首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plasma lipoprotein lipoprotein(a) [Lp(a)] comprises a low-density lipoprotein (LDL)-like particle covalently attached to the glycoprotein apolipoprotein(a) [apo(a)]. Apo(a) consists of multiple tandem repeating kringle modules, similar to plasminogen kringle IV (designated KIV1-KIV10), followed by modules homologous to the kringle V module and protease domain of plasminogen. The apo(a) KIV modules have been classified on the basis of their binding affinity for lysine and lysine analogues. The strong lysine-binding apo(a) KIV10 module mediates lysine-dependent interactions with fibrin and cell-surface receptors. Weak lysine-binding apo(a) KIV7 and KIV8 modules display a 2-3-fold difference in lysine affinity and play a direct role in the noncovalent step in Lp(a) assembly through binding to unique lysine-containing sequences in apolipoproteinB-100 (apoB-100). The present study describes the nuclear magnetic resonance solution structure of apo(a) KIV8 and its solution dynamics properties, the first for an apo(a) kringle module, and compares the effects of epsilon-aminocaproic acid (epsilon-ACA) binding on the backbone and side-chain conformation of KIV7 and KIV8 on a per residue basis. Apo(a) KIV8 adopts a well-ordered structure that shares the general tri-loop kringle topology with apo(a) KIV6, KIV7, and KIV10. Mapping of epsilon-ACA-induced chemical-shift changes on KIV7 and KIV8 indicate that the same residues are affected, despite a 2-3-fold difference in epsilon-ACA affinity. A unique loop conformation within KIV8, involving hydrophobic interactions with Tyr40, affects the positioning of Arg35 relative to the lysine-binding site (LBS). A difference in the orientation of the aromatic side chains comprising the hydrophobic center of the LBS in KIV8 decreases the size of the hydrophobic cleft compared to other apo(a) KIV modules. An exposed hydrophobic patch contiguous with the LBS in KIV8 and not conserved in other weak lysine-binding apo(a) kringle modules may modulate specificity for regions within apoB-100. An additional ligand recognition site comprises a structured arginine-glycine-aspartate motif at the N terminus of the KIV8 module, which may mediate Lp(a)/apo(a)-integrin interactions.  相似文献   

2.
Elevated plasma concentrations of lipoprotein(a) [Lp(a)] are associated with an increased risk for the development of atherosclerotic disease which may be attributable to the ability of Lp(a) to attenuate fibrinolysis. A generally accepted mechanism for this effect involves direct competition of Lp(a) with plasminogen for fibrin(ogen) binding sites thus reducing the efficiency of plasminogen activation. Efforts to determine the domains of apolipoprotein(a) [apo(a)] which mediate fibrin(ogen) interactions have yielded conflicting results. Thus, the purpose of the present study was to determine the ability of single KIV domains of apo(a) to bind plasmin-treated fibrinogen surfaces as well to determine their effect on fibrinolysis using an in vitro clot lysis assay. A bacterial expression system was utilized to express and purify apo(a) KIV (2), KIV (7), KIV (9) DeltaCys (which lacks the seventh unpaired cysteine) and KIV (10) which contains a strong lysine binding site. We also expressed and examined three mutant derivatives of KIV (10) to determine the effect of changing critical residues in the lysine binding site of this kringle on both fibrin(ogen) binding and fibrin clot lysis. Our results demonstrate that the strong lysine binding site in apo(a) KIV (10) is capable of mediating interactions with plasmin-modified fibrinogen in a lysine-dependent manner, and that this kringle can increase in vitro fibrin clot lysis time by approximately 43% at a concentration of 10 microM KIV (10). The ability of the KIV (10) mutant derivatives to bind plasmin-modified fibrinogen correlated with their lysine binding capacity. Mutation of Trp (70) to Arg abolished binding to both lysine-Sepharose and plasmin-modified fibrinogen, while the Trp (70) -->Phe and Arg (35) -->Lys substitutions each resulted in decreased binding to these substrates. None of the KIV (10) mutant derivatives appeared to affect fibrinolysis. Apo(a) KIV (7) contains a lysine- and proline-sensitive site capable of mediating binding to plasmin-modified fibrinogen, albeit with a lower apparent affinity than apo(a) KIV (10). However, apo(a) KIV (7) had no effect on fibrinolysis in vitro. Apo(a) KIV (2) and KIV (9) DeltaCys did not bind measurably to plasmin-modified fibrinogen surfaces and did not affect fibrinolysis in vitro.  相似文献   

