首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Bacteria can survive antibiotic treatment without acquiring heritable antibiotic resistance. We investigated persistence to the fluoroquinolone ciprofloxacin in Escherichia coli. Our data show that a majority of persisters to ciprofloxacin were formed upon exposure to the antibiotic, in a manner dependent on the SOS gene network. These findings reveal an active and inducible mechanism of persister formation mediated by the SOS response, challenging the prevailing view that persisters are pre-existing and formed purely by stochastic means. SOS-induced persistence is a novel mechanism by which cells can counteract DNA damage and promote survival to fluoroquinolones. This unique survival mechanism may be an important factor influencing the outcome of antibiotic therapy in vivo.  相似文献   

2.
Persister cells (persisters) are transiently tolerant to antibiotics and usually constitute a small part of bacterial populations. Persisters remain dormant but are able to re-grow after antibiotic treatment. In this study we found that the frequency of persisters correlated to the level of protein aggregates accumulated in E. coli stationary-phase cultures. When 3-(N-morpholino) propanesulfonic acid or an osmolyte (trehalose, betaine, glycerol or glucose) were added to the growth medium at low concentrations, proteins were prevented from aggregation and persister formation was inhibited. On the other hand, acetate or high concentrations of osmolytes enhanced protein aggregation and the generation of persisters. We demonstrated that in the E. coli stationary-phase cultures supplemented with MOPS or a selected osmolyte, the level of protein aggregates and persister frequency were not correlated with such physiological parameters as the extent of protein oxidation, culturability, ATP level or membrane integrity. The results described here may help to understand the mechanisms underlying persister formation.  相似文献   

3.
Bacteria can be refractory to antibiotics due to a sub-population of dormant cells, called persisters that are highly tolerant to antibiotic exposure. The low frequency and transience of the antibiotic tolerant “persister” trait has complicated elucidation of the mechanism that controls antibiotic tolerance. In this study, we show that 2’ Amino-acetophenone (2-AA), a poorly studied but diagnostically important small, volatile molecule produced by the recalcitrant gram-negative human pathogen Pseudomonas aeruginosa, promotes antibiotic tolerance in response to quorum-sensing (QS) signaling. Our results show that 2-AA mediated persister cell accumulation occurs via alteration of the expression of genes involved in the translational capacity of the cell, including almost all ribosomal protein genes and other translation-related factors. That 2-AA promotes persisters formation also in other emerging multi-drug resistant pathogens, including the non 2-AA producer Acinetobacter baumannii implies that 2-AA may play an important role in the ability of gram-negative bacteria to tolerate antibiotic treatments in polymicrobial infections. Given that the synthesis, excretion and uptake of QS small molecules is a common hallmark of prokaryotes, together with the fact that the translational machinery is highly conserved, we posit that modulation of the translational capacity of the cell via QS molecules, may be a general, widely distributed mechanism that promotes antibiotic tolerance among prokaryotes.  相似文献   

4.
Persisters are a small subpopulation of bacterial cells that are dormant and extremely tolerant to antibiotics. The intrinsic antibiotic tolerance of persisters also facilitates the development of multidrug resistance through acquired mechanisms based on drug resistance genes. In this study, we demonstrate that (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one (BF8) can reduce persistence during Escherichia coli growth and revert the antibiotic tolerance of its persister cells. The effects of BF8 were more profound when the pH was increased from 6 to 8.5. Although BF8 is a quorum sensing (QS) inhibitor, similar effects were observed for the wild-type E. coli RP437 and its ΔluxS mutant, suggesting that these effects did not occur solely through inhibition of AI-2-mediated QS. In addition to its effects on planktonic persisters, BF8 was also found to disperse RP437 biofilms and to render associated cells more sensitive to ofloxacin. At the doses that are effective against E. coli persister cells, BF8 appeared to be safe to the tested normal mammalian cells in vitro and exhibited no long-term cytotoxicity to normal mouse tissues in vivo. These findings broadened the activities of brominated furanones and shed new light on persister control.  相似文献   

