首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and Aims

The oriental forest ecosystem in Madagascar has been seriously impacted by fragmentation. The pattern of genetic diversity was analysed on a tree species, Dalbergia monticola, which plays an important economic role in Madagascar and is one of the many endangered tree species in the eastern forest.

Methods

Leaves from 546 individuals belonging to 18 small populations affected by different levels of fragmentation were genotyped using eight nuclear (nuc) and three chloroplast (cp) microsatellite markers.

Key Results

For nuclear microsatellites, allelic richness (R) and heterozygosity (He,nuc) differed between types of forest: R = 7·36 and R = 9·55, He,nuc = 0·64 and He,nuc = 0·80 in fragmented and non-fragmented forest, respectively, but the differences were not significant. Only the mean number of alleles (Na,nuc) and the fixation index FIS differed significantly: Na,nuc = 9·41 and Na,nuc = 13·18, FIS = 0·06 and FIS = 0·15 in fragmented and non-fragmented forests, respectively. For chloroplast microsatellites, estimated genetic diversity was higher in non-fragmented forest, but the difference was not significant. No recent bottleneck effect was detected for either population. Overall differentiation was low for nuclear microsatellites (FST,nuc = 0·08) and moderate for chloroplast microsatellites (FST,cp = 0·49). A clear relationship was observed between genetic and geographic distance (r = 0·42 P < 0·01 and r = 0·42 P = 0·03 for nuclear and chloroplast microsatellites, respectively), suggesting a pattern of isolation by distance. Analysis of population structure using the neighbor-joining method or Bayesian models separated southern populations from central and northern populations with nuclear microsatellites, and grouped the population according to regions with chloroplast microsatellites, but did not separate the fragmented populations.

Conclusions

Residual diversity and genetic structure of populations of D. monticola in Madagascar suggest a limited impact of fragmentation on molecular genetic parameters.  相似文献   

2.
Ellis RH  Hong TD 《Annals of botany》2006,97(5):785-791
Background and Aims The negative logarithmic relationship between orthodox seed longevity and moisture content in hermetic storage is subject to a low-moisture-content limit (mc), but is mc affected by temperature?• Methods Red clover (Trifolium pratense) and alfalfa (Medicago sativa) seeds were stored hermetically at 12 moisture contents (2–15 %) and five temperatures (–20, 30, 40, 50 and 65 °C) for up to 14·5 years, and loss in viability was estimated.• Key Results Viability did not change during 14·5 years hermetic storage at −20 °C with moisture contents from 2·2 to 14·9 % for red clover, or 2·0 to 12·0 % for alfalfa. Negative logarithmic relationships between longevity and moisture contents >mc were detected at 30–65 °C, with discontinuities at low moisture contents; mc varied between 4·0 and 5·4 % (red clover) or 4·2 and 5·5 % (alfalfa), depending upon storage temperature. Within the ranges investigated, a reduction in moisture content below mc at any one temperature had no effect on longevity. Estimates of mc were greater the cooler the temperature, the relationship (P < 0·01) being curvilinear. Above mc, the estimates of CH and CQ (i.e. the temperature term of the seed viability equation) did not differ (P > 0·10) between species, whereas those of KE and CW did (P < 0·001).• Conclusions The low-moisture-content limit to negative logarithmic relationships between seed longevity and moisture content in hermetic storage increased the cooler the storage temperature, by approx. 1·5 % over 35 °C (4·0–4·2 % at 65 °C to 5·4–5·5 % at 30–40 °C) in these species. Further reduction in moisture content was not damaging. The variation in mc implies greater sensitivity of longevity to temperature above, compared with below, mc. This was confirmed (P < 0·005).  相似文献   

3.

Background and Aims

Gene flow and genetic variability within and among alpine plant populations can be greatly influenced by the steep environmental gradients and heterogeneous topography of alpine landscapes. In this study, the effects are examined of natural isolation of alpine habitats on genetic diversity and geographic structure in populations of C. thyrsoides, a rare and isolated European Alpine monocarpic perennial with limited seed dispersal capacity.