3.
Apolipoprotein(a) [apo(a)] shares extensive sequence similarity with plasminogen and consists of multiple tandem repeats of domains similar to plasminogen kringle IV (KIV), followed by domains homologous to the plasminogen KV and protease domains. The apo(a) KIV domains can be classified into 10 types on the basis of amino acid sequence (KIV(1)-KIV(10)) of which KIV(10) contains a canonical lysine binding site (LBS); KIV(10) mediates the lysine-dependent interaction of Lp(a) with certain biological substrates. Molecular modeling studies indicated the presence of weak LBS in each of KIV(5)-KIV(8), and subsequent biochemical studies have revealed contributions of these kringles to lysine-mediated interactions involving apo(a). The present study describes the direct demonstration of a weak LBS within KIV(7), as well as the first characterization of the ligand specificity of an LBS outside that of KIV(10). We have expressed both KIV(7) and KIV(10) from bacterial cells and purified them to homogeneity from cell lysates. Equilibrium binding analyses of the KIV(7) LBS using intrinsic fluorescence revealed an affinity for L-lysine and its analogues approximately 10-fold weaker (K(D) = 230 +/- 42 microM for epsilon-aminocaproic acid) than that of KIV(10) (K(D) = 33 +/- 4 microM for epsilon-aminocaproic acid). Moreover, we demonstrated differences in specificity of the LBS of KIV(7) in comparison with KIV(10) in that KIV(7) preferentially bound L-proline. Both kringles bind 4-aminobutyric acid with similar affinities albeit with apparently different mechanisms. Key Phe(62) --> Tyr and Asp(56) --> Glu substitutions in the KIV(7) LBS result in alterations in the size of the LBS and in the spatial relationship between the cationic and anionic centers in the LBS and thus account for the differences in the binding properties of KIV(7) and KIV(10).  相似文献   

4.
Apolipoprotein(a) [apo(a)] consists of a series of tandemly repeated modules known as kringles that are commonly found in many proteins involved in the fibrinolytic and coagulation cascades, such as plasminogen and thrombin, respectively. Specifically, apo(a) contains multiple tandem repeats of domains similar to plasminogen kringle IV (designated as KIV(1) to KIV(10)) followed by sequences similar to the kringle V and protease domains of plasminogen. The KIV domains of apo(a) differ with respect to their ability to bind lysine or lysine analogs. KIV(10) represents the high-affinity lysine-binding site (LBS) of apo(a); a weak LBS is predicted in each of KIV(5)-KIV(8) and has been directly demonstrated in KIV(7). The present study describes the first crystal structure of apo(a) KIV(7), refined to a resolution of 1.45 A, representing the highest resolution for a kringle structure determined to date. A critical substitution of Tyr-62 in KIV(7) for the corresponding Phe-62 residue in KIV(10), in conjunction with the presence of Arg-35 in KIV(7), results in the formation of a unique network of hydrogen bonds and electrostatic interactions between key LBS residues (Arg-35, Tyr-62, Asp-54) and a peripheral tyrosine residue (Tyr-40). These interactions restrain the flexibility of key LBS residues (Arg-35, Asp-54) and, in turn, reduce their adaptability in accommodating lysine and its analogs. Steric hindrance involving Tyr-62, as well as the elimination of critical ligand-stabilizing interactions within the LBS are also consequences of this interaction network. Thus, these subtle yet critical structural features are responsible for the weak lysine-binding affinity exhibited by KIV(7) relative to that of KIV(10).  相似文献   