5.
Bacterial populations produce persisters, cells that neither grow nor die in the presence of bactericidal agents, and thus exhibit multidrug tolerance (MDT). The mechanisms of MDT and the nature of persisters have remained elusive. Our previous research has shown that persisters are largely responsible for the recalcitrance of biofilm infections. A general method for isolating persisters was developed, based on lysis of regular cells by ampicillin. A gene expression profile of persisters contained toxin-antitoxin (TA) modules and other genes that can block important cellular functions such as translation. Bactericidal antibiotics kill cells by corrupting the target function (for example, aminoglycosides interrupt translation, producing toxic peptides). We reasoned that inhibition of translation will lead to a shutdown of cellular functions, preventing antibiotics from corrupting their targets, giving rise to MDT persister cells. Overproduction of the RelE toxin, an inhibitor of translation, caused a sharp increase in persisters. Functional expression of a putative HipA toxin also increased persisters, while deletion of the hipBA module caused a sharp decrease in persisters in both stationary and biofilm populations. HipA is thus the first validated persister-MDT gene. We suggest that random fluctuation in the levels of MDT proteins leads to the formation of rare persister cells. The function of these specialized dormant cells is to ensure the survival of the population in the presence of lethal factors.  相似文献   

6.
Listeria monocytogenes can cause the serious infection listeriosis, which despite antibiotic treatment has a high mortality. Understanding the response of L. monocytogenes to antibiotic exposure is therefore important to ensure treatment success. Some bacteria survive antibiotic treatment by formation of persisters, which are a dormant antibiotic-tolerant subpopulation. The purpose of this study was to determine whether L. monocytogenes can form persisters and how bacterial physiology affects the number of persisters in the population. A stationary-phase culture of L. monocytogenes was adjusted to 108 CFU ml−1, and 103 to 104 CFU ml−1 survived 72-h treatment with 100 μg of norfloxacin ml−1, indicating a persister subpopulation. This survival was not caused by antibiotic resistance as regrown persisters were as sensitive to norfloxacin as the parental strain. Higher numbers of persisters (105 to 106) were surviving when older stationary phase or surface-associated cells were treated with 100 μg of norfloxacin ml−1. The number of persisters was similar when a ΔsigB mutant and the wild type were treated with norfloxacin, but the killing rate was higher in the ΔsigB mutant. Dormant norfloxacin persisters could be activated by the addition of fermentable carbohydrates and subsequently killed by gentamicin; however, a stable surviving subpopulation of 103 CFU ml−1 remained. Nitrofurantoin that has a growth-independent mode of action was effective against both growing and dormant cells, suggesting that eradication of persisters is possible. Our study adds L. monocytogenes to the list of bacterial species capable of surviving bactericidal antibiotics in a dormant stage, and this persister phenomenon should be borne in mind when developing treatment regimens.  相似文献   

7.
Persister cells are dormant variants of regular cells that are multidrug tolerant and have heterogeneous phenotypes; these cells are a potential threat to hosts because they can escape the immune system or antibiotic treatments and reconstitute infectious. Skin ulcer syndrome (SUS) frequently occurs in the sea cucumber (Apostichopus japonicus), and Vibrio splendidus is one of the main bacterial pathogens of SUS. This study found that the active cells of V. splendidus became persister cells more readily in the presence of A. japonicus coelomic fluids. We showed that the A. japonicus coelomic fluids plus antibiotics induce 100-fold more persister cells in V. splendidus compared with antibiotics alone via nine sets of experiments including assays for antibiotic resistance, metabolic activity, and single-cell phenotypes. Furthermore, the coelomic fluids-induced persister cells showed similar phenotypes as the antibiotic-induced persister cells. Further investigation showed that guanosine pentaphosphate/tetraphosphate (henceforth ppGpp) and SOS response pathway involved in the formation of persister cells as determined using real-time RT-PCR. In addition, single-cell observations showed that, similar to the antibiotic-induced V. splendidus persister cells, the coelomic fluids-induced persister cells have five resuscitation phenotypes: no growth, expansion, elongation, elongation and then division, and elongation followed by death/disappearance. In addition, dark foci formed in the majority of persister cells for both the antibiotic-induced and coelomic fluids-induced persister cells. Our results highlight that the pathogen V. splendidus might escape from the host immune system by entering the persister state during the process of infection due to exposure to coelomic fluids.  相似文献   