Methods

Molecular diversity was analysed for 736 individuals from 32 populations in the Swiss Alps and adjacent Jura mountains using five polymorphic microsatellite loci. Pollen flow was estimated using pollen grain-sized fluorescent powder. In addition, individual-based Bayesian approaches were applied to examine population structure.

Key Results

High within-population genetic diversity (HE = 0·76) and a relatively low inbreeding coefficient (FIS = 0·022) were found. Genetic differentiation among populations measured with a standardized measure was considerable (GST = 0·53). A significant isolation-by-distance relationship was found (r = 0·62, P < 0·001) and a significant geographic sub-structure, coinciding with proposed postglacial migration patterns. Altitudinal location and size of populations did not influence molecular variation. Direct measures of pollen flow revealed that insect-mediated pollen dispersal was restricted to short distances within a population.

Conclusions

The natural isolation of suitable habitats for C. thyrsoides restricts gene flow among the populations as expected for a monocarpic species with very limited seed dispersal capacities. The observed high within-population genetic diversity in this rare monocarpic perennial is best explained by its outcrossing behaviour, long-lived individuals and overlapping generations. Despite the high within-population genetic diversity, the considerable genetic differentiation and the clear western–eastern differentiation in this species merits consideration in future conservation efforts.Key words: Alpine plant, Campanula thyrsoides, genetic diversity, gene flow, genetic differentiation, glacial history, GST, habitat isolation, microsatellites, monocarpy, SSR  相似文献   

4.

Background and Aims

Life form, mating system and seed dispersal are important adaptive traits of plants. In the first effort to characterize in detail the population genetic structure and dynamics of wild Medicago species in China, a population genetic study of two closely related Medicago species, M. lupulina and M. ruthenica, that are distinct in these traits, are reported. These species are valuable germplasm resources for the improvement of Medicago forage crops but are under threat of habitat destruction.

Methods

Three hundred and twenty-eight individuals from 16 populations of the annual species, M. lupulina, and 447 individuals from 15 populations of the perennial species, M. ruthenica, were studied using 15 and 17 microsatellite loci, respectively. Conventional and Bayesian-clustering analyses were utilized to estimate population genetic structure, mating system and gene flow.

Key Results

Genetic diversity of M. lupulina (mean HE = 0·246) was lower than that of M. ruthenica (mean HE = 0·677). Populations of M. lupulina were more highly differentiated (FST = 0·535) than those of M. ruthenica (FST = 0·130). For M. lupulina, 55·5 % of the genetic variation was partitioned among populations, whereas 76·6 % of the variation existed within populations of M. ruthenica. Based on the genetic data, the selfing rates of M. lupulina and M. ruthenica were estimated at 95·8 % and 29·5 %, respectively. The genetic differentiation among populations of both species was positively correlated with geographical distance.

Conclusions

The mating system differentiation estimated from the genetic data is consistent with floral morphology and observed pollinator visitation. There was a much higher historical gene flow in M. ruthenica than in M. lupulina, despite more effective seed dispersal mechanisms in M. lupulina. The population genetic structure and geographical distribution of the two Medicago species have been shaped by life form, mating systems and seed dispersal mechanisms.Key words: Medicago lupulina, Medicago ruthenica, microsatellite, genetic diversity, gene flow, forage legume  相似文献   

5.

Background

Cavitation resistance to water stress-induced embolism determines plant survival during drought. This adaptive trait has been described as highly variable in a wide range of tree species, but little is known about the extent of genetic and phenotypic variability within species. This information is essential to our understanding of the evolutionary forces that have shaped this trait, and for evaluation of its inclusion in breeding programs.

Methodology

We assessed cavitation resistance (P 50), growth and carbon isotope composition in six Pinus pinaster populations in a provenance and progeny trial. We estimated the heritability of cavitation resistance and compared the distribution of neutral markers (F ST) and quantitative genetic differentiation (Q ST), for retrospective identification of the evolutionary forces acting on these traits.

