首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Kinetic specificity in papain-catalysed hydrolyses   总被引:1,自引:12,他引:1       下载免费PDF全文
The specificity of the proteolytic enzyme, papain, for the peptide bond of the substrate adjacent to that about to be cleaved and for the acyl residue of some N-acylglycine derivatives is manifest almost exclusively in the formation of the acyl-enzyme from the enzyme-substrate complex. Models for the enzyme-substrate complex and acyl-enzyme intermediate are suggested that account for these observations. In particular it is suggested that the peptide bond of the substrate adjacent to that about to be cleaved, is bound in the cleft of the enzyme between the NH group of glycine-66 and the backbone C=O group of aspartic acid-158, and provides a sensitive amplification mechanism through which the specificity of the enzyme for hydrophobic amino acids such as l-phenylalanine is relayed. It is also suggested that the distortion in the enzyme-substrate complex and the binding of the peptide bond adjacent to that about to be cleaved are also linked and behave co-operatively, the distortion of the protein facilitating binding and the stronger binding facilitating distortion. The results imply that between the enzyme-substrate complex and the acyl-enzyme a relaxation of the protein conformation must occur.  相似文献   

2.

Background

It is known that HIV-1 protease is an important target for design of antiviral compounds in the treatment of Acquired Immuno Deficiency Syndrome (AIDS). In this context, understanding the catalytic mechanism of the enzyme is of crucial importance as transition state structure directs inhibitor design. Most mechanistic proposals invoke nucleophilic attack on the scissile peptide bond by a water molecule. But such a water molecule coexisting with any ligand in the active site has not been found so far in the crystal structures.

Principal Findings

We report here the first observation of the coexistence in the active site, of a water molecule WAT1, along with the carboxyl terminal product (Q product) peptide. The product peptide has been generated in situ through cleavage of the full-length substrate. The N-terminal product (P product) has diffused out and is replaced by a set of water molecules while the Q product is still held in the active site through hydrogen bonds. The position of WAT1, which hydrogen bonds to both the catalytic aspartates, is different from when there is no substrate bound in the active site. We propose WAT1 to be the position from where catalytic water attacks the scissile peptide bond. Comparison of structures of HIV-1 protease complexed with the same oligopeptide substrate, but at pH 2.0 and at pH 7.0 shows interesting changes in the conformation and hydrogen bonding interactions from the catalytic aspartates.

Conclusions/Significance

The structure is suggestive of the repositioning, during substrate binding, of the catalytic water for activation and subsequent nucleophilic attack. The structure could be a snap shot of the enzyme active site primed for the next round of catalysis. This structure further suggests that to achieve the goal of designing inhibitors mimicking the transition-state, the hydrogen-bonding pattern between WAT1 and the enzyme should be replicated.  相似文献   

3.
4.
FK506-binding protein (FKBP) catalyzes the cis-trans isomerization of the peptidyl-prolyl amide bond (the PPIase reaction) and is the major intracellular receptor for the immunosuppressive drugs FK506 and rapamycin. One mechanism proposed for catalysis of the PPIase reaction requires attack of an enzyme nucleophile on the carbonyl carbon of the isomerized peptide bond. An alternative mechanism requires conformational distortion of the peptide bond with or without assistance by an enzyme hydrogen bond donor. We have determined the kinetic parameters of the human FKBP-catalyzed PPIase reaction. At 5 degrees C, the isomerization of Suc-Ala-Leu-Pro-Phe-pNA proceeds in 2.5% trifluorethanol with kcat = 600 s-1, Km = 0.5 mM and kcat/Km = 1.2 x 10(6) M-1s-1. The kcat/Km shows little pH dependence between 5 and 10. A normal secondary deuterium isotope effect is observed on both kcat and kcat/Km. To investigate dependence on enzyme nucleophiles and proton donors, we have replaced eight potential catalytic residues with alanine by site-directed mutagenesis. Each FKBP variant efficiently catalyzes the PPIase reaction. Taken together, these data support an unassisted conformational twist mechanism with rate enhancement due in part to desolvation of the peptide bond at the active site. Fluorescence quenching of the buried tryptophan 59 residue by peptide substrate suggests that isomerization occurs in a hydrophobic environment.  相似文献   