5.
Substantial evidence indicates that endothelial dysfunction plays a critical role in atherogenesis. We previously demonstrated that apolipoprotein(a) (apo(a); the distinguishing protein component of the atherothrombotic risk factor lipoprotein(a)) elicits rearrangement of the actin cytoskeleton in human umbilical vein endothelial cells, characterized by increased myosin light chain (MLC) phosphorylation via a Rho/Rho kinase-dependent signaling pathway. Apo(a) contains kringle (K)IV and KV domains similar to those in plasminogen: apo(a) contains 10 types of plasminogen KIV-like sequences, followed by sequences homologous to the plasminogen KV and protease domains. Several of the apo(a) kringles contain lysine-binding sites (LBS) that have been proposed to contribute to the pathogenicity of Lp(a). Here we demonstrate that apo(a)-induced endothelial barrier dysfunction is mediated via a Rho/Rho kinase-dependent signaling pathway that results in increased MYPT1 phosphorylation and hence decreased MLC phosphatase activity, thus leading to an increase in MLC phosphorylation, stress fiber formation, cell contraction, and permeability. In addition, studies using recombinant apo(a) variants indicated that these effects of apo(a) are dependent on sequences within the C-terminal half of the apo(a) molecule, specifically, the strong LBS in KIV(10). In parallel experiments, the apo(a)-induced effects were completely abolished by treatment of the cells with the lysine analogue epsilon-aminocaproic acid and the Rho kinase inhibitor Y27632. Taken together, our findings indicate that the strong LBS in apo(a) KIV(10) mediates all of our observed effects of apo(a) on human umbilical vein endothelial cell barrier dysfunction. Studies are ongoing to further dissect the molecular basis of these findings.  相似文献   

6.
Lipoprotein(a) [Lp(a)] is a low-density lipoprotein complex consisting of apolipoprotein(a) [apo(a)] disulfide-linked to apolipoprotein B-100. Lp(a) has been implicated in atherogenesis and thrombosis through the lysine binding site (LBS) affinity of its kringle domains. We have examined the oxidative effect of 2,2'-azobis-(amidinopropane) HCl (AAPH), a mild hydrophilic free radical initiator, upon the ability of Lp(a) and recombinant apo(a), r-apo(a), to bind through their LBS domains. AAPH treatment caused a time-dependent decrease in the number of functional Lp(a) or r-apo(a) molecules capable of binding to fibrin or lysine-Sepharose and in the intrinsic protein fluorescence of both Lp(a) and r-apo(a). The presence of a lysine analogue during the reaction prevented the loss of lysine binding and provided a partial protection from the loss of tryptophan fluorescence. The partial protection of fluorescence by lysine analogues was observed in other kringle-containing proteins, but not in proteins lacking kringles. No significant aggregation, fragmentation, or change in conformation of Lp(a) or r-apo(a) was observed as assessed by native or SDS-PAGE, light scattering, retention of antigenicity, and protein fluorescence emission spectra. Our results suggest that AAPH destroys amino acids in the kringles of apo(a) that are essential for lysine binding, including one or more tryptophan residues. The present study, therefore, raises the possibility that the biological roles of Lp(a) may be mediated by its state of oxidation, especially in light of our previous study showing that the reductive properties of sulfhydryl-containing compounds increase the LBS affinity of Lp(a) for fibrin.  相似文献   

7.
The kringle modules of apolipoprotein(a) [apo(a)] of lipoprotein(a) [Lp(a)] are highly homologous with kringle 4 of plasminogen (75-94%) and like the latter are autonomous structural and functional units. Apo(a) contains 14-37 kringle 4 (KIV) repeats distributed into 10 classes (1-10). Lp(a) binds lysine-Sepharose via a lysine binding site (LBS) located in KIV-10 (88% homology with plasminogen K4). However, the W72R substitution that occurs in rhesus monkeys and occasionally in humans leads to impaired lysine binding capacity of KIV-10 and Lp(a). The foregoing has been investigated by determining the structures of KIV-10/M66 (M66 variant) in its unliganded and ligand [epsilon-aminocaproic acid (EACA)] bound modes and the structure of recombinant KIV-10/M66R72 (the W72R mutant). In addition, the EACA liganded structure of a sequence polymorph (M66T in about 42-50% of the human population) was reexamined (KIV-10/T66/EACA). The KIV-10/M66, KIV-10/M66/EACA, and KIV-10/T66/EACA molecular structures are highly isostructural, indicating that the LBS of the kringles is preformed anticipating ligand binding. A displacement of three water molecules from the EACA binding groove and a movement of R35 bringing the guanidinium group close to the carboxylate of EACA to assist R71 in stabilizing the anionic group of the ligand are the only changes accompanying ligand binding. Both EACA structures were in the embedded binding mode utilizing all three binding centers (anionic, hydrophobic, cationic) like plasminogen kringles 1 and 4. The KIV-10/T66/EACA structure determined in this work differs from one previously reported [Mikol, V., Lo Grasso, P. V. and, Boettcher, B. R. (1996) J. Mol. Biol. 256, 751-761], which crystallized in a different crystal system and displayed an unbound binding mode, where only the amino group of EACA interacted with the anionic center of the LBS. The remainder of the ligand extended into solvent perpendicular to the kringle surface, leaving the hydrophobic pocket and the cationic center of the LBS unoccupied. The structure of recombinant KIV-10/M66R72 shows that R72 extends along the ligand binding groove parallel to the expected position of EACA toward the anionic center (D55/D57) and makes a salt bridge with D57. Thus, the R72 side chain mimics ligand binding, and loss of binding ability is the result of steric blockage of the LBS by R72 physically occupying part of the site. The rhesus monkey lysine binding impairment is compared with that of chimpanzee where KIV-10 has been shown to have a D57N mutation instead.  相似文献   