8.
Bacteria have evolved mechanisms that allow them to survive in the face of a variety of stresses including nutrient deprivation, antibiotic challenge and engulfment by predator cells. A switch to dormancy represents one strategy that reduces energy utilization and can render cells resistant to compounds that kill growing bacteria. These persister cells pose a problem during treatment of infections with antibiotics, and dormancy mechanisms may contribute to latent infections. Many bacteria encode toxin-antitoxin (TA) gene pairs that play an important role in dormancy and the formation of persisters. VapBC gene pairs comprise the largest of the Type II TA systems in bacteria and they produce a VapC ribonuclease toxin whose activity is inhibited by the VapB antitoxin. Despite the importance of VapBC TA pairs in dormancy and persister formation, little information exists on the structural features of VapC proteins required for their toxic function in vivo. Studies reported here identified 17 single mutations that disrupt the function of VapC1 from non-typeable H. influenzae in vivo. 3-D modeling suggests that side chains affected by many of these mutations sit near the active site of the toxin protein. Phylogenetic comparisons and secondary mutagenesis indicate that VapC1 toxicity requires an alternative active site motif found in many proteobacteria. Expression of the antitoxin VapB1 counteracts the activity of VapC1 mutants partially defective for toxicity, indicating that the antitoxin binds these mutant proteins in vivo. These findings identify critical chemical features required for the biological function of VapC toxins and PIN-domain proteins.  相似文献   

9.
Bacterial persister cells are a small population of dormant cells that are tolerant to essentially all antibiotics. Recently, we reported that a quorum sensing (QS) inhibitor, (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one (BF8), can revert antibiotic tolerance of Pseudomonas aeruginosa persister cells. To better understand this phenomenon, several synthetic brominated furanones with similar structures were compared for their activities in persister control and inhibition of acyl-homoserine lactone (AHL) mediated QS. The results show that some other furanones in addition to BF8 are also AHL QS inhibitors and can revert antibiotic tolerance of P. aeruginosa PAO1 persister cells. However, not all QS inhibiting BFs can revert persistence at growth non-inhibitory concentrations, suggesting that QS inhibition itself is not sufficient for persister control.  相似文献   

10.
Bacterial persisters are rare, phenotypically distinct cells that survive exposure to multiple antibiotics. Previous studies indicated that formation and maintenance of the persister phenotype are regulated by suppressing translation. To examine the mechanism of this translational suppression, we developed novel methodology to rapidly purify ribosome complexes from persister cells. We purified His‐tagged ribosomes from Escherichia coli cells that over‐expressed HipA protein, which induces persister formation, and were treated with ampicillin to remove antibiotic‐sensitive cells. We profiled ribosome complexes and analyzed the ribosomal RNA and protein components from these persister cells. Our results show that (i) ribosomes in persisters exist largely as inactive ribosomal subunits, (ii) rRNAs and tRNAs are mostly degraded and (iii) a small fraction of the ribosomes remain mostly intact, except for reduced amounts of seven ribosomal proteins. Our findings explain the basis for translational suppression in persisters and suggest how persisters survive exposure to multiple antibiotics.  相似文献   

11.
Persistent bacterial infections do not respond to current antibiotic treatments and thus present a great medical challenge. These conditions have been linked to the formation of dormant subpopulations of bacteria, known as persister cells, that are growth-arrested and highly tolerant to conventional antibiotics. Here, we report a new strategy of persister control and demonstrate that minocycline, an amphiphilic antibiotic that does not require active transport to penetrate bacterial membranes, is effective in killing Escherichia coli persister cells [by 70.8 ± 5.9% (0.53 log) at 100 μg/mL], while being ineffective in killing normal cells. Further mechanistic studies revealed that persister cells have reduced drug efflux and accumulate more minocycline than normal cells, leading to effective killing of this dormant subpopulation upon wake-up. Consistently, eravacycline, which also targets the ribosome but has a stronger binding affinity than minocycline, kills persister cells by 3 logs when treated at 100 μg/mL. In summary, the findings of this study reveal that while dormancy is a well-known cause of antibiotic tolerance, it also provides an Achilles’ heel for controlling persister cells by leveraging dormancy associated reduction of drug efflux.  相似文献   