5.
The hydrogen-bond network in various stages of the enzymatic reaction catalyzed by HIV-1 protease was studied through quantum-classical molecular dynamics simulations. The approximate valence bond method was applied to the active site atoms participating directly in the rearrangement of chemical bonds. The rest of the protein with explicit solvent was treated with a classical molecular mechanics model. Two possible mechanisms were studied, general-acid/general-base (GA/GB) with Asp 25 protonated at the inner oxygen, and a direct nucleophilic attack by Asp 25. Strong hydrogen bonds leading to spontaneous proton transfers were observed in both reaction paths. A single-well hydrogen bond was formed between the peptide nitrogen and outer oxygen of Asp 125. The proton was diffusely distributed with an average central position and transferred back and forth on a picosecond scale. In both mechanisms, this interaction helped change the peptide-bond hybridization, increased the partial charge on peptidyl carbon, and in the GA/GB mechanism, helped deprotonate the water molecule. The inner oxygens of the aspartic dyad formed a low-barrier, but asymmetric hydrogen bond; the proton was not positioned midway and made a slightly elongated covalent bond, transferring from one to the other aspartate. In the GA/GB mechanism both aspartates may help deprotonate the water molecule. We observed the breakage of the peptide bond and found that the protonation of the peptidyl amine group was essential for the peptide-bond cleavage. In studies of the direct nucleophilic mechanism, the peptide carbon of the substrate and oxygen of Asp 25 approached as close as 2.3 A.  相似文献   

6.
The crystal structure of the liganded form of the sulfate-binding protein, an initial receptor for active transport of sulfate in Salmonella typhimurium, has been solved and refined at 2.0 A resolution (1 A = 0.1 nm). The final model, which consists of 2422 non-hydrogen atoms, one sulfate substrate and 143 water molecules, yields a crystallographic R-factor of 14.0% for 16,959 reflections between 8 and 2 A. The structure deviates from ideal bond lengths and angle distances by 0.015 A and 0.037 A, respectively. The protein is ellipsoid with overall dimensions of 35 A x 35 A x 65 A and consists of two similar globular domains. The two domains are linked by three distinct peptide segments, which though widely separated in the amino acid sequence, are in close proximity in the tertiary structure. As these connecting segments are located near the periphery of the molecule, they further serve as the base or a "boundary" of the deep cleft formed between the two domains. Despite the unusual interdomain connectivity, both domains have similar supersecondary structure consisting of a central five-stranded beta-pleated sheet sandwiched by alpha-helices on either side. The arrangement of the two domains gives rise to the ellipsoidal shape and to the cleft between the two domains wherein the sulfate substrate is found and completely engulfed. A discovery of considerable importance is that the sulfate substrate is tightly held in place primarily by seven hydrogen bonds, five of which are donated by main-chain peptide NH groups, another by a serine hydroxyl and the last by the indole NH moiety of a tryptophan side-chain; there are no positively charged residues, nor cations, nor water molecules within van der Waals' distance to the sulfate dianion. All the main-chain peptide units associated with the sulfate are in turn linked (via the peptide CO group) to arrays of hydrogen bonds. Three of these arrays are composed of alternating peptide units and hydrogen bonds within the solvent-exposed part of three alpha-helices and two are linked to a histidine and an arginine residue. The sulfate-binding protein bears strong similarity to the structures of four other periplasmic binding proteins solved in our laboratory which are specific for L-arabinose, D-galactose/D-glucose, leucine/isoleucine/valine and leucine. The similarity includes the ellipsoidal shape and the two globular domain structures, each domain consisting of a central beta-pleated sheet flanked by alpha-helices.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
GTP cyclohydrolase I catalyses the hydrolytic release of formate from GTP followed by cyclization to dihydroneopterin triphosphate. The enzymes from bacteria and animals are homodecamers containing one zinc ion per subunit. Replacement of Cys110, Cys181, His112 or His113 of the enzyme from Escherichia coli by serine affords catalytically inactive mutant proteins with reduced capacity to bind zinc. These mutant proteins are unable to convert GTP or the committed reaction intermediate, 2-amino-5-formylamino-6-(beta-ribosylamino)-4(3H)-pyrimidinone 5'-triphosphate, to dihydroneopterin triphosphate. The crystal structures of GTP complexes of the His113Ser, His112Ser and Cys181Ser mutant proteins determined at resolutions of 2.5A, 2.8A and 3.2A, respectively, revealed the conformation of substrate GTP in the active site cavity. The carboxylic group of the highly conserved residue Glu152 anchors the substrate GTP, by hydrogen bonding to N-3 and to the position 2 amino group. Several basic amino acid residues interact with the triphosphate moiety of the substrate. The structure of the His112Ser mutant in complex with an undefined mixture of nucleotides determined at a resolution of 2.1A afforded additional details of the peptide folding. Comparison between the wild-type and mutant enzyme structures indicates that the catalytically active zinc ion is directly coordinated to Cys110, Cys181 and His113. Moreover, the zinc ion is complexed to a water molecule, which is in close hydrogen bond contact to His112. In close analogy to zinc proteases, the zinc-coordinated water molecule is suggested to attack C-8 of the substrate affording a zinc-bound 8R hydrate of GTP. Opening of the hydrated imidazole ring affords a formamide derivative, which remains coordinated to zinc. The subsequent hydrolysis of the formamide motif has an absolute requirement for zinc ion catalysis. The hydrolysis of the formamide bond shows close mechanistic similarity with peptide hydrolysis by zinc proteases.  相似文献   