8.
During lipoprotein(a) (Lp(a)) assembly, non-covalent interactions between apolipoprotein(a) (apo(a)) and low density lipoprotein precede specific disulfide bond formation. Studies have shown that the non-covalent step involves an interaction between the weak lysine-binding sites (WLBS) present within each of apo(a) kringle IV types 6, 7, and 8 (KIV(6-8)), and two lysine residues (Lys(680) and Lys(690)) within the NH(2) terminus of the apolipoprotein B-100 (apoB) component of low density lipoprotein. In the present study, we introduced single point mutations (E56G) into each of the WLBS present in apo(a) KIV(6-8) and expressed these mutations in the context of a 17-kringle (17K) recombinant apo(a) variant. Single mutations that disrupt the WLBS in KIV(6), KIV(7), and KIV(8), as well as mutants that disrupt the WLBS in both KIV(6) and KIV(7), or both KIV(7) and KIV(8), were assessed for their ability to form non-covalent and covalent Lp(a) complexes. Our results demonstrate that both apo(a) KIV(7) and KIV(8), but not KIV(6), are required for maximally efficient non-covalent and covalent Lp(a) assembly. Single mutations in the WLBS of KIV(7) or KIV(8) resulted in a 3-fold decrease in the affinity of 17K recombinant apo(a) for apoB, and a 20% reduction in the rate of covalent Lp(a) formation. Tandem mutations in the WLBS in both KIV(7) and KIV(8) resulted in a 13-fold reduction in the binding affinity between apo(a) and apoB, and a 75% reduction in the rate of the covalent step of Lp(a) formation. We also showed that KIV(7) and KIV(8) specifically bind with high affinity to apoB-derived peptides containing Lys(690) or Lys(680), respectively. Taken together, our data demonstrate that specific interactions between apo(a) KIV(7) and KIV(8) and Lys(680) and Lys(690) in apoB mediate a high affinity non-covalent interaction between apo(a) and low density lipoprotein, which dictates the efficiency of covalent Lp(a) formation.  相似文献   

9.
Lipoprotein(a) (Lp(a)) is a major independent risk factor for atherothrombotic disease in humans. The physiological function(s) of Lp(a) as well as the precise mechanism(s) by which high plasma levels of Lp(a) increase risk are unknown. Binding of apolipoprotein(a) (apo(a)) to fibrin(ogen) and other components of the blood clotting cascade has been demonstrated in vitro, but the domains in fibrin(ogen) critical for interaction are undefined. We used apo(a) kringle IV subtypes to screen a human liver cDNA library by the yeast GAL4 two-hybrid interaction trap system. Among positive clones that emerged from the screen, clones were identified as fibrinogen beta- and gamma-chains. Peptide-based pull-down experiments confirmed that the emerging peptide motif, conserved in the carboxyl-terminal globular domains of the fibrinogen beta and gamma modules specifically interacts with apo(a)/Lp(a) in human plasma as well as in cell culture supernatants of HepG2 and Chinese hamster ovary cells, ectopically expressing apo(a)/Lp(a). The influence of lysine in the fibrinogen peptides and of lysine binding sites in apo(a) for the interaction was evaluated by binding experiments with apo(a) mutants and a mutated fibrin(ogen) peptid. This confirmed the lysine binding sites in kringle IV type 10 of apo(a) as the major fibrin(ogen) binding site but also demonstrated lysine-independent interactions.  相似文献   