Results/Discussion

In contrast to growth and carbon isotope composition, no population differentiation was found for cavitation resistance. Heritability was higher than for the other traits, with a low additive genetic variance (h2 ns = 0.43±0.18, CVA = 4.4%). Q ST was significantly lower than F ST, indicating uniform selection for P 50, rather than genetic drift. Putative mechanisms underlying QSTST are discussed.  相似文献   

6.
Kameyama Y  Ohara M 《Annals of botany》2006,98(5):1017-1024
Background and Aims The free-floating aquatic bladderwort Utricularia australis f. australis is a sterile F1 hybrid of U. australis f. tenuicaulis and U. macrorhiza. However, co-existence of the hybrids and parental species has not been observed. In the present study, the following questions are addressed. (a) Does the capacity of the two parental species to reproduce sexually contribute to higher genotypic diversity than that of sterile F1 hybrid? (b) Are there any populations where two parental species and their hybrid co-exist? (c) If not, where and how do hybrids originate?• Methods The presence and absence of Utricularia was thoroughly investigated in two regions in Japan. An amplified fragment length polymorphism (AFLP) analysis was conducted for 397 individuals collected from all populations (33 in total) where Utricularia was observed.• Key Results The mean number of genotypes per population (G) and genotypic diversity (D) were extremely low irrespective of the capacity to reproduce sexually: G was 1·1–1·2 and D was 0·02–0·04. The hybrid rarely co-existed with either parental species, and the co-existence of two parental species was not observed. Several AFLP bands observed in the hybrid are absent in both parental genotypes, and parent and hybrid genotypes in the same region do not show greater genetic similarity than those in distant regions.• Conclusions The capacity to reproduce sexually in parental species plays no role in increasing genotypic diversity within populations. The observed genotypes of the hybrid could not have originated from hybridization between the extant parental genotypes within the study regions. Considering the distribution ranges of three investigated taxa, it is clear that the hybrid originated in the past, and hybrid populations have been maintained exclusively by clonal propagation, which may be ensured by both hybrid vigor and long-distance dispersal of clonal offspring.  相似文献   

7.

Background and Aims

It is widely accepted that hydraulic failure due to xylem embolism is a key factor contributing to drought-induced mortality in trees. In the present study, an attempt is made to disentangle phenotypic plasticity from genetic variation in hydraulic traits across the entire distribution area of a tree species to detect adaptation to local environments.

Methods

A series of traits related to hydraulics (vulnerability to cavitation and hydraulic conductivity in branches), growth performance and leaf mass per area were assessed in eight Pinus canariensis populations growing in two common gardens under contrasting environments. In addition, the neutral genetic variability (FST) and the genetic differentiation of phenotypic variation (QST) were compared in order to identify the evolutionary forces acting on these traits.

Key Results

The variability for hydraulic traits was largely due to phenotypic plasticity. Nevertheless, the vulnerability to cavitation displayed a significant genetic variability (approx. 5 % of the explained variation), and a significant genetic × environment interaction (between 5 and 19 % of the explained variation). The strong correlation between vulnerability to cavitation and survival in the xeric common garden (r = –0·81; P < 0·05) suggests a role for the former in the adaptation to xeric environments. Populations from drier sites and higher temperature seasonality were less vulnerable to cavitation than those growing at mesic sites. No trade-off between xylem safety and efficiency was detected. QST of parameters of the vulnerability curve (0·365 for P50 and the slope of the vulnerability curve and 0·452 for P88) differed substantially from FST (0·091), indicating divergent selection. In contrast, genetic drift alone was found to be sufficient to explain patterns of differentiation for xylem efficiency and growth.

Conclusions

The ability of P. canariensis to inhabit a wide range of ecosystems seemed to be associated with high phenotypic plasticity and some degree of local adaptations of xylem and leaf traits. Resistance to cavitation conferred adaptive potential for this species to adapt successfully to xeric conditions.  相似文献   

8.

Background and Aims

Plants show patterns of spatial genetic differentiation reflecting gene flow mediated by pollen and seed dispersal and genotype × environment interactions. If patterns of genetic structure are determined largely by gene flow then they may be useful in predicting the likelihood of inbreeding or outbreeding depression but should be less useful if there is strong site-specific selection. For many Australian plants little is known about either their population genetics or the effects on mating systems of variation in pollen transfer distances. Experimental pollinations were used to compare the reproductive success of bird-adapted Grevillea mucronulata plants mated with individuals from a range of spatial scales. A hierarchical survey of microsatellite DNA variation was also conducted to describe the scale of population differentiation for neutral markers.