8.
Phosphotransacetylase (EC 2.3.1.8) catalyzes reversible transfer of the acetyl group from acetyl phosphate to coenzyme A (CoA), forming acetyl-CoA and inorganic phosphate. Two crystal structures of phosphotransacetylase from the methanogenic archaeon Methanosarcina thermophila in complex with the substrate CoA revealed one CoA (CoA1) bound in the proposed active site cleft and an additional CoA (CoA2) bound at the periphery of the cleft. The results of isothermal titration calorimetry experiments are described, and they support the hypothesis that there are distinct high-affinity (equilibrium dissociation constant [KD], 20 microM) and low-affinity (KD, 2 mM) CoA binding sites. The crystal structures indicated that binding of CoA1 is mediated by a series of hydrogen bonds and extensive van der Waals interactions with the enzyme and that there are fewer of these interactions between CoA2 and the enzyme. Different conformations of the protein observed in the crystal structures suggest that domain movements which alter the geometry of the active site cleft may contribute to catalysis. Kinetic and calorimetric analyses of site-specific replacement variants indicated that there are catalytic roles for Ser309 and Arg310, which are proximal to the reactive sulfhydryl of CoA1. The reaction is hypothesized to proceed through base-catalyzed abstraction of the thiol proton of CoA by the adjacent and invariant residue Asp316, followed by nucleophilic attack of the thiolate anion of CoA on the carbonyl carbon of acetyl phosphate. We propose that Arg310 binds acetyl phosphate and orients it for optimal nucleophilic attack. The hypothesized mechanism proceeds through a negatively charged transition state stabilized by hydrogen bond donation from Ser309.  相似文献   

9.
Torsional deformation of the peptide linkage by anti distortion of cis substituents (i.e., forcing groups attached to one side of an amide partial π bond out of plane in opposite directions) leads to rehybridization of the constituent atoms (nitrogen and carbonyl carbon) toward tetrahedral geometry. In consequence the partial π bond is uniquely activated toward trans (antarafacial) addition with defined steric orientation of addends. Application of these considerations to the known structure of an enzyme-substrate complex of carboxypeptidase A leads to a unique mechanistic hypothesis for proteolytic cleavage by this enzyme. Extant evidence concerning the mode of catalysis is considered in light of a mechanism involving electrostatically induced torsional activation of the scissile peptide bond, Lewis acid coordination of zinc to amide carbonyl, proton donation from Glu 270 to the amide nitrogen of the scissile bond, with concerted attack upon the amide carbonyl by solvent water.  相似文献   