10.
Apolipoprotein[a], the highly glycosylated, hydrophilic apoprotein of lipoprotein[a] (Lp[a]), is generally considered to be a multimeric homologue of plasminogen, and to exhibit atherogenic/thrombogenic properties. The cDNA-inferred amino acid sequence of apo[a] indicates that apo[a], like plasminogen and some zymogens, is composed of a kringle domain and a serine protease domain. To gain insight into possible positive functions of Lp[a], we have examined the apo[a] primary structure by comparing its sequence with those of other proteins involved in coagulation and fibrinolysis, and its secondary structure by using a combination of structure prediction algorithms. The kringle domain encompasses 11 distinct types of repeating units, 9 of which contain 114 residues. These units, called kringles, are similar but not identical to each other or to PGK4. Each apo[a] kringle type was compared with kringles which have been shown to bind lysine and fibrin, and with bovine prothrombin kringle 1. Apo[a] kringles are linked by serine/threonine- and proline-rich stretches similar to regions in immunoglobulins, adhesion molecules, glycoprotein Ib-alpha subunit, and kininogen. In comparing the protease domains of apo[a] and plasmin, apo[a] contains a region between positions 4470 and 4492 where 8 substitutions, 9 deletions, and 1 insertion are apparent. Our analysis suggests that apo[a] kringle-type 10 has a high probability of binding to lysine in the same way as PGK4. In the only human apo[a] polymorph sequenced to date, position 4308 is occupied by serine, whereas the homologous position in plasmin is occupied by arginine and is an important site for proteolytic cleavage and activation. An alternative site for the proteolytic activation of human apo[a] is proposed.  相似文献   

11.
Oxidized phospholipids (OxPLs) are present on apolipoprotein (a) [apo(a)] and lipoprotein (a) [Lp(a)] but the determinants influencing their binding are not known. The presence of OxPLs on apo(a)/Lp(a) was evaluated in plasma from healthy humans, apes, monkeys, apo(a)/Lp(a) transgenic mice, lysine binding site (LBS) mutant apo(a)/Lp(a) mice with Asp55/57→Ala55/57 substitution of kringle (K)IV10)], and a variety of recombinant apo(a) [r-apo(a)] constructs. Using antibody E06, which binds the phosphocholine (PC) headgroup of OxPLs, Western and ELISA formats revealed that OxPLs were only present in apo(a) with an intact KIV10 LBS. Lipid extracts of purified human Lp(a) contained both E06- and nonE06-detectable OxPLs by tandem liquid chromatography-mass spectrometry (LC-MS/MS). Trypsin digestion of 17K r-apo(a) showed PC-containing OxPLs covalently bound to apo(a) fragments by LC-MS/MS that could be saponified by ammonium hydroxide. Interestingly, PC-containing OxPLs were also present in 17K r-apo(a) with Asp57→Ala57 substitution in KIV10 that lacked E06 immunoreactivity. In conclusion, E06- and nonE06-detectable OxPLs are present in the lipid phase of Lp(a) and covalently bound to apo(a). E06 immunoreactivity, reflecting pro-inflammatory OxPLs accessible to the immune system, is strongly influenced by KIV10 LBS and is unique to human apo(a), which may explain Lp(a)’s pro-atherogenic potential.  相似文献   