Methods

The effects of four pollen treatments on reproductive performance were compared. These treatments were characterized by transfer of pollen from (a) neighbouring adults; (b) an adjacent cluster of adults (30–50 m distant); (c) a distant cluster (>5 km distant); and (d) open pollination. Sets of 17·9 ± 3·3 leaves from each of 15 clusters of plants were genotyped and spatial autocorrelation and F statistics were used to describe patterns of genetic structure.

Key Results

Grevillea mucronulata displayed evidence of both inbreeding and outbreeding depression, with ‘intermediate’ pollen producing consistently superior outcomes for most aspects of fitness including seed set, seed size, germination and seedling growth. Significant genotypic structuring was detected within clusters (spatial autocorrelation) and among adjacent clusters and clusters separated by >5 km distance (FST = 0·07 and 0·10).

Conclusions

The superior outcome of intermediate pollen transfer and genetic differentiation of adjacent clusters suggests that G. mucronulata selection disfavours matings among closely and distantly related neighbours. Moreover, the performance of open-pollinated seedlings was poor, implying that current mating patterns are suboptimal.  相似文献   

9.

Background and Aims

Although it is well known that fire acts as a selective pressure shaping plant phenotypes, there are no quantitative estimates of the heritability of any trait related to plant persistence under recurrent fires, such as serotiny. In this study, the heritability of serotiny in Pinus halepensis is calculated, and an evaluation is made as to whether fire has left a selection signature on the level of serotiny among populations by comparing the genetic divergence of serotiny with the expected divergence of neutral molecular markers (QSTFST comparison).

Methods

A common garden of P. halepensis was used, located in inland Spain and composed of 145 open-pollinated families from 29 provenances covering the entire natural range of P. halepensis in the Iberian Peninsula and Balearic Islands. Narrow-sense heritability (h2) and quantitative genetic differentiation among populations for serotiny (QST) were estimated by means of an ‘animal model’ fitted by Bayesian inference. In order to determine whether genetic differentiation for serotiny is the result of differential natural selection, QST estimates for serotiny were compared with FST estimates obtained from allozyme data. Finally, a test was made of whether levels of serotiny in the different provenances were related to different fire regimes, using summer rainfall as a proxy for fire regime in each provenance.

Key Results

Serotiny showed a significant narrow-sense heritability (h2) of 0·20 (credible interval 0·09–0·40). Quantitative genetic differentiation among provenances for serotiny (QST = 0·44) was significantly higher than expected under a neutral process (FST = 0·12), suggesting adaptive differentiation. A significant negative relationship was found between the serotiny level of trees in the common garden and summer rainfall of their provenance sites.

Conclusions

Serotiny is a heritable trait in P. halepensis, and selection acts on it, giving rise to contrasting serotiny levels among populations depending on the fire regime, and supporting the role of fire in generating genetic divergence for adaptive traits.  相似文献   

10.
In the Atacama Desert from northern Chile (19–24°S), Prosopis (Leguminosae) individuals are restricted to oases that are unevenly distributed and isolated from each other by large stretches of barren landscape constituting an interesting study model as the degree of connectivity between natural populations depends on their dispersal capacity and the barriers imposed by the landscape. Our goal was to assess the genetic diversity and the degree of differentiation among groups of Prosopis individuals of different species from Section Algarobia and putative hybrids (hereafter populations) co‐occurring in these isolated oases from the Atacama Desert and determine whether genetic patterns are associated with dispersal barriers. Thirteen populations were sampled from oases located on three hydrographic basins (Pampa del Tamarugal, Rio Loa, and Salar de Atacama; northern, central, and southern basins, respectively). Individuals genotyped by eight SSRs show high levels of genetic diversity (H O = 0.61, A r = 3.5) and low but significant genetic differentiation among populations (F ST = 0.128, F ST‐ENA = 0.129, D JOST = 0.238). The AMOVA indicates that most of the variation occurs within individuals (79%) and from the variance among individuals (21%); almost, the same variation can be found between basins and between populations within basins. Differentiation and structure results were not associated with the basins, retrieving up to four genetic clusters and certain admixture in the central populations. Pairwise differentiation comparisons among populations showed inconsistencies considering their distribution throughout the basins. Genetic and geographic distances were significantly correlated at global and within the basins considered (p < .02), but low correlation indices were obtained (r < .37). These results are discussed in relation to the fragmented landscape, considering both natural and non‐natural (humans) dispersal agents that may be moving Prosopis in the Atacama Desert.  相似文献   