12.
13.
Bacterial persister cells are considered a basis for chronic infections and relapse caused by bacterial pathogens. Persisters are phenotypic variants characterized by low metabolic activity and slow or no replication. This low metabolic state increases pathogen tolerance to antibiotics and host immune defenses that target actively growing cells. In this study we demonstrate that within a population of Salmonella enterica serotype Typhimurium, a small percentage of bacteria are reversibly tolerant to specific stressors that mimic the macrophage host environment. Numerous studies show that Toxin-Antitoxin (TA) systems contribute to persister states, based on toxin inhibition of bacterial metabolism or growth. To identify toxins that may promote a persister state in response to host-associated stressors, we analyzed the six TA loci specific to S. enterica serotypes that cause systemic infection in mammals, including five RelBE family members and one VapBC member. Deletion of TA loci increased or decreased tolerance depending on the stress conditions. Similarly, exogenous expression of toxins had mixed effects on bacterial survival in response to stress. In macrophages, S. Typhimurium induced expression of three of the toxins examined. These observations indicate that distinct toxin family members have protective capabilities for specific stressors but also suggest that TA loci have both positive and negative effects on tolerance.  相似文献   

14.
Like many other bacteria, Escherichia coli remain as tiny viable individuals named persisters after being exposed to an antibiotic. These persisters are believed to be phenotypic heterogeneous one rather than mutants, because their progenies are as susceptible to antibiotics as their ancestors. Recently, two persister-related genes (hipB/hipA) were confirmed to belong to a toxin-antitoxin (TA) module. Their control circuit was believed to be responsible for generation of the persister subpopulation. For the well-studied TA module, we build a simple genetic regulation model to explain the phenotypic heterogeneity. We find that a sole double-negative feedback loop is not enough to explain the phenotypic heterogeneity; the cooperation mechanisms in HipB and HipA are indispensable. Moreover, our model illustrates an important persister-related experimental phenomenon: the emergence of the persister depends on the growth rate in continuous culture.  相似文献   

15.
Bacterial survival strategies involve phenotypic diversity which is generated by regulatory factors and noisy expression of effector proteins. The question of how bacteria exploit regulatory RNAs to make decisions between phenotypes is central to a general understanding of these universal regulators. We investigated the TisB/IstR‐1 toxin‐antitoxin system of Escherichia coli to appreciate the role of the RNA antitoxin IstR‐1 in TisB‐dependent depolarization of the inner membrane and persister formation. Persisters are phenotypic variants that have become transiently drug‐tolerant by arresting growth. The RNA antitoxin IstR‐1 sets a threshold for TisB‐dependent depolarization under DNA‐damaging conditions, resulting in two sub‐populations: polarized and depolarized cells. Furthermore, our data indicate that an inhibitory 5′ UTR structure in the tisB mRNA serves as a regulatory RNA element that delays TisB translation to avoid inappropriate depolarization when DNA damage is low. Investigation of the persister sub‐population further revealed that both regulatory RNA elements affect persister levels as well as persistence time. This work provides an intriguing example of how bacteria exploit regulatory RNAs to control phenotypic heterogeneity.  相似文献   

16.
17.
Bacterial populations contain persisters, cells which survive exposure to bactericidal antibiotics and other lethal factors. Persisters do not have a genetic resistance mechanism, and their means to tolerate killing remain unknown. In exponentially growing populations of Escherichia coli the frequency of persister formation usually is 10−7 to 10−5. It has been shown that cells overexpressing either of the toxic proteins HipA and RelE, both members of the bacterial toxin-antitoxin (TA) modules, have the ability to form more persisters, suggesting a specific role for these toxins in the mechanism of persistence. However, here we show that cells expressing proteins that are unrelated to TA modules but which become toxic when ectopically expressed, chaperone DnaJ and protein PmrC of Salmonella enterica, also form 100- to 1,000-fold more persisters. Thus, persistence is linked not only to toxicity caused by expression of HipA or dedicated toxins but also to expression of other unrelated proteins.  相似文献   

18.

