incorporates prior information and a model of systematic errors. The parameters of a system used in one study were re-optimized, showing that the metric used in optimization significantly affects the parameter values chosen and the resulting system performance. The results of 11 BCI communication studies were then evaluated using different metrics, including those previously used in BCI literature and the newly advocated metric. Six studies'' results varied based on the metric used for evaluation and the proposed metric produced results that differed from those originally published in two of the studies. Standardizing metrics to accurately reflect the rate of information transmission is critical to properly evaluate and compare BCI communication systems and advance the field in an unbiased manner.  相似文献   

9.
Reconfigurable Manufacturing System (RMS) is a new manufacturing systems paradigm that aims at achieving cost-effective and rapid system changes, as needed and when needed, by incorporating principles of modularity, integrability, flexibility, scalability, convertibility, and diagnosability. RMS promises customized flexibility on demand in a short time, while Flexible Manufacturing Systems (FMSs) provides generalized flexibility designed for the anticipated variations and built-in a priori. The characteristics of the two paradigms are outlined and compared. The concept of manufacturing system life cycle is presented. The main types of flexibility in manufacturing systems are discussed and contrasted with the various reconfiguration aspects including hard (physical) and soft (logical) reconfiguration. The types of changeability and transformability of manufacturing systems, their components as well as factories, are presented along with their enablers and compared with flexibility and reconfigurability. The importance of having harmonized human-machine manufacturing systems is highlighted and the role of people in the various manufacturing paradigms and how this varies in pursuit of productivity are illustrated. Finally, the industrial and research challenges presented by these manufacturing paradigms are discussed.  相似文献   

10.
The complexity and diversity of manufacturing software and the need to adapt this software to the frequent changes in the production requirements necessitate the use of a systematic approach to developing this software. The software life-cycle model (Royce, 1970) that consists of specifying the requirements of a software system, designing, implementing, testing, and evolving this software can be followed when developing large portions of manufacturing software. However, the presence of hardware devices in these systems and the high costs of acquiring and operating hardware devices further complicate the manufacturing software development process and require that the functionality of this software be extended to incorporate simulation and prototyping. This paper reviews recent methods for planning, scheduling, simulating, and monitoring the operation of manufacturing systems. A synopsis of the approaches to designing and implementing the real-time control software of these systems is presented. It is concluded that current methodologies support, in a very restricted sense, these planning, scheduling, and monitoring activities, and that enhanced performance can be achieved via an integrated approach.  相似文献   

11.
Short-term scheduling in flexible manufacturing systems (FMSs) is a difficult problem because of the complexities and dynamic behavior of FMSs. To solve this problem, a dispatching rule approach is widely used. In this approach, however, a single dispatching rule is usually assigned for all machines in a system during a given scheduling interval. In this paper, a mixed dispatching rule which can assign a different dispatching rule for each machine is proposed. A search algorithm which selects an appropriate mixed dispatching rule using predictions based on discrete event simulation is developed for this approach. The search algorithm for the mixed dispatching rule is described in detail. The effectiveness (in meeting performance criteria) of the mixed dispatching rule and the efficiency of the search algorithm relative to exhaustive search (complete enumeration) is demonstrated on an FMS model. The mixed dispatching rule approach performs up to 15.9% better than the conventional approach, and is 4% better on average. The statistical significance of the results is dicussed.  相似文献   

12.
Many gram-negative bacteria produce thin protein filaments, named pili, which extend beyond the confines of the outer membrane. The importance of these pili is illustrated by the fact that highly complex, multi-protein pilus-assembly machines have evolved, not once, but several times. Their many functions include motility, adhesion, secretion, and DNA transfer, all of which can contribute to the virulence of bacterial pathogens or to the spread of virulence factors by horizontal gene transfer. The medical importance has stimulated extensive biochemical and genetic studies but the assembly and function of pili remains an enigma. It is clear that progress in this field requires a more holistic approach where the entire molecular apparatus that forms the pilus is studied as a system. In recent years systems biology approaches have started to complement classical studies of pili and their assembly. Moreover, continued progress in structural biology is building a picture of the components that make up the assembly machine. However, the complexity and multiple-membrane spanning nature of these secretion systems pose formidable technical challenges, and it will require a concerted effort before we can create comprehensive and predictive models of these remarkable molecular machines.  相似文献   

13.
Many gram-negative bacteria produce thin protein filaments, named pili, which extend beyond the confines of the outer membrane. The importance of these pili is illustrated by the fact that highly complex, multi-protein pilus-assembly machines have evolved, not once, but several times. Their many functions include motility, adhesion, secretion, and DNA transfer, all of which can contribute to the virulence of bacterial pathogens or to the spread of virulence factors by horizontal gene transfer. The medical importance has stimulated extensive biochemical and genetic studies but the assembly and function of pili remains an enigma. It is clear that progress in this field requires a more holistic approach where the entire molecular apparatus that forms the pilus is studied as a system. In recent years systems biology approaches have started to complement classical studies of pili and their assembly. Moreover, continued progress in structural biology is building a picture of the components that make up the assembly machine. However, the complexity and multiple-membrane spanning nature of these secretion systems pose formidable technical challenges, and it will require a concerted effort before we can create comprehensive and predictive models of these remarkable molecular machines.  相似文献   