11.
Connectivity of marine populations is shaped by complex interactions between biological and physical processes across the seascape. The influence of environmental features on the genetic structure of populations has key implications for the dynamics and persistence of populations, and an understanding of spatial scales and patterns of connectivity is crucial for management and conservation. This study employed a seascape genomics approach combining larval dispersal modeling and population genomic analysis using single nucleotide polymorphisms (SNPs) obtained from RADseq to examine environmental factors influencing patterns of genetic structure and connectivity for a highly dispersive mud crab Scylla olivacea (Herbst, 1796) in the Sulu Sea. Dispersal simulations reveal widespread but asymmetric larval dispersal influenced by persistent southward and westward surface circulation features in the Sulu Sea. Despite potential for widespread dispersal across the Sulu Sea, significant genetic differentiation was detected among eight populations based on 1,655 SNPs (FST = 0.0057, p < .001) and a subset of 1,643 putatively neutral SNP markers (FST = 0.0042, p < .001). Oceanography influences genetic structure, with redundancy analysis (RDA) indicating significant contribution of asymmetric ocean currents to neutral genetic variation (Radj2 = 0.133, p = .035). Genetic structure may also reflect demographic factors, with divergent populations characterized by low effective population sizes (N e < 50). Pronounced latitudinal genetic structure was recovered for loci putatively under selection (FST = 0.2390, p < .001), significantly correlated with sea surface temperature variabilities during peak spawning months for S. olivacea (Radj2 = 0.692–0.763; p < .050), suggesting putative signatures of selection and local adaptation to thermal clines. While oceanography and dispersal ability likely shape patterns of gene flow and genetic structure of S. olivacea across the Sulu Sea, the impacts of genetic drift and natural selection influenced by sea surface temperature also appear as likely drivers of population genetic structure. This study contributes to the growing body of literature documenting population genetic structure and local adaptation for highly dispersive marine species, and provides information useful for spatial management of the fishery resource.  相似文献   

12.
Genetic drift and selection are ubiquitous evolutionary forces acting to shape genetic variation in populations. While their relative importance has been well studied in plants and animals, less is known about their relative importance in fungal pathogens. Because agro-ecosystems are more homogeneous environments than natural ecosystems, stabilizing selection may play a stronger role than genetic drift or diversifying selection in shaping genetic variation among populations of fungal pathogens in agro-ecosystems. We tested this hypothesis by conducting a Q ST/F ST analysis using agricultural populations of the barley pathogen Rhynchosporium commune. Population divergence for eight quantitative traits (Q ST) was compared with divergence at eight neutral microsatellite loci (F ST) for 126 pathogen strains originating from nine globally distributed field populations to infer the effects of genetic drift and types of selection acting on each trait. Our analyses indicated that five of the eight traits had Q ST values significantly lower than F ST, consistent with stabilizing selection, whereas one trait, growth under heat stress (22°C), showed evidence of diversifying selection and local adaptation (Q ST>F ST). Estimates of heritability were high for all traits (means ranging between 0.55–0.84), and average heritability across traits was negatively correlated with microsatellite gene diversity. Some trait pairs were genetically correlated and there was significant evidence for a trade-off between spore size and spore number, and between melanization and growth under benign temperature. Our findings indicate that many ecologically and agriculturally important traits are under stabilizing selection in R. commune and that high within-population genetic variation is maintained for these traits.  相似文献   

13.
Tian S  Luo LC  Ge S  Zhang ZY 《Annals of botany》2008,102(1):69-78

Background and Aims

Pinus kwangtungensis is a five-needled pine, inhabiting isolated mountain tops, cliffs or slopes in the montane areas of southern China and northern Vietnam. Global warming and long-term deforestation in southern China threaten its existence and genetic integrity, and this species is listed as vulnerable in the China Species Red List. However, the level and distribution of genetic diversity in this vulnerable species are completely unknown. In this paper, the genetic diversity and structure are examined using paternally inherited plastid markers to shed light on its evolutionary history and to provide a genetic perspective for its conservation.