Background

Bacteria are well known to form dormant persister cells that are tolerant to most antibiotics. Such intrinsic tolerance also facilitates the development of multidrug resistance through acquired mechanisms. Thus persister cells are a promising target for developing more effective methods to control chronic infections and help prevent the development of multidrug-resistant bacteria. However, control of persister cells is still an unmet challenge.

Methodology/Principal Findings

We show in this report that (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one (BF8) can restore the antibiotic susceptibility of Pseudomonas aeruginosa PAO1 persister cells at growth non-inhibitory concentrations. Persister control by BF8 was found to be effective against both planktonic and biofilm cells of P. aeruginosa PAO1. Interestingly, although BF8 is an inhibitor of quorum sensing (QS) in Gram-negative bacteria, the data in this study suggest that the activities of BF8 to revert antibiotic tolerance of P. aeruginosa PAO1 persister cells is not through QS inhibition and may involve other targets.

Conclusion

BF8 can sensitize P. aeruginosa persister cells to antibiotics.  相似文献   

19.
High levels of antibiotic tolerance are a hallmark of bacterial biofilms. In contrast to well-characterized inherited antibiotic resistance, molecular mechanisms leading to reversible and transient antibiotic tolerance displayed by biofilm bacteria are still poorly understood. The physiological heterogeneity of biofilms influences the formation of transient specialized subpopulations that may be more tolerant to antibiotics. In this study, we used random transposon mutagenesis to identify biofilm-specific tolerant mutants normally exhibited by subpopulations located in specialized niches of heterogeneous biofilms. Using Escherichia coli as a model organism, we demonstrated, through identification of amino acid auxotroph mutants, that starved biofilms exhibited significantly greater tolerance towards fluoroquinolone ofloxacin than their planktonic counterparts. We demonstrated that the biofilm-associated tolerance to ofloxacin was fully dependent on a functional SOS response upon starvation to both amino acids and carbon source and partially dependent on the stringent response upon leucine starvation. However, the biofilm-specific ofloxacin increased tolerance did not involve any of the SOS-induced toxin–antitoxin systems previously associated with formation of highly tolerant persisters. We further demonstrated that ofloxacin tolerance was induced as a function of biofilm age, which was dependent on the SOS response. Our results therefore show that the SOS stress response induced in heterogeneous and nutrient-deprived biofilm microenvironments is a molecular mechanism leading to biofilm-specific high tolerance to the fluoroquinolone ofloxacin.  相似文献   

20.
滞留菌是一类处于低代谢休眠状态的抗生素耐受细菌亚群,能够在致死性压力应激后存活下来,是抗生素治疗失败和复发性感染的主要原因之一。毒素-抗毒素系统(toxin-antitoxin system, TA)作为压力应激模块普遍存在于各种细菌中,由稳定的毒素和不稳定但可以中和毒素的同源抗毒素组成。压力情况下,第二信使(p)ppGpp激活Lon,随后大多数II型TA系统被激活,诱导滞留菌形成。同样在(p)ppGpp存在的情况下,Obg刺激hokB转录,使毒素积累,抑制细菌DNA复制、转录、翻译等重要的生理过程,驱动细菌形成滞留菌。SOS反应是激活TA系统的另一个主要途径,解除了对tisB转录的抑制,使其在细胞内积累并插入细胞膜,破坏质子动力势,降低胞内ATP水平,诱使休眠和滞留菌形成。讨论TA系统介导滞留菌形成的机制有助于提出新型抗菌策略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号