10.
The mechanism of the first steps of the reaction catalyzed by HIV-1 protease was studied through molecular dynamics simulations. The potential energy surface in the active site was generated using the approximate valence bond method. The approximate valence bond (AVB) method was parameterized based on density functional calculations. The surrounding protein and explicit water environment was modeled with conventional, classical force field. The calculations were performed based on HIV-1 protease complexed with the MVT-101 inhibitor that was modified to a model substrate. The protonation state of the catalytic aspartates was determined theoretically. Possible reaction mechanisms involving the lytic water molecule are accounted for in this study. The modeled steps include the dissociation of the lytic water molecule and proton transfer onto Asp-125, the nucleophilic attack followed by a proton transfer onto peptide nitrogen. The simulations show that in the active site most preferable energetically are structures consisting of ionized or polarized molecular fragments that are not accounted for in conventional molecular dynamics. The mobility of the lytic water molecule, the dynamics of the hydrogen bond network, and the conformation of the aspartates in the active center were analyzed.  相似文献   

11.
Lipid A is an integral component of the lipopolysaccharide (LPS) that forms the selective and protective outer monolayer of Gram-negative bacteria, and is essential for bacterial growth and viability. UDP-N-acetylglucosamine acyltransferase (LpxA) initiates lipid A biosynthesis by catalyzing the transfer of R-3-hydroxymyristic acid from acyl carrier protein to the 3'-hydroxyl group of UDP-GlcNAc. The enzyme is a homotrimer, and previous studies suggested that the active site lies within a positively charged cleft formed at the subunit-subunit interface. The crystal structure of Escherichia coli LpxA in complex with UDP-GlcNAc reveals details of the substrate-binding site, with prominent hydrophilic interactions between highly conserved clusters of residues (Asn198, Glu200, Arg204 and Arg205) with UDP, and (Asp74, His125, His144 and Gln161) with the GlcNAc moiety. These interactions serve to bind and orient the substrate for catalysis. The crystallographic model supports previous results, which suggest that acylation occurs via nucleophilic attack of deprotonated UDP-GlcNAc on the acyl donor in a general base-catalyzed mechanism involving a catalytic dyad of His125 and Asp126. His125, the general base, interacts with the 3'-hydroxyl group of UDP-GlcNAc to generate the nucleophile. The Asp126 side-chain accepts a hydrogen bond from His125 and helps orient the general base to participate in catalysis. Comparisons with an LpxA:peptide inhibitor complex indicate that the peptide competes with both nucleotide and acyl carrier protein substrates.  相似文献   

12.
Cytochrome P450eryF (CYP107A) from Saccaropolyspora ertherea catalyzes the hydroxylation of 6-deoxyerythronolide B, one of the early steps in the biosynthesis of erythromycin. P450eryF has an alanine rather than the conserved threonine that participates in the activation of dioxygen (O(2)) in most other P450s. The initial structure of P450eryF (Cupp-Vickery, J. R., Han, O., Hutchinson, C. R., and Poulos, T. L. (1996) Nat. Struct. Biol. 3, 632-637) suggests that the substrate 5-OH replaces the missing threonine OH group and holds a key active site water molecule in position to donate protons to the iron-linked dioxygen, a critical step for the monooxygenase reaction. To probe the proton delivery system in P450eryF, we have solved crystal structures of ferrous wild-type and mutant (Fe(2+)) dioxygen-bound complexes. The catalytic water molecule that was postulated to provide protons to dioxygen is absent, although the substrate 5-OH group donates a hydrogen bond to the iron-linked dioxygen. The hydrogen bond network observed in the wild-type ferrous dioxygen complex, water 63-Glu(360)-Ser(246)-water 53-Ala(241) carbonyl in the I-helix cleft, is proposed as the proton transfer pathway. Consistent with this view, the hydrogen bond network in the O(2).A245S and O(2) .A245T mutants, which have decreased or no enzyme activity, was perturbed or disrupted, respectively. The mutant Thr(245) side chain also perturbs the hydrogen bond between the substrate 5-OH and dioxygen ligand. Contrary to the previously proposed mechanism, these results support the direct involvement of the substrate in O(2) activation but raise questions on the role water plays as a direct proton donor to the iron-linked dioxygen.  相似文献   