Methods

By means of direct sequencing, a new polymorphic fragment containing a minisatellite site was identified within the plastid genome of P. kwangtungensis. Using the minisatellite site along with five SNPs (one indel and four substitutions) within the same fragment, the population genetic structure and pollen flow were analysed in 17 populations of P. kwangtungensis in southern China.

Key Results

Analysis of 227 individuals from 17 populations revealed ten haplotypes at the minisatellite site. The haplotype diversity at species level was relatively high (0·629). Genetic diversity of each population ranged from 0 to 0·779, and the western populations harboured more genetic variation than the eastern and Hainan populations, although the former appeared to have experienced a bottleneck in recent history. Population subdivision based on this site was high (FST = 0·540 under IAM; RST = 0·677 under SMM). Three major clusters (eastern, western and Hainan) were identified based on a neighbor-joining dendrogram generated from genetic distances among the populations. The genetic structures inferred from all the polymorphic sites and the SNPs were in concordance with that from the minisatellite site.

Conclusions

The results suggest that there are at least three refugia for P. kwangtungensis and that populations in these refugia should be treated as separate evolutionarily significant units or conservation units. The high diversities in the western populations suggest that these were much larger in the past (e.g. glacial stages) and that the shrinking population size might have been caused by recent events (e.g. deforestation, global warming, etc.). The western populations should be given priority for conservation due to their higher genetic diversity and limited population sizes. It is concluded that the newly found minisatellite may serve as a novel and applicable molecular marker for unravelling evolutionary processes in P. kwangtungensis.Key words: Pinus kwangtungensis, minisatellite, population genetics, conservation  相似文献   

14.
Aphis gossypii Glover (Hemiptera: Aphididae) is a serious pest of cotton in northern China. A microsatellite analysis was used to characterize the genetic structure of A. gossypii populations from different geographic, host plant, and seasonal populations in 2014. Among 906 individuals, 507 multilocus genotypes were identified, with genotypic richness values of 0.07–1.00 for the populations. We observed moderate levels of genetic differentiation among geographic populations (FST = 0.103; 95% confidence interval: 0.065–0.145) and host plant populations (FST = 0.237; 95% confidence interval: 0.187–0.296). A Mantel test of isolation by distance revealed no significant correlations between Slatkin’s linearized FST and the natural logarithm of geographic distance. A Bayesian analysis of population genetic structures identified three clusters. An analysis of molecular variance revealed significant differences among the three clusters (F = 0.26596, P < 0.0001), among seasons (F = 0.04244, P = 0.00381), and among host populations (F = 0.12975, P = 0.0029). Thus, the A. gossypii populations in northern China exhibit considerable genotypic diversity. Additionally, our findings indicated that the 31 analyzed populations could be classified as one of three host biotypes (i.e., cotton, cucumber, and pomegranate biotypes). There were also clear seasonal effects on population genetic structure diversity among aphids collected from Anyang.  相似文献   

15.

Background and Aims

Few phylogeographic studies have been undertaken of species confined to narrow, linear coastal systems where past sea level and geomorphological changes may have had a profound effect on species population sizes and distributions. In this study, a phylogeographic analysis was conducted of Eucalyptus gomphocephala (tuart), a tree species restricted to a 400 × 10 km band of coastal sand-plain in south west Australia. Here, there is little known about the response of coastal vegetation to glacial/interglacial climate change, and a test was made as to whether this species was likely to have persisted widely through the Last Glacial Maximum (LGM), or conforms to a post-LGM dispersal model of recovery from few refugia.

Methods

The genetic structure over the entire range of tuart was assessed using seven nuclear (21 populations; n = 595) and four chloroplast (24 populations; n = 238) microsatellite markers designed for eucalypt species. Correlative palaeodistribution modelling was also conducted based on five climatic variables, within two LGM models.