12.
Lipoprotein(a) [Lp(a)], but not low-density lipoprotein (LDL), was previously shown to impair the generation of fibrin-bound plasmin [Rouy et al. (1991) Arterioscler. Thromb. 11, 629-638] by a mechanism involving binding of Lp(a) to fibrin. It was therefore suggested that the binding was mediated by apolipoprotein(a) [apo(a)], a glycoprotein absent from LDL which has a high degree of homology with plasminogen, the precursor of the fibrinolytic enzyme plasmin. Here we have evaluated this hypothesis by performing comparative fibrin binding studies using a recombinant form of apo(a) containing 17 copies of the apo(a) domain resembling kringle 4 of plasminogen, native Lp(a), and Glu-plasminogen (Glu1-Asn791). Attempts were also made to identify the kringle domains involved in such interactions using isolated elastase-derived plasminogen fragments. The binding experiments were performed using a well-characterized model of an intact and of a plasmin-digested fibrin surface as described by Fleury and Anglés-Cano [(1991) Biochemistry 30, 7630-7638]. Binding of r-apo(a) to the fibrin surfaces was of high affinity (Kd = 26 +/- 8.4 nM for intact fibrin and 7.7 +/- 4.6 nM for plasmin-degraded fibrin) and obeyed the Langmuir equation for adsorption at interfaces. The binding to both surfaces was inhibited by the lysine analogue AMCHA and was completely abolished upon treatment of the degraded surface with carboxypeptidase B, indicating that r-apo(a) binds to both the intrachain lysines of intact fibrin and the carboxy-terminal lysines of degraded fibrin. As expected from these results, both r-apo(a) and native Lp(a) inhibited the binding of Glu-plasminogen to the fibrin surfaces.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
次黄嘌呤单核苷酸脱氢酶(IMPDH)是金黄色葡萄球菌(S.aureus)表面的纤溶酶原(Plg)受体之一,它可以通过赖氨酸结合位点(LBS)与Plg相结合。脂蛋白(a)[Lp(a)]中的载脂蛋白(a)[Apo(a)]与Plg有很高的同源性,即两者的Kringle结构域都含有LBS,其中Apo(a)的KIV10含有强的LBS。因此本实验提出了Lp(a)应该能够与S.aureus表面的Plg受体相结合,进而可能竞争性抑制S.aureus与Plg结合的假说。本研究克隆了S.aureus的IMPDH基因,酶切后将其连接到表达载体pASK-IBA37中,并在大肠杆菌BL21中表达了该重组蛋白(rIMPDH)。通过酶联免疫吸附试验(ELISA)、亲和色谱层析及Western blot对rIMPDH与Lp(a)的相互作用机制进行了研究。结果表明rIMPDH可以通过LBS与Lp(a)和rKIV10发生特异性结合,而且一定浓度的赖氨酸类似物6-氨基己酸(EACA)可以抑制这种结合,然而本研究并未发现Lp(a)和rKIV10对rIMPDH与Plg的相互作用有明显的抑制。  相似文献   

14.
Similarity between the apolipoprotein(a) (apo(a)) moiety of lipoprotein(a) (Lp(a)) and plasminogen suggests a potentially important link between atherosclerosis and thrombosis. Lp(a) may interfere with tissue plasminogen activator (tPA)-mediated plasminogen activation in fibrinolysis, thereby generating a hypercoagulable state in vivo. A fluorescence-based system was employed to study the effect of apo(a) on plasminogen activation in the presence of native fibrin and degraded fibrin cofactors and in the absence of positive feedback reactions catalyzed by plasmin. Human Lp(a) and a physiologically relevant, 17-kringle recombinant apo(a) species exhibited strong inhibition with both cofactors. A variant lacking the protease domain also exhibited strong inhibition, indicating that the apo(a)-plasminogen binding interaction mediated by the apo(a) protease domain does not ultimately inhibit plasminogen activation. A variant in which the strong lysine-binding site in kringle IV type 10 had been abolished exhibited substantially reduced inhibition whereas another lacking the kringle V domain showed no inhibition. Amino-terminal truncation mutants of apo(a) also revealed that additional sequences within kringle IV types 1-4 are required for maximal inhibition. To investigate the inhibition mechanism, the concentrations of plasminogen, cofactor, and a 12-kringle recombinant apo(a) species were systematically varied. Kinetics for both cofactors conformed to a single, equilibrium template model in which apo(a) can interact with all three fibrinolytic components and predicts the formation of ternary (cofactor, tPA, and plasminogen) and quaternary (cofactor, tPA, plasminogen, and apo(a)) catalytic complexes. The latter complex exhibits a reduced turnover number, thereby accounting for inhibition of plasminogen activation in the presence of apo(a)/Lp(a).  相似文献   