13.
The upstream coagulation enzymes are homologous trypsin-like serine proteases that typically function in enzyme-cofactor complexes, exemplified by coagulation factor VIIa (VIIa), which is allosterically activated upon binding to its cell surface receptor tissue factor (TF). TF cooperates with VIIa to create a bimolecular recognition surface that serves as an exosite for factor X binding. This study analyzes to what extent scissile bond docking to the catalytic cleft contributes to macromolecular substrate affinity. Mutation of the P1 Arg residue in factor X to Gln prevented activation by the TF.VIIa complex but did not reduce macromolecular substrate affinity for TF.VIIa. Similarly, mutations of the S and S' subsites in the catalytic cleft of the enzyme VIIa failed to reduce affinity for factor X, although the affinity for small chromogenic substrates and the efficiency of factor X scissile bond cleavage were reduced. Thus, docking of the activation peptide bond to the catalytic cleft of this enzyme-cofactor complex does not significantly contribute to affinity for macromolecular substrate. Rather, it appears that the creation of an extended macromolecular substrate recognition surface involving enzyme and cofactor is utilized to generate substrate specificity between the highly homologous, regulatory proteases of the coagulation cascade.  相似文献   

14.
Refined x-ray structure of papain.E-64-c complex at 2.1-A resolution.   总被引:2,自引:0,他引:2  
E-64-c, a synthetic cysteine protease inhibitor designed from E-64, binds to papain through a thioether covalent bond. The x-ray diffraction data for 2.1-A resolution were used to determine the three-dimensional structure of this complex and refined it to R = 0.159. 0.159. In the complex structure, the configurational conversion from S to R took place on the epoxy carbon of E-64-c, implying that the nucleophilic attack of the Cys-25 thiol group occurs at the opposite side of the epoxy oxygen atom. The leucyl and isoamylamide groups of E-64-c were strongly fixed to papain S subsites by specific interactions, including hydrogen bonding to the Gly-66 residue. The carboxyl-terminal anion of E-64-c formed an electrostatic interaction with the protonated His-159 imidazole ring (O-...HN+ = 3.76 A) and consequently prevented the participation of this residue in the hydrolytic charge-relay system. No significant distortion caused by the binding of E-64-c was shown in the secondary structure of papain. It is important to note that inhibitor and substrate have opposite binding modes for the peptide groups. The possible relationship between the binding mode and inhibitory activity is discussed on the basis of the crystal structure of this complex.  相似文献   

15.
Cyclophilins facilitate the peptidyl-prolyl isomerization of a trans-isomer to a cis-isomer in the refolding process of unfolded proteins to recover the natural folding state with cis-proline conformation. To date, only short peptides with a cis-form proline have been observed in complexes of human and Escherichia coli proteins of cyclophilin A, which is present in cytoplasm. The crystal structures analyzed in this study show two complexes in which peptides having a trans-form proline, i.e. succinyl-Ala-trans-Pro-Ala-p-nitroanilide and acetyl-Ala-Ala-trans-Pro-Ala-amidomethylcoumarin, are bound on a K163T mutant of Escherichia coli cyclophilin B, the preprotein of which has a signal sequence. Comparison with cis-form peptides bound to cyclophilin A reveals that in any case the proline ring is inserted into the hydrophobic pocket and a hydrogen bond between CO of Pro and Neta2 of Arg is formed to fix the peptide. On the other hand, in the cis-isomer, the formation of two hydrogen bonds of NH and CO of Ala preceding Pro with the protein fixes the peptide, whereas in the trans-isomer formation of a hydrogen bond between CO preceding Ala-Pro and His47 Nepsilon2 via a mediating water molecule allows the large distortion in the orientation of Ala of Ala-Pro. Although loss of double bond character of the amide bond of Ala-Pro is essential to the isomerization pathway occurring by rotating around its bond, these peptides have forms impossible to undergo proton transfer from the guanidyl group of Arg to the prolyl N atom, which induces loss of double bond character.  相似文献   