14.
System setup problems in flexible manufacturing systems deal with short-term planning problems such as part type selection, machine grouping, operation assignment, tooling, fixture and pallet allocation, and routing. In this article, we consider three of the subproblems: part type selection, machine grouping, and loading. We suggest a heuristic approach to solve the subproblems consistently with the objective of maximizing the expected production rate. The proposed procedure includes routines to generate all possible machine grouping alternatives for a given set of machines, to obtain optimal target workloads for each grouping alternative, and to allocate operations and tools to machine groups. These routines are executed iteratively until a good solution to the system setup problem is obtained. Computational experience is reported.  相似文献   

15.
Decades of research to build programmable intelligent machines have demonstrated limited utility in complex, real-world environments. Comparing their performance with biological systems, these machines are less efficient by a factor of 1 million1 billion in complex, real-world environments. The Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) program is a multifaceted Defense Advanced Research Projects Agency (DARPA) project that seeks to break the programmable machine paradigm and define a new path for creating useful, intelligent machines. Since real-world systems exhibit infinite combinatorial complexity, electronic neuromorphic machine technology would be preferable in a host of applications, but useful and practical implementations still do not exist. HRL Laboratories LLC has embarked on addressing these challenges, and, in this article, we provide an overview of our project and progress made thus far.  相似文献   

16.
We present an efficient and sensitive hybrid algorithm for local structure alignment of a pair of 3D protein structures. The hybrid algorithm employs both the URMS (unit-vector root mean squared) metric and the RMS metric. Our algorithm searches efficiently the transformation space using a fast screening protocol; initial transformations (rotations) are identified using the URMS algorithm. These rotations are then clustered and an RMS-based dynamic programming algorithm is invoked to find the maximal local similarities for representative rotations of the clusters. Statistical significance of the alignments is estimated using a model that accounts for both the score of the match and the RMS. We tested our algorithm over the SCOP classification of protein domains. Our algorithm performs very well; its main advantages are that (1) it combines the advantages of the RMS and the URMS metrics, (2) it searches extensively the transformation space, (3) it detects complex similarities and structural repeats, and (4) its results are symmetric. The software is available for download at biozon.org/ftp/software/urms/.  相似文献   

17.
In production environments, such as Flexible Manufacturing Systems (FMSs), the schedule can be disturbed by the occurrence of unplanned events. Machines stop for major failures, maintenance, tool changes due to wear, or tool reassignments. The rescheduling process, however, can be costly. In this study, a dynamic measure of flexibility which helps to determine an appropriate time for rescheduling an FMS has been defined and investigated. Flexibility is defined as a function of Capability and Capacity. Accordingly, two metrics have been developed to monitor the capability and capacity efficiency of each machine in the system for responding to the dynamic system status. The value of each metric falls between 0 and 1 at all times. Higher values in the capability metric mean better machine selection and part distribution strategies among the machines. Higher values for the capacity metric mean higher machine utilization in the production plan. Based on the interaction between the metrics and their respective behavior in the system, four states have been identified and characterized. Simulations of various scenarios can be used to demonstrate the use of these metrics for monitoring FMS operations and determining appropriate times for rescheduling and tool reassignment.  相似文献   

18.
This paper presents a model for assessing different capacity scalability policies in Reconfigurable Manufacturing System (RMS) for different changing demand scenarios. The novelty of this approach is two fold: (1) it is the first attempt to explore different capacity scalability policies in RMS based on multiple performance measures, mainly scaling rate, Work In Process level, inventory level and backlog level; and (2) the dynamic scalability process in RMS is modeled for the first time using System Dynamics. Different policies for capacity scalability for various demand scenarios were assessed. Numerical simulation results obtained using the developed capacity scalability model showed that the best capacity scalability policy to be adopted for RMS is dependent on the anticipated demand pattern as well as the various manufacturing objectives. The presented assessment results will help the capacity scalability planners better decide the different tradeoffs between the competing strategic and operational objectives of the manufacturing enterprise, before setting the suitable capacity scalability plan parameters.  相似文献   

19.
Although extensive research has been conducted to solve design and operational problems of automated manufacturing systems, many of the problems still remain unsolved. This article investigates the scheduling problems of flexible manufacturing systems (FMSs). Specifically, the relative performances of machine and automated guided vehicle (AGV) scheduling rules are analyzed against various due-date criteria. First, the relevant literature is briefly reviewed, and then the rules are tested under different experimental conditions by using a simulation model of an FMS. The sensitivity to AGV workload, buffer capacity, and processing-time distribution is also investigated to assess the robustness of the scheduling rules.  相似文献   

20.
One of the most effective ways of minimizing supply/demand mismatch costs, with little increase in operational costs, is to deploy valuable resources in a flexible and timely manner to meet the realized demand. This notion of flexible processes has significantly changed operations in many manufacturing and service companies. For example, a flexible production system is now commonly used by automobile manufacturers, and a workforce cross-training system is now a common practice in many service industries. However, there is a trade-off between the level of flexibility available in the system and the associated complexity and operating costs. The challenge is to have the “right” level of flexibility to capture the bulk of the benefits from a fully flexible system, while controlling the increase in implementation costs. This paper reviews developments in process flexibility over the past decade. In particular, we focus on the phenomenon, often observed in practice, that a slight increase in process flexibility can lead to a significant improvement in system performance. This review explores the issues from three perspectives: design, evaluation, and applications. We also discuss how the concept of process flexibility has been deployed in several manufacturing and service systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号