Key Results

The chloroplast markers generated six haplotypes, which were strongly geographically structured (GST = 0·86 and RST = 0·75). Nuclear microsatellite diversity was high (overall mean HE 0·75) and uniformly distributed (FST = 0·05), with a strong pattern of isolation by distance (r2 = 0·362, P = 0·001). Distribution models of E. gomphocephala during the LGM showed a wide distribution that extended at least 30 km westward from the current distribution to the palaeo-coastline.

Conclusions

The chloroplast and nuclear data suggest wide persistence of E. gomphocephala during the LGM. Palaeodistribution modelling supports the conclusions drawn from genetic data and indicates a widespread westward shift of E. gomphocephala onto the exposed continental shelf during the LGM. This study highlights the importance of the inclusion of complementary, non-genetic data (information on geomorphology and palaeoclimate) to interpret phylogeographic patterns.  相似文献   

16.
Riboviruses (RNA viruses without DNA replication intermediates) are the most abundant pathogens infecting animals and plants. Only a few riboviral infections can be controlled with antiviral drugs, mainly because of the rapid appearance of resistance mutations. Little reliable information is available concerning i) kinds and relative frequencies of mutations (the mutational spectrum), ii) mode of genome replication and mutation accumulation, and iii) rates of spontaneous mutation. To illuminate these issues, we developed a model in vivo system based on phage Qß infecting its natural host, Escherichia coli. The Qß RT gene encoding the Read-Through protein was used as a mutation reporter. To reduce uncertainties in mutation frequencies due to selection, the experimental Qß populations were established after a single cycle of infection and selection against RT mutants during phage growth was ameliorated by plasmid-based RT complementation in trans. The dynamics of Qß genome replication were confirmed to reflect the linear process of iterative copying (the stamping-machine mode). A total of 32 RT mutants were detected among 7,517 Qß isolates. Sequencing analysis of 45 RT mutations revealed a spectrum dominated by 39 transitions, plus 4 transversions and 2 indels. A clear template•primer mismatch bias was observed: A•C>C•A>U•G>G•U> transversion mismatches. The average mutation rate per base replication was ≈9.1×10−6 for base substitutions and ≈2.3×10−7 for indels. The estimated mutation rate per genome replication, μg, was ≈0.04 (or, per phage generation, ≈0.08), although secondary RT mutations arose during the growth of some RT mutants at a rate about 7-fold higher, signaling the possible impact of transitory bouts of hypermutation. These results are contrasted with those previously reported for other riboviruses to depict the current state of the art in riboviral mutagenesis.  相似文献   

17.
Li J  Liu R  Lam KS  Jin LW  Duan Y 《Biophysical journal》2011,100(4):1076-1082
Deposition of amyloid fibrils, consisting primarily of Aβ40 and Aβ42 peptides, in the extracellular space in the brain is a major characteristic of Alzheimer''s disease (AD). We recently developed new (to our knowledge) drug candidates for AD that inhibit the fibril formation of Aβ peptides and eliminate their neurotoxicity. We performed all-atom molecular-dynamics simulations on the Aβ42 monomer at its α-helical conformation and a pentamer fibril fragment of Aβ42 peptide with or without LRL and fluorene series compounds to investigate the mechanism of inhibition. The results show that the active drug candidates, LRL22 (EC50 = 0.734 μM) and K162 (EC50 = 0.080 μM), stabilize hydrophobic core I of Aβ42 peptide (residues 17–21) to its α-helical conformation by interacting specifically in this region. The nonactive drug candidates, LRL27 (EC50 > 10 μM) and K182 (EC50 > 5 μM), have little to no similar effect. This explains the different behavior of the drug candidates in experiments. Of more importance, this phenomenon indicates that hydrophobic core I of the Aβ42 peptide plays a major mechanistic role in the formation of amyloid fibrils, and paves the way for the development of new drugs against AD.  相似文献   