16.
Cai S  Stevens SY  Budor AP  Zuiderweg ER 《Biochemistry》2003,42(38):11100-11108
The interaction of solvent of the substrate binding domain of the bacterial heat shock 70 chaperone protein DnaK was studied in its apo form and with bound hydrophobic substrate peptide, using refined nuclear magnetic resonance experiments. Distinct differences between the two states of the protein were observed. According to our data, the apo form interacts more extensively with solvent than the peptide-bound form. Significantly, the open hydrophobic substrate binding cleft of DnaK in the apo form is found to contain several molecules of water which are displaced by the binding of the hydrophobic substrate, the peptide NRLLLTG. The solvent in the hydrophobic cleft has a residence time longer than 400 ps. It is predicted that the displacement of this trapped water must contribute to the binding free energy of the natural hydrophobic substrates of this class of protein-folding chaperone proteins.  相似文献   

17.
Citrate synthase forms citrate by deprotonation of acetyl-CoA followed by nucleophilic attack of this substrate on oxaloacetate, and subsequent hydrolysis. The rapid reaction rate is puzzling because of the instability of the postulated nucleophilic intermediate, the enolate of acetyl-CoA. As alternatives, the enol of acetyl-CoA, or an enolic intermediate sharing a proton with His-274 in a “low-barrier” hydrogen bond have been suggested. Similar problems of intermediate instability have been noted in other enzymic carbon acid deprotonation reactions. Quantum mechanical/molecular mechanical calculations of the pathway of acetyl-CoA enolization within citrate synthase support the identification of Asp-375 as the catalytic base. His-274, the proposed general acid, is found to be neutral. The acetyl-CoA enolate is more stable at the active site than the enol, and is stabilized by hydrogen bonds from His-274 and a water molecule. The conditions for formation of a low-barrier hydrogen bond do not appear to be met, and the calculated hydrogen bond stabilization in the reaction is less than the gas-phase energy, due to interactions with Asp-375 at the active site. The enolate character of the intermediate is apparently necessary for the condensation reaction to proceed efficiently. Proteins 27:9–25 © 1997 Wiley-Liss, Inc.  相似文献   

18.
The modular synthesis of pyrimidine oligohydrazides and their peptide binding ability are reported. Ethylene glycol substituents ensure water solubility of the compounds. The pattern of hydrogen bond donors and hydrogen bond acceptors resembles the functionalities of a peptide backbone, and intramolecular hydrogen bonds restrict conformational mobility. The pyrimidine heterocycles show emission at 423 nm if either excited with light of 320 nm or by a FRET process from a nearby Trp residue. This property is useful for the luminescent detection of interactions with peptides and proteins.  相似文献   

19.
The three-dimensional structures of the complexes of the aspartic proteinase from Rhizopus chinensis (Rhizopuspepsin, EC 3.4.23.6) with pepstatin and two pepstatin-like peptide inhibitors of renin have been determined by X-ray diffraction methods and refined by restrained least-squares procedures. The inhibitors adopt an extended conformation and lie in the deep groove located between the two domains of the enzyme. Inhibitor binding is accompanied by a conformational change at the "flap," a beta-hairpin loop region, that projects over the binding cleft and closes down over the inhibitor, excluding water molecules from the vicinity of the scissile bond. The hydroxyl group of the central statyl residue of the inhibitors replaces the water molecule found between the two active aspartates, Asp-35 and Asp-218, in the native structure. The refined structures provide additional data to define the specific subsites of the enzyme and also show a system of hydrogen bonding to the inhibitor backbone similar to that observed for a reduced inhibitor.  相似文献   

20.
The P-N bond hydrolysis of the 4-methoxyphenyl-ammoniumethylamido-phosphonodithioato ligand on complexation to PdII leads to the first example of a Pd-phosphonodithioato complex in a cis configuration, stabilised in the solid state by an extended network of hydrogen bondings involving the released ethylenediamine and a water molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号