首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
综述了当前在系统生物学研究领域中常用数学模型的建立和研究方法,介绍了通量平衡分析、基元通量模式、生化系统理论,以及代谢控制分析等模型的理论基础和发展背景,讨论了这些模型之间的联系、区别,以及适用范围,并总结了这些模型在分析代谢网络结构、优化代谢途径、指导菌种改进以提高琥珀酸、色氨酸、乙醇等重要化工品生产率和转化率中的实际应用。  相似文献   

4.
5.
Cancer research has focused on the identification of molecular differences between cancerous and healthy cells. The emerging picture is overwhelmingly complex. Molecules out of many parallel signal transduction pathways are involved. Their activities appear to be controlled by multiple factors. The action of regulatory circuits, cross-talk between pathways and the non-linear reaction kinetics of biochemical processes complicate the understanding and prediction of the outcome of intracellular signaling. In addition, interactions between tumor and other cell types give rise to a complex supra-cellular communication network. If cancer is such a complex system, how can one ever predict the effect of a mutation in a particular gene on a functionality of the entire system? And, how should one go about identifying drug targets? Here, we argue that one aspect is to recognize, where the essence resides, i.e. recognize cancer as a Systems Biology disease. Then, more cancer biologists could become systems biologists aiming to provide answers to some of the above systemic questions. To this aim, they should integrate the available knowledge stemming from quantitative experimental results through mathematical models. Models that have contributed to the understanding of complex biological systems are discussed. We show that the architecture of a signaling network is important for determining the site at which an oncologist should intervene. Finally, we discuss the possibility of applying network-based drug design to cancer treatment and how rationalized therapies, such as the application of kinase inhibitors, may benefit from Systems Biology.  相似文献   

6.
7.
In this paper is offered a possible class-based or self-assessment exercise in Molecular Biology. It is intended to resemble a student essay except that it contains fifty mistakes which the student has to identify and rectify. The corrections and possible discussion points are also included. Experience from using this exercise with polytechnic undergraduates has indicated that 30 minutes is a suitable time to allocate for correction of the essay, the remainder of the class period then being available for discussion of any queries or points raised during the exercise.  相似文献   

8.
9.
10.
Systems biology is today such a widespread discipline that it becomes difficult to propose a clear definition of what it really is. For some, it remains restricted to the genomic field. For many, it designates the integrated approach or the corpus of computational methods employed to handle the vast amount of biological or medical data and investigate the complexity of the living. Although defining systems biology might be difficult, on the other hand its purpose is clear: systems biology, with its emerging subfields systems medicine and systems pharmacology, clearly aims at making sense of complex observations/experimental and clinical datasets to improve our understanding of diseases and their treatments without putting aside the context in which they appear and develop. In this short review, we aim to specifically focus on these new subfields with the new theoretical tools and approaches that were developed in the context of cancer. Systems pharmacology and medicine now give hope for major improvements in cancer therapy, making personalized medicine closer to reality. As we will see, the current challenge is to be able to improve the clinical practice according to the paradigm shift of systems sciences.  相似文献   

11.
12.
系统生物学——生命科学的新领域   总被引:14,自引:0,他引:14  
系统生物学是继基因组学、蛋白质组学之后一门新兴的生物学交叉学科,代表21世纪生物学的未来.最近,系统生物学研究机构纷纷成立.在研究上,了解一个复杂的生物系统需要整合实验和计算方法.基因组学和蛋白质组学中的高通量方法为系统生物学发展提供了大量的数据.计算生物学通过数据处理、模型构建和理论分析,成为系统生物学发展的一个必不可缺、强有力的工具.在应用上,系统生物学代表新一代医药开发和疾病防治的方向.  相似文献   

13.
14.
Systems Biology has a mission that puts it at odds with traditional paradigms of physics and molecular biology, such as the simplicity requested by Occam’s razor and minimum energy/maximal efficiency. By referring to biochemical experiments on control and regulation, and on flux balancing in yeast, we show that these paradigms are inapt. Systems Biology does not quite converge with biology either: Although it certainly requires accurate ‘stamp collecting’, it discovers quantitative laws. Systems Biology is a science of its own, discovering own fundamental principles, some of which we identify here.  相似文献   

15.
16.
The long-term goal of connecting scales in biological simulation can be facilitated by scale-agnostic methods. We demonstrate that the weighted ensemble (WE) strategy, initially developed for molecular simulations, applies effectively to spatially resolved cell-scale simulations. The WE approach runs an ensemble of parallel trajectories with assigned weights and uses a statistical resampling strategy of replicating and pruning trajectories to focus computational effort on difficult-to-sample regions. The method can also generate unbiased estimates of non-equilibrium and equilibrium observables, sometimes with significantly less aggregate computing time than would be possible using standard parallelization. Here, we use WE to orchestrate particle-based kinetic Monte Carlo simulations, which include spatial geometry (e.g., of organelles, plasma membrane) and biochemical interactions among mobile molecular species. We study a series of models exhibiting spatial, temporal and biochemical complexity and show that although WE has important limitations, it can achieve performance significantly exceeding standard parallel simulation—by orders of magnitude for some observables.  相似文献   

17.
Computational neurobiology was born over half a century ago, and has since been consistently at the forefront of modelling in biology. The recent progress of computing power and distributed computing allows the building of models spanning several scales, from the synapse to the brain. Initially focused on electrical processes, the simulation of neuronal function now encompasses signalling pathways and ion diffusion. The flow of quantitative data generated by the "omics" approaches, alongside the progress of live imaging, allows the development of models that will also include gene regulatory networks, protein movements and cellular remodelling. A systems biology of brain functions and disorders can now be envisioned. As it did for the last half century, neuroscience can drive forward the field of systems biology.  相似文献   

18.
19.
We propose a network structure-based model for heterosis, and investigate it relying on metabolite profiles from Arabidopsis. A simple feed-forward two-layer network model (the Steinbuch matrix) is used in our conceptual approach. It allows for directly relating structural network properties with biological function. Interpreting heterosis as increased adaptability, our model predicts that the biological networks involved show increasing connectivity of regulatory interactions. A detailed analysis of metabolite profile data reveals that the increasing-connectivity prediction is true for graphical Gaussian models in our data from early development. This mirrors properties of observed heterotic Arabidopsis phenotypes. Furthermore, the model predicts a limit for increasing hybrid vigor with increasing heterozygosity—a known phenomenon in the literature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号