18.
Fitness related traits often show spatial variation across populations of widely distributed species. Comparisons of genetic variation among populations in putatively neutral DNA markers and in phenotypic traits susceptible to selection (QST FST analysis) can be used to determine to what degree differentiation among populations can be attributed to selection or genetic drift. Traditionally, QST FST analyses require a large number of populations to achieve sufficient statistical power; however, new methods have been developed that allow QST FST comparisons to be conducted on as few as two populations if their pedigrees are informative. This study compared genetic and morphological divergence in three strains of brook trout Salvelinus fontinalis that were historically or currently used for stocking in the Lake Superior Basin. Herein we examined if morphological divergence among populations showed temporal variation, and if divergence could be attributed to selection or was indistinguishable from genetic drift. Multivariate QST FST analysis showed evidence for divergent selection between populations. Univariate analyses suggests that the pattern observed in the multivariate analyses was largely driven by divergent selection for length and weight, and moreover by divergence between the Assinica strain and each of the Iron River and Siskiwit strains rather than divergent selection between each population pair. While it could not be determined if divergence was due to natural selection or inadvertent artificial selection in hatcheries, selected differences were consistent with patterns of domestication commonly found in salmonids.  相似文献   

19.

Background and Aims

In heterostylous plant species, skewed morph ratios are not uncommon and may arise from a range of factors. Despite the recognized importance of skewed morph ratios on overall reproductive success within populations, little is known about the impact of skewed morph ratios on population genetic diversity and differentiation in heterostylous species. This study specifically aimed to clarify the effect of population size and morph bias on population genetic diversity and differentiation in the temperate forest herb Pulmonaria officinalis. This species is characterized by a distylous breeding system and shows morph-specific differences in reproductive success.

Methods

Genetic diversity was determined for 27 P. officinalis populations in northern Belgium by using eight recently developed microsatellite markers. Multiple regressions were used to assess the relationship between genetic diversity, morph bias and population size, and FST-values were calculated for short- and long-styled morphs separately to study genetic differentiation as a function of morph type.

Key Results

For all genetic measures used, morph bias was more important in explaining patterns of genetic diversity than population size, and in all cases patterns of population genetic diversity followed a quadratic function, which showed a symmetrical decrease in genetic diversity with increasing morph bias. However, probably due to the reproductive advantage of L-morphs relative to S-morphs, maximum genetic diversity was found in populations showing an excess of L-morphs (60·7 % L-morph). On the other hand, no significant difference in pairwise genetic distances between populations was observed between L- (0·107) and S-morphs (0·106).

Conclusions

Our results indicate that significant deviations from equal morph ratios not only affect plant reproductive success but also population genetic diversity of heterostylous plant species. Hence, when defining conservation measures for populations of heterostylous plant species, morph ratios should be considered as an important trait affecting their long-term population viability.  相似文献   

20.
Each year, hundreds of thousands of domesticated farmed Atlantic salmon escape into the wild. In Norway, which is the world’s largest commercial producer, many native Atlantic salmon populations have experienced large numbers of escapees on the spawning grounds for the past 15–30 years. In order to study the potential genetic impact, we conducted a spatio-temporal analysis of 3049 fish from 21 populations throughout Norway, sampled in the period 1970–2010. Based upon the analysis of 22 microsatellites, individual admixture, FST and increased allelic richness revealed temporal genetic changes in six of the populations. These changes were highly significant in four of them. For example, 76% and 100% of the fish comprising the contemporary samples for the rivers Vosso and Opo were excluded from their respective historical samples at P = 0.001. Based upon several genetic parameters, including simulations, genetic drift was excluded as the primary cause of the observed genetic changes. In the remaining 15 populations, some of which had also been exposed to high numbers of escapees, clear genetic changes were not detected. Significant population genetic structuring was observed among the 21 populations in the historical (global FST = 0.038) and contemporary data sets (global FST = 0.030), although significantly reduced with time (P = 0.008). This reduction was especially distinct when looking at the six populations displaying temporal changes (global FST dropped from 0.058 to 0.039, P = 0.006). We draw two main conclusions: 1. The majority of the historical population genetic structure throughout Norway still appears to be retained, suggesting a low to modest overall success of farmed escapees in the wild; 2. Genetic introgression of farmed escapees in native salmon populations has been strongly population-dependent, and it appears to be linked with the density of the native population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号