15.
In vitro hydrolysis of human lipoprotein[a] (Lp[a]) by phospholipase A2 (PLA2) decreased the phosphatidylcholine (PC) content by 85%, but increased nonesterified fatty acids 3.2-fold and lysoPC 12.9-fold. PLA2-treated Lp[a] had a decreased molecular weight, increased density, and greater electronegativity on agarose gels. In solution, PLA2-Lp[a] was a monomer, and when assessed by sedimentation velocity it behaved like untreated Lp[a], in that it remained compact in NaCl solutions but assumed the extended form in the presence of 6-amino hexanoic acid, which was shown previously to have an affinity for the apo[a] lysine binding site II (LBS II) comprising kringles IV5-8. We interpreted our findings to indicate that PLA2 digestion had no effect on the reactivity of this site. This conclusion was supported by the results obtained from lysine Sepharose and fibrinogen binding experiments, in the presence and absence of Tween 20, showing that phospholipolysis had no effect on the reactivity of the LBS-II domain. A comparable binding behavior was also exhibited by the free apo[a] derived from each of the two forms of Lp[a]. We did observe a small increase in affinity of PLA2-Lp[a] to lysine Sepharose and attributed it to changes in reactivity of the LBS I domain (kringle IV10) induced by phospholipolysis. In conclusion, the extensive modification of Lp[a] caused by PLA2 digestion had no significant influence on the reactivity of LBS II, which is the domain involved in the binding of apo[a] to fibrinogen and apoB-100. These results also suggest that phospholipids do not play an important role in these interactions.  相似文献   

16.
We have been able to amplify the lysine binding pocket region of human apo(a) kringle type 5 starting from the DNA isolated from peripheral blood lymphocytes. This development now permits the identification of Lp(a) mutants that by lacking their ability of bind to lysine/fibrin would have a lesser thrombogenic potential.  相似文献   

17.
Lipoprotein(a) [Lp(a)] entrapment by vascular extracellular matrix may be important in atherogenesis. We sought to determine whether laminin, a major component of the basal membrane, may contribute to Lp(a) retention in the arterial wall. First, immunohistochemistry experiments were performed to examine the relative distribution of Lp(a) and laminin in human carotid artery specimens. There was a high degree of co-localization of Lp(a) and laminin in atherosclerotic specimens, but not in non-atherosclerotic sections. We then studied the binding interaction between Lp(a) and laminin in vitro. ELISA experiments showed that native Lp(a) particles and 17K and 12K recombinant apolipoprotein(a) [r-apo(a)] variants interacted strongly with laminin whereas LDL, apoB-100, and the truncated KIV(6-P), KIV(8-P), and KIV(9-P) r-apo(a) variants did not. Overall, the ELISA data demonstrated that Lp(a) binding to laminin is mediated by apo(a) and a combination of the lysine analogue epsilon-aminocaproic acid and salt effectively decreases apo(a) binding to laminin. Secondary binding analyses with 125I-labeled r-apo(a) revealed equilibrium dissociation constants (K(d)) of 180 and 360 nM for the 17K and 12K variants binding to laminin, respectively. Such similar K(d) values between these two r-apo(a) variants suggest that isoform size does not appear to influence apo(a) binding to laminin. In summary, our data suggest that laminin may bind to apo(a) in the atherosclerotic intima, thus contributing to the selective retention of Lp(a) in this milieu.  相似文献   

18.
Becker L  Cook PM  Koschinsky ML 《Biochemistry》2004,43(31):9978-9988
We have previously demonstrated that, in the presence of the lysine analogue epsilon-aminocaproic acid, apolipoprotein(a) [apo(a)] undergoes a conformational change from a closed to an open structure that is characterized by a change in tryptophan fluorescence, an increase in the radius of gyration, an alteration of domain stability, and an enhancement in the efficiency of covalent lipoprotein(a) [Lp(a)] formation. In the present study, to identify sequences within apo(a) that maintain its closed conformation, we used epsilon-aminocaproic acid to probe the conformational status of a variety of recombinant apo(a) isoforms using analytical ultracentrifugation, differential scanning calorimetry, intrinsic fluorescence, and in vitro covalent Lp(a) formation assays. We observed that the closed conformation of apo(a) is maintained by intramolecular interaction(s) between sequences within the amino- and carboxyl-terminal halves of the molecule. Using site-directed mutagenesis, we have identified the strong lysine-binding site present within apo(a) kringle IV type 10 as an important site within the C-terminal half of the molecule, which is involved in maintaining the closed conformation of apo(a). Apo(a) exhibits marked isoform size heterogeneity because of the presence of varying numbers of copies of the kringle IV type-2 domain located within the amino-terminal half of the molecule. Using recombinant apo(a) species containing either 1, 3, or 8 copies of kringle IV type 2, we observed that, while apo(a) isoform size does not alter the affinity of apo(a) for low-density lipoprotein, it affects the conformational status of the protein and therefore influences the efficiency of covalent Lp(a) assembly. The inverse relationship between apo(a) isoform size and the efficiency of covalent Lp(a) formation that we report in vitro may contribute to the inverse relationship between apo(a) isoform size and plasma Lp(a) concentrations that has been observed in vivo.  相似文献   

19.
In previous studies, we showed that the C-terminal domain, F2, but not the N-terminal domain, F1, is responsible for the binding of apolipoprotein [a] (apo[a]) to human fibronectin (Fn). To pursue those observations, we prepared, by both elastase digestion and recombinant technology, subsets of F2 of a different length containing either kringle (K) V or the protease domain (PD). We also studied rhesus monkey apo[a], which is known to contain PD but not KV. In the case of Fn, we used both an intact product and its tenth type III module (10FN-III) expressed in Escherichia coli. The binding studies carried out on microtiter plates showed that the affinity of F2 for immobilized 10FN-III was approximately 6-fold higher than that for Fn (dissociation constants = 1.75 +/- 0.31 nM and 10.25 +/- 1.62 nM, respectively). The binding was also exhibited by rhesus apo[a] and by an F2 subset containing the PD linked to an upstream microdomain comprising KIV-8 to KIV-10 and KV, inactive by itself. Competition experiments on microtiter plates showed that both Fn and 10FN-III, when in solution, are incompetent to bind F2. Together, our results indicate that F2 binds to immobilized 10FN-III more efficiently than whole Fn and that the binding can be sustained by truncated forms of F2 that contain the catalytically inactive PD linked to an upstream four K microdomain.  相似文献   

20.
Lipoprotein(a), Lp(a), an athero-thrombotic risk factor, reacts with EO6, a natural monoclonal autoantibody that recognizes the phophorylcholine (PC) group of oxidized phosphatidylcholine (oxPtdPC) either as a lipid or linked by a Schiff base to lysine residues of peptides/proteins. Here we show that EO6 reacts with free apolipoprotein(a) apo(a), its C-terminal domain, F2 (but not the N-terminal F1), kringle V-containing fragments obtained by the enzymatic digestion of apo(a) and also kringle V-containing apo(a) recombinants. The evidence that kringle V is critical for EO6 reactivity is supported by the finding that apo(a) of rhesus monkeys lacking kringle V did not react with EO6. Based on the previously established EO6 specificity requirements, we hypothesized that all or some of the six lysines in human kringle V are involved in Schiff base linkage with oxPtdPC. To test this hypothesis, we made use of a recombinant lysine-containing apo(a) fragment, rIII, containing kringle V but not the protease domain. EO6 reacted with rIII before and after reduction to stabilize the Schiff base and also after extensive ethanol/ether extraction that yielded no lipids. On the other hand, delipidation of the saponified product yielded an average of two mol of phospholipids/mol of protein consistent with direct analysis of inorganic phosphorous on the non-saponified rIII. Moreover, only two of the six theoretical free lysine amino groups per mol of rIII were unavailable to chemical modification by 2,4,6-trinitrobenzene sulfonic acid. Finally, rIII, like human apo(a), stimulated the production of interleukin 8 in THP-1 macrophages in culture. Together, our studies provide evidence that in human apo(a), kringle V is the site that reacts with EO6 via lysine-oxPtdPC adducts that may also be involved in the previously reported pro-inflammatory effect of apo(a) in cultured human macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号